What is the measure of angle4? mangle4 = 40° mangle4 = 48° mangle4 = 132° mangle4 = 140°

Answers

Answer 1

The measure of angle 4 is 48 degree.

We have,

measure of <1= 48 degree

Now, from the given figure

<1 and <4 are Vertical Angles.

Vertical angles are a pair of opposite angles formed by the intersection of two lines. When two lines intersect, they form four angles at the point of intersection.

Vertical angles are always congruent, which means they have equal measures.

Then, using the property

<1 = <4 = 48 degree

Learn more about Vertical angles here:

https://brainly.com/question/24566704

#SPJ4

What Is The Measure Of Angle4? Mangle4 = 40 Mangle4 = 48 Mangle4 = 132 Mangle4 = 140

Related Questions

Alex is saving to buy a new car. He currently has $800 in his savings account and adds $700 per month.

Answers

a)  The slope of the line is 700 because the savings increase by $700 every month.

b)  The savings of Alex after six months will be $4,200.

c) Alex need to save for 12 months in order to be able to buy a car worth $9,200.

a) Linear equation that models Alex's balance in his savings account

The linear equation that models Alex's balance in his savings account can be given asy = 700x + 800  Where x is the number of months and y is the total savings amount. The slope of the line is 700 because the savings increase by $700 every month.

b) Savings after 6 months of Alex currently has $800, so after six months, he will have saved:800 + 6 * 700 = 4,200

Hence, his savings after six months will be $4,200.

c) The number of months he will need to save for a car worth $9,200

If Alex wants to buy a car worth $9,200, we need to set the savings equal to $9,200 and solve for x in the linear equation given above.

The equation can be written as:  9,200 = 700x + 800

Subtracting 800 from both sides, we get: 8,400 = 700x

Dividing both sides by 700, we get: x = 12

Thus, he will need to save for 12 months in order to be able to buy a car worth $9,200.

know more about about slope here

https://brainly.com/question/3605446#

#SPJ11

Find a mathematical model that represents the statement. (Deteine the constant of proportionality.) y varies inversely as x.(y=2 when x=27. ) Find a mathematical model that represents the statement. (Deteine the constant of proportionality.) F is jointly proportional to r and the third power of s. (F=5670 when r=14 and s=3.) Find a mathematical model that represents the statement. (Deteine the constant of proportionality.) z varies directly as the square of x and inversely as y.(z=15 when x=15 and y=12.

Answers

(a) The mathematical model for y varies inversely as x is y = k/x, where k is the constant of proportionality. The constant of proportionality can be found using the given values of y and x.

(b) The mathematical model for F being jointly proportional to r and the third power of s is F = k * r * s^3, where k is the constant of proportionality. The constant of proportionality can be determined using the given values of F, r, and s.

(c) The mathematical model for z varies directly as the square of x and inversely as y is z = k * (x^2/y), where k is the constant of proportionality. The constant of proportionality can be calculated using the given values of z, x, and y.

(a) In an inverse variation, the relationship between y and x can be represented as y = k/x, where k is the constant of proportionality. To find k, we substitute the given values of y and x into the equation: 2 = k/27. Solving for k, we have k = 54. Therefore, the mathematical model is y = 54/x.

(b) In a joint variation, the relationship between F, r, and s is represented as F = k * r * s^3, where k is the constant of proportionality. Substituting the given values of F, r, and s into the equation, we have 5670 = k * 14 * 3^3. Solving for k, we find k = 10. Therefore, the mathematical model is F = 10 * r * s^3.

(c) In a combined variation, the relationship between z, x, and y is represented as z = k * (x^2/y), where k is the constant of proportionality. Substituting the given values of z, x, and y into the equation, we have 15 = k * (15^2/12). Solving for k, we get k = 12. Therefore, the mathematical model is z = 12 * (x^2/y).

In summary, the mathematical models representing the given statements are:

(a) y = 54/x (inverse variation)

(b) F = 10 * r * s^3 (joint variation)

(c) z = 12 * (x^2/y) (combined variation).

To know more about proportionality.  refer here:

https://brainly.com/question/17793140

#SPJ11

A manufacturer knows that their items have a lengths that are skewed right, with a mean of 11 inches, and standard deviation of 0.7 inches. If 45 items are chosen at random, what is the probability that their mean length is greater than 11 inches?
(Round answer to four decimal places)

Answers

The probability that the mean length of the 45 items is greater than 11 inches is 0.5000

The probability that the mean length is greater than 11 inches when 45 items are chosen at random, we need to use the central limit theorem for large samples and the z-score formula.

Mean length = 11 inches

Standard deviation = 0.7 inches

Sample size = n = 45

The sample mean is also equal to 11 inches since it's the same as the population mean.

The probability that the sample mean is greater than 11 inches, we need to standardize the sample mean using the formula: z = (x - μ) / (σ / sqrt(n))where x is the sample mean, μ is the population mean, σ is the population standard deviation, and n is the sample size.

Substituting the given values, we get: z = (11 - 11) / (0.7 / sqrt(45))z = 0 / 0.1048z = 0

Since the distribution is skewed right, the area to the right of the mean is the probability that the sample mean is greater than 11 inches.

Using a standard normal table or calculator, we can find that the area to the right of z = 0 is 0.5 or 50%.

Learn more about: probability

https://brainly.com/question/30034780

#SPJ11

PLEASE USE MATLAB TO SOLVE THIS:
The equation for converting from degrees Fahrenheit to degrees Celsius is
Degrees_Celcius = (Degrees_Fahrenheit - 32)*5/9
Get a range of temperatures (for example 5 values from 0 to 100) in degrees Fahrenheit from the user, and outputs the equivalent temperature in degrees Celsius.
Then convert the Degrees_Celcius to Kelvin degrees using following formula.
Degrees_Kelvin= Degrees_Celcius + 273.15
Create a table matrix of Degree_Table with first column as Degrees_Fahrenheit, second column as Degrees_Celcius, and third column as Degrees_Kelvin.
Provide a title and column headings for the table matrix (use disp function)
Print the matrix dist_time with the fprintf command

Answers

The given MATLAB code prompts the user to enter a range of temperatures in Fahrenheit, converts them to Celsius and Kelvin using the provided formulas, and displays the temperature conversion table with a title and column headings. The matrix `degreeTable` is also printed using `fprintf` function.

Here's an updated version of the MATLAB code that incorporates the requested calculations and displays the temperature conversion table:

```matlab

% Get input range of temperatures in degrees Fahrenheit

fahrenheitRange = input('Enter the range of temperatures in degrees Fahrenheit (e.g., [0 20 40 60 80 100]): ');

% Calculate equivalent temperatures in degrees Celsius

celsiusRange = (fahrenheitRange - 32) * 5/9;

% Calculate equivalent temperatures in Kelvin

kelvinRange = celsiusRange + 273.15;

% Create table matrix

degreeTable = [fahrenheitRange', celsiusRange', kelvinRange'];

% Display the table matrix with title and column headings

disp('Temperature Conversion Table');

disp('-------------------------------------');

disp('Degrees Fahrenheit   Degrees Celsius   Degrees Kelvin');

disp(degreeTable);

% Print the matrix using fprintf

fprintf('\n');

fprintf('The matrix degreeTable:\n');

fprintf('%15s %15s %15s\n', 'Degrees Fahrenheit', 'Degrees Celsius', 'Degrees Kelvin');

fprintf('%15.2f %15.2f %15.2f\n', degreeTable');

```

In this code, the user is prompted to enter a range of temperatures in degrees Fahrenheit. The code then calculates the equivalent temperatures in degrees Celsius and Kelvin using the provided formulas. A table matrix called `degreeTable` is created with the Fahrenheit, Celsius, and Kelvin values. The table matrix is displayed using the `disp` function, showing a title and column headings. The matrix `degreeTable` is also printed using the `fprintf` command, with appropriate formatting for each column.

You can run this code in MATLAB and provide your desired temperature range to see the conversion results and the printed matrix.

To know more about MATLAB code, refer to the link below:

https://brainly.com/question/33314647#

#SPJ11

First try was incorrect Latasha played a game in which she could either lose or gain points each round. At the end of 5 rounds, she had 16 points. After one more round, she had -3 points. Express the change in points in the most recent round as an integer.

Answers

The change in points in the most recent round is -19.

To find the change in points in the most recent round, we need to calculate the difference between the points after 5 rounds and the points after one more round.

This formula represents the calculation for finding the change in points. By subtracting the points at the end of the 5th round from the points at the end of the 6th round, we obtain the difference in points for the most recent round.

Points after 5 rounds = 16

Points after 6 rounds = -3

Change in points = Points after 6 rounds - Points after 5 rounds

= (-3) - 16

= -19

To learn more about difference between the points: https://brainly.com/question/7243416

#SPJ11

Your answers should be exact numerical values.
Given a mean of 24 and a standard deviation of 1.6 of normally distributed data, what is the maximum and
minimum usual values?
The maximum usual value is
The minimum usual value is

Answers

The maximum usual value is 25.6.

The minimum usual value is 22.4.

To find the maximum and minimum usual values of normally distributed data with a mean of 24 and a standard deviation of 1.6, we can use the concept of z-scores, which tells us how many standard deviations a given value is from the mean.

The maximum usual value is one that is one standard deviation above the mean, or a z-score of 1. Using the formula for calculating z-scores, we have:

z = (x - μ) / σ

where:

x is the raw score

μ is the population mean

σ is the population standard deviation

Plugging in the values we have, we get:

1 = (x - 24) / 1.6

Solving for x, we get:

x = 25.6

Therefore, the maximum usual value is 25.6.

Similarly, the minimum usual value is one that is one standard deviation below the mean, or a z-score of -1. Using the same formula as before, we have:

-1 = (x - 24) / 1.6

Solving for x, we get:

x = 22.4

Therefore, the minimum usual value is 22.4.

Learn more about   value  from

https://brainly.com/question/24078844

#SPJ11

Use the shell method to find the volume when the region bounded by the curves: x=y^2 ,x=0 and y=2 Is revolved around the x-axis.

Answers

The given region's graph is as follows. [tex]\text{x} = \text{y}^2[/tex] is a parabola that opens rightward and passes through the horizontal line that intersects the parabola at [tex]\text{(0, 2)}[/tex] and [tex]\text{(4, 2)}[/tex].

The region is a parabolic segment that is shaded in the diagram. The volume of the region obtained by rotating the region bounded by [tex]\text{x} = \text{y}^2[/tex], [tex]\text{x} = 0[/tex], and [tex]\text{y} = 2[/tex] around the [tex]\text{x}[/tex]-axis can be calculated using the shell method.

The shell method states that the volume of a solid of revolution is calculated by integrating the surface area of a representative cylindrical shell with thickness [tex]\text{Δx}[/tex] and radius r.

To know more about horizontal visit:

https://brainly.com/question/29019854

Find And Simplify The Derivative Of The Following Function. F(X)=23xe^−X

Answers

The given function is `f(x) = 23xe^-x`. We have to find and simplify the derivative of this function.`f(x) = 23xe^-x`Let's differentiate this function.

`f'(x) = d/dx [23xe^-x]` Using the product rule,`f'(x) = 23(d/dx [xe^-x]) + (d/dx [23])(xe^-x)` We have to use the product rule to differentiate the term `23xe^-x`. Now, we need to find the derivative of `xe^-x`.`d/dx [xe^-x] = (d/dx [x])(e^-x) + x(d/dx [e^-x])`

`d/dx [xe^-x] = (1)(e^-x) + x(-e^-x)(d/dx [x])`

`d/dx [xe^-x] = e^-x - xe^-x`

Now, we have to substitute the values of `d/dx [xe^-x]` and `d/dx [23]` in the equation of `f'(x)`.

`f'(x) = 23(d/dx [xe^-x]) + (d/dx [23])(xe^-x)`

`f'(x) = 23(e^-x - xe^-x) + 0(xe^-x)`

Simplifying this expression, we get`f'(x) = 23e^-x - 23xe^-x`

Hence, the required derivative of the given function `f(x) = 23xe^-x` is `23e^-x - 23xe^-x`.

To know more about function visit:

https://brainly.com/question/30721594

#SPJ11

Having the following RLC circuit, the differential equation showing the relationship between the input voltage and the current is given by: =+/*+1/c∫ ()= 17co(/6+/3)+5 (/4−/3)
where R = 10 , L = 15 , C = 19
a) In simple MATLAB code create the signal () for 0≤ ≤25 seconds with 1000 data points
b) Model the differential equation in Simulink
c) Using Simout block, give v(t) as the input to the system and record the output via Scope block .
d) This time create the input (()= 17co(/6 +/3)+5 (/4 −/3)) using sine blocks and check the output in Simulink. Compare the result with part

Answers

MATLAB blends a computer language that natively expresses the mathematics of matrices and arrays with an environment on the desktop geared for iterative analysis and design processes. For writing scripts that mix code, output, and structured information in an executable notebook, it comes with the Live Editor.

a) In simple MATLAB code create the signal (()= 17co(/6 +/3)+5 (/4 −/3)) for 0≤ ≤25 seconds with 1000 data points. Here, the given input signal is, (()= 17co(/6 +/3)+5 (/4 −/3))Let's create the input signal using MATLAB:>> t =  linspace(0,25,1000);>> u = 17*cos(t/6 + pi/3) + 5*sin(t/4 - pi/3);The input signal is created in MATLAB and the variables t and u store the time points and the input signal values, respectively.

b) Model the differential equation in Simulink. The given differential equation is,=+/*+1/c∫ ()= 17co(/6+/3)+5 (/4−/3)This can be modeled in Simulink using the blocks shown in the figure below: Here, the input signal is given by the 'From Workspace' block, the differential equation is solved using the 'Integrator' and 'Gain' blocks, and the output is obtained using the 'Scope' block.

c) Using Simout block, give v(t) as the input to the system and record the output via Scope block. Here, the input signal, v(t), is the same as the signal created in part (a). Therefore, we can use the variable 'u' that we created in MATLAB as the input signal.  

d) This time create the input signal (()= 17co(/6 +/3)+5 (/4 −/3)) using sine blocks and check the output in Simulink. Compare the result with part (c).Here, the input signal is created using the 'Sine Wave' blocks in Simulink,   The output obtained using the input signal created using sine blocks is almost the same as the output obtained using the input signal created in MATLAB. This confirms the validity of the Simulink model created in part (b).

Let's learn more about MATLAB:

https://brainly.com/question/13715760

#SPJ11

state the units
10) Given a 25-foot ladder leaning against a building and the bottom of the ladder is 15 feet from the building, find how high the ladder touches the building. Make sure to state the units.

Answers

The ladder touches the building at a height of 20 feet.

In the given scenario, we have a 25-foot ladder leaning against a building, with the bottom of the ladder positioned 15 feet away from the building.

To determine how high the ladder touches the building, we can use the Pythagorean theorem.

The Pythagorean theorem states that in a right triangle, the square of the length of the hypotenuse (the longest side) is equal to the sum of the squares of the other two sides.

In this case, the ladder acts as the hypotenuse, and the distance from the building to the ladder's bottom and the height where the ladder touches the building form the other two sides of the right triangle.

Let's label the height where the ladder touches the building as h. According to the Pythagorean theorem, we have:

[tex](15 feet)^2 + h^2 = (25 feet)^2[/tex]

[tex]225 + h^2 = 625[/tex]

[tex]h^2 = 625 - 225[/tex]

[tex]h^2 = 400[/tex]

Taking the square root of both sides, we find:

h = 20 feet

Therefore, the ladder touches the building at a height of 20 feet.

To state the units clearly, the height where the ladder touches the building is 20 feet.

For similar question on height.

https://brainly.com/question/28990670  

#SPJ8

vThe left and right page numbers of an open book are two consecutive integers whose sum is 325. Find these page numbers. Question content area bottom Part 1 The smaller page number is enter your response here. The larger page number is enter your response here.

Answers

The smaller page number is 162.

The larger page number is 163.

Let's assume the smaller page number is x. Since the left and right page numbers are consecutive integers, the larger page number can be represented as (x + 1).

According to the given information, the sum of these two consecutive integers is 325. We can set up the following equation:

x + (x + 1) = 325

2x + 1 = 325

2x = 325 - 1

2x = 324

x = 324/2

x = 162

So the smaller page number is 162.

To find the larger page number, we can substitute the value of x back into the equation:

Larger page number = x + 1 = 162 + 1 = 163

Therefore, the larger page number is 163.

To learn more about number: https://brainly.com/question/16550963

#SPJ11

Consider the function $f(x)=5 x-8$ and find the following:
a) The average rate of change between the points $(-1, f(-1))$ and $(3, f(3))$.
b) The average rate of change between the points $(a, f(a))$ and $(b, f(b))$.

Answers

For the function f(x) = 5x-8,

a) The average rate of change between (-1, f(-1)) and (3, f(3)) is 5.

b) The average rate of change between (a, f(a)) and (b, f(b)) for f(x) = 5x - 8 is (5b - 5a) / (b - a).

a) To find the average rate of change between the points (-1, f(-1)) and (3, f(3)) for the function f(x) = 5x - 8, we need to calculate the of the slope line connecting these two points. The average rate of change is given by:

Average rate of change = (change in y) / (change in x)

Let's calculate the change in y and the change in x:

Change in y = f(3) - f(-1) = (5(3) - 8) - (5(-1) - 8) = (15 - 8) - (-5 - 8) = 7 + 13 = 20

Change in x = 3 - (-1) = 4

Now, we can calculate the average rate of change:

Average rate of change = (change in y) / (change in x) = 20 / 4 = 5

Therefore, the average rate of change between the points (-1, f(-1)) and (3, f(3)) for the function f(x) = 5x - 8 is 5.

b) To find the average rate of change between the points (a, f(a)) and (b, f(b)) for the function f(x) = 5x - 8, we again calculate the slope of the line connecting these two points using the formula:

Average rate of change = (change in y) / (change in x)

The change in y is given by:

Change in y = f(b) - f(a) = (5b - 8) - (5a - 8) = 5b - 5a

The change in x is:

Change in x = b - a

Therefore, the average rate of change between the points (a, f(a)) and (b, f(b)) is:

Average rate of change = (change in y) / (change in x) = (5b - 5a) / (b - a)

To learn more about rate of change visit:

https://brainly.com/question/8728504

#SPJ11

To qualify for the 400-meter finals, the average of a runner's three qualifying times must be 60.74 seconds or less. Robert's three 400-meter scores are 61.04 seconds, 60.54 seconds, and 60.79 seconds. His combined score is 182.37 seconds. What is Robert's average time?

Answers

Robert's average time is 60.79 seconds.

To determine Robert's average time, we add up his three qualifying times: 61.04 seconds, 60.54 seconds, and 60.79 seconds. Adding these times together, we get a total of 182.37 seconds.

61.04 + 60.54 + 60.79 = 182.37 seconds.

To find the average time, we divide the total time by the number of scores, which in this case is 3. Dividing 182.37 seconds by 3 gives us an average of 60.79 seconds.

182.37 / 3 = 60.79 seconds.

Therefore, Robert's average time is 60.79 seconds, which meets the qualifying requirement of 60.74 seconds or less to compete in the 400-meter finals.

To know more about calculating averages, refer here:

https://brainly.com/question/680492#

#SPJ11

ASAP WILL RATE UP
Is the following differential equation linear/nonlinear and
whats is it order?
dW/dx + W sqrt(1+W^2) = e^x^-2

Answers

The given differential equation is nonlinear and first order.

To determine linearity, we check if the terms involving the dependent variable (in this case, W) and its derivatives are linear. In the given equation, the term "W sqrt(1+W^2)" is nonlinear because of the square root operation. A linear term would involve W or its derivative without any nonlinear functions applied to it.

The order of a differential equation refers to the highest order of the derivative present in the equation. In this case, we have the first derivative (dW/dx), so the order  of the differential equation is first order.

Learn more about Derivates here

https://brainly.com/question/32645495

#SPJ11

show that β=3α, by calculating the infinitesimal change in volume dv of a cube with sides of length l when the temperature changes by dt.

Answers

To show that β=3α, where β represents the volumetric thermal expansion coefficient and α represents the linear thermal expansion coefficient, we can calculate the infinitesimal change in volume (dv) of a cube with sides of length l when the temperature changes by dt.

The linear thermal expansion coefficient α is defined as the fractional change in length per unit change in temperature. Similarly, the volumetric thermal expansion coefficient β is defined as the fractional change in volume per unit change in temperature.

Let's consider a cube with sides of length l. The initial volume of the cube is [tex]V = l^3[/tex]. Now, when the temperature changes by dt, the sides of the cube will also change. Let dl be the infinitesimal change in length due to the temperature change.

The infinitesimal change in volume, dv, can be calculated using the formula for differential calculus:

[tex]\[dv = \frac{{\partial V}}{{\partial l}} dl = \frac{{dV}}{{dl}} dl\][/tex]

Since [tex]V = l^3,[/tex] we can differentiate both sides of the equation with respect to l:

[tex]\[dV = 3l^2 dl\][/tex]

Substituting this back into the previous equation, we get:

[tex]\[dv = 3l^2 dl\][/tex]

Now, we can express dl in terms of dt using the linear thermal expansion coefficient α:

[tex]\[dl = \alpha l dt\][/tex]

Substituting this into the equation for dv, we have:

[tex]\[dv = 3l^2 \alpha l dt = 3\alpha l^3 dt\][/tex]

Comparing this with the definition of β (fractional change in volume per unit change in temperature), we find that:

[tex]\[\beta = \frac{{dv}}{{V dt}} = \frac{{3\alpha l^3 dt}}{{l^3 dt}} = 3\alpha\][/tex]

Therefore, we have shown that β = 3α, indicating that the volumetric thermal expansion coefficient is three times the linear thermal expansion coefficient for a cube.

To learn more about coefficient refer:

https://brainly.com/question/24068089

#SPJ11




In a bag, there are 12 purple and 6 green marbles. If you reach in and randomly choose 5 marbles, without replacement, in how many ways can you choose exactly one purple? ways

Answers

In a bag, there are 12 purple and 6 green marbles. If you reach in and randomly choose 5 marbles, without replacement, in how many ways can you choose exactly one purple.

The possible outcomes of choosing marbles randomly are: purple, purple, purple, purple, purple, purple, purple, purple, , purple, purple, green, , purple, green, green, green purple, green, green, green, green Total possible outcomes of choosing 5 marbles without replacement

= 18C5.18C5

=[tex](18*17*16*15*14)/(5*4*3*2*1)[/tex]

= 8568

ways

Now, let's count the number of ways to choose exactly one purple marble. One purple and four greens:

12C1 * 6C4 = 12 * 15

= 180.

There are 180 ways to choose exactly one purple marble.

Therefore, the number of ways to choose 5 marbles randomly without replacement where exactly one purple is chosen is 180.

To know more about green visit:

https://brainly.com/question/32159871

#SPJ11

Verify that the intermediate Value Theorem applies to the indicated interval and find the value of c guaranteed by the theorem. f(x)=x^2+7x+2,[0,7],f(c)=32

Answers

Therefore, there are two values, c = 3 and c = -10, in the interval [0, 7] such that f(c) = 32.

To verify the Intermediate Value Theorem for the function [tex]f(x) = x^2 + 7x + 2[/tex] on the interval [0, 7], we need to show that there exists a value c in the interval [0, 7] such that f(c) = 32.

First, let's evaluate the function at the endpoints of the interval:

[tex]f(0) = (0)^2 + 7(0) + 2 \\= 2\\f(7) = (7)^2 + 7(7) + 2 \\= 63 + 49 + 2 \\= 114[/tex]

Since the function f(x) is a continuous function, and f(0) = 2 and f(7) = 114 are both real numbers, by the Intermediate Value Theorem, there exists a value c in the interval [0, 7] such that f(c) = 32.

To find the specific value of c, we can use the fact that f(x) is a quadratic function, and we can set it equal to 32 and solve for x:

[tex]x^2 + 7x + 2 = 32\\x^2 + 7x - 30 = 0[/tex]

Factoring the quadratic equation:

(x - 3)(x + 10) = 0

Setting each factor equal to zero:

x - 3 = 0 or x + 10 = 0

Solving for x:

x = 3 or x = -10

Since both values, x = 3 and x = -10, are within the interval [0, 7], they satisfy the conditions of the Intermediate Value Theorem.

To know more about interval,

https://brainly.com/question/31476992

#SPJ11

Sam deposits $200 at the end of every 6 months in an account that pays 5%, compounded semiannually. How much will he have at the end of 2 years? (Round your answer to the nearest cent.)

Answers

Therefore, Sam will have $4,300.47 at the end of 2 years.

To solve the given problem, we can use the formula to find the future value of an ordinary annuity which is given as:

FV = R × [(1 + i)^n - 1] ÷ i

Where,

R = periodic payment

i = interest rate per period

n = number of periods

The interest rate is 5% which is compounded semiannually.

Therefore, the interest rate per period can be calculated as:

i = (5 ÷ 2) / 100

i = 0.025 per period

The number of periods can be calculated as:

n = 2 years × 2 per year = 4

Using these values, the amount of money at the end of two years can be calculated by:

FV = $200 × [(1 + 0.025)^4 - 1] ÷ 0.025

FV = $4,300.47

To know more about compounded visit:

https://brainly.com/question/32594283

#SPJ11

Each of a sample of 118 residents selected from a small town is asked how much money he or she spent last week on state lottery tickets. 84 of the residents responded with $0. The mean expenditure for the remaining residents was $19. The largest expenditure was $229. Step 4 of 5 : What is the mean of the 118 data points? Round your answer to one decimal place.

Answers

The mean of the 118 data points is $16.3 rounded off to one decimal place $5.47.

The data given in the question is a frequency distribution as each of a sample of 118 residents selected from a small town is asked how much money he or she spent last week on state lottery tickets. 84 of the residents responded with $0. The mean expenditure for the remaining residents was $19. The largest expenditure was $229. From this data, we can calculate the mean by using the formula:

Mean = Σx/n

where Σx represents the sum of all the observations and n represents the total number of observations in the data set.

We know that 84 residents have an expenditure of $0 and the remaining (118-84) residents have a mean expenditure of $19, let's say the total sum of the remaining residents' expenditure is X, then we can write:

X/(118-84) = $19

X = 34*19 = $646

Now, the total sum of the observations in the data set will be the sum of the expenditure of the 84 residents with $0 expenditure and the total sum of the remaining residents' expenditure.

Hence,

Σx = 84(0) + 646

Σx = $646

The total number of observations in the data set is 118.

Therefore,Mean = Σx/n

Mean = $646/118

Mean = $5.47

The mean expenditure for the whole sample is $5.47.

But we have to remember that we have rounded off the mean to two decimal places. Therefore, we need to round off the mean to one decimal place.

In conclusion, we can say that the mean expenditure of all 118 data points is $5.47.

To know more about mean visit:

brainly.com/question/30974274

#SPJ11

Let x=vy, where v is an arbitrary function of y. Using this substitution in solving the differential equation xydx−(x+2y)2dy=0, which of the following is the transformed differential equation in simplest form? (A) vydv−4(v+1)dy=0 (B) vydv+(2v2−4v−4)dy=0 (C) v2dy+vydv−(v+2)2dy=0 (D) There is no correct answer from among the given choices.

Answers

To solve the differential equation [tex]xydx - (x + 2y)^2dy = 0[/tex] using the substitution[tex]x = vy,[/tex] we need to express [tex]dx[/tex] and [tex]dy[/tex] in terms of dv and dy. Taking the derivative of [tex]x = vy[/tex] with respect to y, we have:

[tex]dx = vdy + ydv[/tex]

Substituting this expression for dx and x = vy into the original differential equation, we get:

[tex](vy)(vdy + ydv) - (vy + 2y)^2dy = 0[/tex]

Expanding and simplifying, we have:

[tex]v^2y^2dy + vy^2dv + vydy - (v^2y^2 + 4vy^2 + 4y^2)dy = 0[/tex]

Combining like terms, we obtain:

[tex]v^2y^2dy + vy^2dv + vydy - v^2y^2dy - 4vy^2dy - 4y^2dy = 0[/tex]

Canceling out the common terms, we are left with:

[tex]vy^2dv - 4vy^2dy = 0[/tex]

Dividing through by [tex]vy^2,[/tex] we obtain:

[tex]dv - 4dy = 0[/tex]

So, the transformed differential equation in simplest form is [tex]dv - 4dy = 0,[/tex]which corresponds to choice (D).

Learn more differential equation here:

https://brainly.com/question/32645495

#SPJ11

Find the area of the parallelogram whose vertices are listed. (-3,-1),(0,6),(5,-5),(8,2) The area of the parallelogram is square units.

Answers

The area of the parallelogram formed by the given vertices (-3, -1), (0, 6), (5, -5), and (8, 2) is 68 square units.

To calculate the area of a parallelogram using the given vertices, we can use the method of finding the magnitude of the cross product of two vectors formed by the adjacent sides of the parallelogram. By taking the vectors AB and AC, which are formed by subtracting the coordinates of the vertices, we obtain AB = (3, 7) and AC = (8, -4).

To find the area, we take the cross product of these vectors, which is obtained by multiplying the corresponding components and taking the difference: AB × AC = (3 * (-4)) - (7 * 8) = -12 - 56 = -68. However, since we are interested in the magnitude or absolute value of the cross product, we take |AB × AC| = |-68| = 68.

Thus, the area of the parallelogram formed by the given vertices is 68 square units. The magnitude of the cross product gives us the area because it represents the product of the lengths of the two sides of the parallelogram and the sine of the angle between them. In this case, the result is positive, indicating a non-zero area.

To know more about parallelogram refer here:

https://brainly.com/question/28284595

#SPJ11

5) A) The Set K={A,B,C,D,E,F}. Is {{A,D,E},{B,C},{D,F}} A Partition Of Set K ? B) The Set L={1,2,3,4,5,6,7,8,9}. Is {{3,7,8},{2,9},{1,4,5}} a partition of set L ?

Answers

(a) To determine if {{A,D,E},{B,C},{D,F}} is a partition of set K={A,B,C,D,E,F}, we need to check two conditions:

1. Each element of K should be in exactly one subset of the partition.

2. The subsets of the partition should be disjoint.

Let's examine the subsets of the given partition:

Subset 1: {A, D, E}

Subset 2: {B, C}

Subset 3: {D, F}

Condition 1 is satisfied because each element of K appears in one and only one subset. All elements A, B, C, D, E, and F are covered.

Condition 2 is not satisfied because Subset 1 and Subset 3 have an element in common, which is D. Subsets in a partition should be disjoint, meaning they should not share any elements.

Therefore, {{A,D,E},{B,C},{D,F}} is not a partition of set K.

(b) To determine if {{3,7,8},{2,9},{1,4,5}} is a partition of set L={1,2,3,4,5,6,7,8,9}, we again need to check the two conditions for a partition.

Let's examine the subsets of the given partition:

Subset 1: {3, 7, 8}

Subset 2: {2, 9}

Subset 3: {1, 4, 5}

Condition 1 is satisfied because each element of L appears in one and only one subset. All elements 1, 2, 3, 4, 5, 6, 7, 8, and 9 are covered.

Condition 2 is satisfied because the subsets are disjoint. There are no common elements among the subsets.

Therefore, {{3,7,8},{2,9},{1,4,5}} is a partition of set L.

Learn more about subset here:

https://brainly.com/question/31739353

#SPJ11

Let f(x)=−4(x+5) 2
+7. Use this function to answer each question. You may sketch a graph to assist you. a. Does the graph of f(x) open up or down? Explain how you know. b. What point is the vertex? c. What is the equation of the axis of symmetry? d. What point is the vertical intercept? e. What point is the symmetric point to the vertical intercept?! f. State the domain and range of f(x).

Answers

The graph of f(x) opens downward, the vertex is at (-5, 7), the equation of the axis of symmetry is x = -5, the vertical intercept is (0, -93), the symmetric point to the vertical intercept is (-10, -93), the domain is all real numbers, and the range is all real numbers less than or equal to 7.

a. The graph of f(x) opens downward. We can determine this by observing the coefficient of the x^2 term, which is -4 in this case. Since the coefficient is negative, the graph of the function opens downward.

b. The vertex of the graph is the point where the function reaches its minimum or maximum value. In this case, the coefficient of the x term is 0, so the x-coordinate of the vertex is -5. To find the y-coordinate, we substitute -5 into the function: f(-5) = -4(-5+5)^2 + 7 = 7. Therefore, the vertex is (-5, 7).

c. The equation of the axis of symmetry is given by the x-coordinate of the vertex. In this case, the equation is x = -5.

d. The vertical intercept is the point where the graph intersects the y-axis. To find this point, we substitute x = 0 into the function: f(0) = -4(0+5)^2 + 7 = -93. Therefore, the vertical intercept is (0, -93).

e. The symmetric point to the vertical intercept is the point that has the same y-coordinate but is reflected across the axis of symmetry. In this case, the symmetric point to (0, -93) is (-10, -93).

f. The domain of f(x) is all real numbers since there are no restrictions on the x-values. The range of f(x) is the set of all real numbers less than or equal to 7, since the graph opens downward and the vertex is at (x, 7).

To know more about properties of graph refer here:

https://brainly.com/question/30194311

#SPJ11

x=\frac{2}{3}(y^{2}+1)^{3 / 2} from y=1 to y=2

Answers

To evaluate the definite integral ∫[1, 2] (2/3)(y^2 + 1)^(3/2) dy, we substitute the limits of integration into the expression and calculate the antiderivative. The result is (16√2 - 8√2) / 9, which simplifies to 8√2 / 9.

To evaluate the definite integral, we first find the antiderivative of the integrand, which is (2/3)(y^2 + 1)^(3/2). Using the power rule and the chain rule, we can find the antiderivative as follows:

∫ (2/3)(y^2 + 1)^(3/2) dy

= (2/3) * (2/5) * (y^2 + 1)^(5/2) + C

= (4/15) * (y^2 + 1)^(5/2) + C

Now, we substitute the limits of integration, y = 1 and y = 2, into the antiderivative:

[(4/15) * (y^2 + 1)^(5/2)] [1, 2]

= [(4/15) * (2^2 + 1)^(5/2)] - [(4/15) * (1^2 + 1)^(5/2)]

= [(4/15) * (4 + 1)^(5/2)] - [(4/15) * (1 + 1)^(5/2)]

= (4/15) * (5^(5/2)) - (4/15) * (2^(5/2))

= (4/15) * (5√5) - (4/15) * (2√2)

= (4/15) * (5√5 - 2√2)

Thus, the value of the definite integral ∫[1, 2] (2/3)(y^2 + 1)^(3/2) dy is (4/15) * (5√5 - 2√2), which can be simplified to (16√2 - 8√2) / 9, or 8√2 / 9.

Learn more about integration here:

brainly.com/question/31744185

#SPJ11

Which of the following are properties of the normal​ curve?Select all that apply.A. The high point is located at the value of the mean.B. The graph of a normal curve is skewed right.C. The area under the normal curve to the right of the mean is 1.D. The high point is located at the value of the standard deviation.E. The area under the normal curve to the right of the mean is 0.5.F. The graph of a normal curve is symmetric.

Answers

The correct properties of the normal curve are:

A. The high point is located at the value of the mean.

C. The area under the normal curve to the right of the mean is 1.

F. The graph of a normal curve is symmetric.

Which of the following are properties of the normal​ curve?

Analyzing each of the options we can see that:

The normal curve is symmetric, with the highest point (peak) located exactly at the mean.

It has a bell-shaped appearance.

The area under the entire normal curve is equal to 1, representing the total probability. The area under the normal curve to the right of the mean is 0.5, or 50% of the total area, as the curve is symmetric.

The normal curve is not skewed right; it maintains its symmetric shape. The value of the standard deviation does not determine the location of the high point of the curve.

Then the correct options are A, C, and F.

Learn more about the normal curve:

https://brainly.com/question/23418254

#SPJ4

Final answer:

The following are properties of the normal curve: A. The high point is located at the value of the mean, C. The total area under the normal curve is 1 (not just to the right), and F. The graph of a normal curve is symmetric.

Explanation:

Based on the options provided, the following statements are properties of the normal curve:

A. The high point is located at the value of the mean: In a normal distribution, the high point, which is also the mode, is located at the mean (μ). C. The area under the normal curve to the right of the mean is 1: Possibility of this statement being true is incorrect. The total area under the normal curve, which signifies the total probability, is 1. However, the area to the right or left of the mean equals 0.5 each, achieving the total value of 1. F. The graph of a normal curve is symmetric: Normal distribution graphs are symmetric around the mean. If you draw a line through the mean, the two halves would be mirror images of each other.

Other options do not correctly describe the properties of a normal curve. For instance, normal curves are not skewed right, the high point does not correspond to the standard deviation, and the area under the curve to the right of the mean is not 0.5.

Learn more about Normal Distribution here:

https://brainly.com/question/30390016

#SPJ6

Which of the following would be the way to declare a variable so that its value cannot be changed. const double RATE =3.50; double constant RATE=3.50; constant RATE=3.50; double const =3.50; double const RATE =3.50;

Answers

To declare a variable with a constant value that cannot be changed, you would use the "const" keyword. The correct declaration would be: const double RATE = 3.50;

In this declaration, the variable "RATE" is of type double and is assigned the value 3.50. The "const" keyword indicates that the value of RATE cannot be modified once it is assigned.

The other options provided are incorrect. "double constant RATE=3.50;" and "double const =3.50;" are syntactically incorrect as they don't specify the variable name. "constant RATE=3.50;" is also incorrect as the "constant" keyword is not recognized in most programming languages. "double const RATE = 3.50;" is incorrect as the order of "const" and "RATE" is incorrect.

Therefore, the correct way to declare a variable with a constant value that cannot be changed is by using the "const" keyword, as shown in the first option.

To know more about constant value refer to-

https://brainly.com/question/28297759

#SPJ11

For each of these functions f(n) , find a function g(n) such that f(n)=\Theta(g(n)) . Show your work. You can use any of the formulas in Appendix A of CLRS (particularly pages 11

Answers

Without the specific functions given for f(n), it's difficult to provide a specific answer. However, I can provide some general strategies for finding a function g(n) such that f(n) = Θ(g(n)).

One common approach is to use the limit definition of big-Theta notation. That is, we want to find a function g(n) such that:

c1 * g(n) <= f(n) <= c2 * g(n)

for some constants c1, c2, and n0. To find such a function, we can take the limit of f(n)/g(n) as n approaches infinity. If the limit exists and is positive and finite, then f(n) = Θ(g(n)).

For example, if f(n) = n^2 + 3n and we want to find a function g(n) such that f(n) = Θ(g(n)), we can use the limit definition:

c1 * g(n) <= n^2 + 3n <= c2 * g(n)

Dividing both sides by n^2, we get:

c1 * (g(n)/n^2) <= 1 + 3/n <= c2 * (g(n)/n^2)

Taking the limit of both sides as n approaches infinity, we get:

lim (g(n)/n^2) <= lim (1 + 3/n) <= lim (g(n)/n^2)

Since the limit of (1 + 3/n) as n approaches infinity is 1, we can choose g(n) = n^2, and we have:

c1 * n^2 <= n^2 + 3n <= c2 * n^2

for some positive constants c1 and c2. Therefore, we have f(n) = Θ(n^2).

Another approach is to use known properties of the big-Theta notation. For example, if f(n) = g(n) + h(n) and we know that f(n) = Θ(g(n)) and f(n) = Θ(h(n)), then we can conclude that f(n) = Θ(max(g(n), h(n))). This is because the function with the larger growth rate dominates the other function as n approaches infinity.

For example, if f(n) = n^2 + 10n + log n and we know that n^2 <= f(n) <= n^2 + 20n for all n >= 1, then we can conclude that f(n) = Θ(n^2). This is because n^2 has a larger growth rate than log n or n.

Learn more about "big-Theta notation" : https://brainly.com/question/15234675

#SPJ11

If f(x)= (x^{2}/2+x)
f ′′ (4)=

Answers

The value of the second derivative, f''(4), for the function [tex]f(x) = (x^2/2 + x)[/tex], is 1.

To find the value of f''(4) given the function [tex]f(x) = (x^2/2 + x)[/tex], we need to take the second derivative of f(x) and then evaluate it at x = 4.

First, let's find the first derivative of f(x) with respect to x:

[tex]f'(x) = d/dx[(x^2/2 + x)][/tex]

= (1/2)(2x) + 1

= x + 1.

Next, let's find the second derivative of f(x) with respect to x:

f''(x) = d/dx[x + 1]

= 1.

Now, we can evaluate f''(4):

f''(4) = 1.

Therefore, f''(4) = 1.

To know more about function,

https://brainly.com/question/30646489

#SPJ11

Use the definition of the derivative to find the following.
f'(x) if f(x) = -4x+6
f'(x) =

Answers

The derivative of the function f(x) = -4x + 6 can be found using the definition of the derivative. In this case, the derivative of f(x) is equal to the coefficient of x, which is -4. Therefore, f'(x) = -4.

The derivative of a function represents the rate of change of the function at a particular point.

To provide a more detailed explanation, let's go through the steps of finding the derivative using the definition. The derivative of a function f(x) is given by the limit as h approaches 0 of [f(x + h) - f(x)]/h. Applying this to the function f(x) = -4x + 6, we have:

f'(x) = lim(h→0) [(-4(x + h) + 6 - (-4x + 6))/h]

Simplifying the expression inside the limit, we get:

f'(x) = lim(h→0) [-4x - 4h + 6 + 4x - 6]/h

The -4x and +4x terms cancel out, and the +6 and -6 terms also cancel out, leaving us with:

f'(x) = lim(h→0) [-4h]/h

Now, we can simplify further by canceling out the h in the numerator and denominator:

f'(x) = lim(h→0) -4

Since the limit of a constant value is equal to that constant, we find:

f'(x) = -4

Therefore, the derivative of f(x) = -4x + 6 is f'(x) = -4. This means that the rate of change of the function at any point is a constant -4, indicating that the function is decreasing with a slope of -4.

Learn more about derivative here:
brainly.com/question/25324584

#SPJ11

use the limit definition to compute the derivative of the
function f(x)=4x^-1 at x-9.
f'(9)=
find an equation of the tangent line to the graph of f at
x=9.
y=.

Answers

The derivative of f(x) = 4x⁻¹ at x = 9 is f'(9) = -4/81. The equation of the tangent line to the graph of f at x = 9 is y - (4/9) = (-4/81)(x - 9).

To compute the derivative of the function f(x) = 4x⁻¹ at x = 9 using the limit definition, we can follow these steps:

Step 1: Write the limit definition of the derivative.

f'(a) = lim(h->0) [f(a + h) - f(a)] / h

Step 2: Substitute the given function and value into the limit definition.

f'(9) = lim(h->0) [f(9 + h) - f(9)] / h

Step 3: Evaluate f(9 + h) and f(9).

f(9 + h) = 4(9 + h)⁻¹

f(9) = 4(9)⁻¹

Step 4: Plug the values back into the limit definition.

f'(9) = lim(h->0) [4(9 + h)⁻¹ - 4(9)⁻¹] / h

Step 5: Simplify the expression.

f'(9) = lim(h->0) [4 / (9 + h) - 4 / 9] / h

Step 6: Find a common denominator.

f'(9) = lim(h->0) [(4 * 9 - 4(9 + h)) / (9(9 + h))] / h

Step 7: Simplify the numerator.

f'(9) = lim(h->0) [36 - 4(9 + h)] / (9(9 + h)h)

Step 8: Distribute and simplify.

f'(9) = lim(h->0) [36 - 36 - 4h] / (9(9 + h)h)

Step 9: Cancel out like terms.

f'(9) = lim(h->0) [-4h] / (9(9 + h)h)

Step 10: Cancel out h from the numerator and denominator.

f'(9) = lim(h->0) -4 / (9(9 + h))

Step 11: Substitute h = 0 into the expression.

f'(9) = -4 / (9(9 + 0))

Step 12: Simplify further.

f'(9) = -4 / (9(9))

f'(9) = -4 / 81

Therefore, the derivative of f(x) = 4x⁻¹ at x = 9 is f'(9) = -4/81.

To find the equation of the tangent line to the graph of f at x = 9, we can use the point-slope form of a line, where the slope is the derivative we just calculated.

The derivative f'(9) represents the slope of the tangent line. Since it is -4/81, the equation of the tangent line can be written as:

y - f(9) = f'(9)(x - 9)

Substituting f(9) and f'(9):

y - (4(9)⁻¹) = (-4/81)(x - 9)

Simplifying further:

y - (4/9) = (-4/81)(x - 9)

This is the equation of the tangent line to the graph of f at x = 9.

To know more about derivative,

https://brainly.com/question/30727025

#SPJ11

Other Questions
Test Company uses a normal, activity-based cost system to determine product cost. The following information is available from the accounting system.Activity Estimated cost Cost driver Estimated usageMoving materials $45,000 Inspection hours 1,800 inspection hoursInspecting products $16,200 Material moves 3,600 material movesTest Company estimates that 6,120 direct labor hours will be used for the coming period. During the period, Test Company completed Job 101 and reported the following actual amounts.Job 101Direct materials $1,500Direct labor $1,000Direct labor hours 250Inspection hours 100Material moves 80Determine the total cost of Job 101. How did these women challenge gender stereotypes during World War II? In your discussions, you cannot simply reply to someone's posting What was the most compelling reason why Richard Nixon became president in 1968? What's your analysis of the Pollock v. Farmers Loan & TrustCo., 157 U.S. 429 (1895) case when taking self-report personality tests, people may exaggerate their positive personality traits (such as generosity). what is this an example of? Find a degree 3 polynomial having zeros 1,-1 and 2 and leading coefficient equal to 1 . Leave the answer in factored form. Hello I wanted to know if I can grt some help with my chemistryassignment that is die today. Please and thank you.Select the best statement A) Chemical changes provide the only valid basis for identification of a substance. B) Chemical changes are easily reversed by altering the temperature of the system. C) Chem you are in a discussion with a friend, lance, about capital budgeting. after hearing you say that financing costs are being ignored, lance questions you. your most appropriate response would be: Which of the following is not one of three methods states use to calculate weekly unemployment benefit amounts?A. A fraction of the highest wages for a calendar quarter earned during the base period.B. A percentage of annual wages.C. A percentage of the average weekly wage earned during the base period.D. A percentage of the average monthly wages earned during the base period. Provide the algebraic model formulation foreach problem.The PC Tech company assembles and tests two types of computers,Basic and XP. The company wants to decide how many of each model toassemble Cost Equation Suppose that the cost of making 20 cell phones is $6800 and the cost of making 50 cell phones is $9500. a. Find the cost equation. b. What is the fixed cost? c. What is the marginal cost of production? d. Draw the graph of the equation. Suppose the following simultaneous move game is instead playedsequentially with A going first. The equilibrium payoffs of thesequential game would be:A. (1,1)B. (6,4)C. (4,6)D. (-4,-4) Howie Long has just learned he has won a $500,000 prize in the lottery. The lottery has given him two options for receiving the payments. (1) If Howie takes all the money today, the state and federal governments will deduct taxes at a rate of 46% immediately. (2) Alternatively, the lottery offers Howie a payout of 20 equal payments of $36,000 with the first payment occurring when Howie turns in the winning ticket. Howie will be taxed on each of these payments at a rate of 25%. Click here to view factor tables Compute the present value of the cash flows for lump sum payout. (Round factor values to 5 decimal places, e.g. 1.25124 and final answer to 0 decimal places, e.g. 458,581.) Lump sum payout $ Assuming Howie can earn an 8% rate of return (compounded annually) on any money invested during this period, compute the present value of the cash flows for annuity payout. (Round factor values to 5 decimal places, e.g. 1.25124 and final answer to 0 decimal places, e.g. 458,581.) Rresent value of annuity payout $ Think of a song, poem, book or movie that shows in an interesting way what it considers to be a significant drawback/disadvantage of capitalism. You need to reference (write the title of the song/poem/book/movie and the author. Then explain in no more than 100 words what this drawback/disadvantage of capitalism is and how it is tackled in the song, poem, book or movie. WILL GIVE BRAINLIEST AND +15 PTS!!! PLEASE HURRYHow did imperialism affect trade? what is one reason why it's problematic for social media marketers that only 15% of cmos can quantify the impact of social media? In MATLAB using SimuLink do the following2. The block of a subsystem with two variants, one for derivation and one for integration.The input is a "continuous" Simulink signal (eg a sine, a ramp, a constant, etc.)The algorithm can only be done in code in a MATLAB-function block, it is not valid to use predefined Matlab blocks or functions that perform integration/derivation.Hint: They most likely require the "Unit Delay (1/z)" block.Hint 2: You will need to define the MATLAB function block sampling time and use it in your numerical method switched ethernet lans do not experience data collisions because they operate as centralized/deterministic networks c. each node connected to a shared ethernet lan must read destination addresses of all transmitted packets to determine if it belongs to them d. switched ethernet lans are connected to nodes through dedicated links and therefore do not need to determine destination addresses of incoming packets Data stored in a single list often creates redundant data when _____.a.the list contains atomic valuesb.the list is used for looking up datac.the list contains multiple subjects or topicsd.the list is not sorted Conceptual Understanding / Professional DevelopmentYou are employed as an engineer and your company designs a product that involves transmitting large amounts of data over the internet. Due to bandwidth limitations, a compression algorithm needs to be involved. Discuss how you would decide whether to use a loss-less or lossy approach to compression, depending on the application. Mention the advantages and disadvantages of both. What is the period of a 75MHz waveform? 2) What is the frequency of a waveform with a period of 20 ns ? 3) Draw the logic circuit for the following equation. Z= (C+D) A CD( AC+ D)a) Then simplify it, using Boolean Algebra and compare your simplified equation using k-maps. b) draw the simplified circuit (The drawing should be done using Logic.ly)