Answer:
(10, - 6)
Step-by-step explanation:
P = (7, - 5)
T(P) = [x +3, y + (-1)]
T(P) = [7 +3, - 5+ (-1)]
T(P) = [7 +3, - 5 -1]
T(P) = (10, - 6)
The translated coordinates of the points (7,-5) will be (10, 2).
What are transformations?Two-dimensional figures can be transformed mathematically in order to travel about a plane or coordinate system.
Dilation: The preimage is scaled up or down to create the image.
Reflection: The picture is a preimage that has been reversed.
Rotation: Around a given point, the preimage is rotated to create the final image.
Translation: The image is translated and moved a fixed amount from the preimage.
The image point of (7,-5)after a translation right 3 units and down 1 unit will be,
= [(7+3), (3-1)].
= (10, 2).
learn more about translation here :
https://brainly.com/question/12463306
#SPJ2
3x + 11 = 2x − 5 please help
Answer:
x = -16
Step-by-step explanation:
3x+11 = 2x - 5
x +11 = -5 (Get x's on one side by substracting 2x from both sides)
x= -16 ( substract 11 from both sides to get the answer
Answer:
[tex]x=-16[/tex]
Step-by-step explanation:
[tex]3x+11=2x-5[/tex]
Subtract 11 from both sides:
[tex]\hookrightarrow[/tex] [tex]3x+11-11=2x-5-11[/tex]
[tex]\hookrightarrow 3x=2x-16[/tex]
Subtract 2x from both sides:
[tex]\hookrightarrow 3x-2x=2x-16-2x[/tex]
[tex]\hookrightarrow x=-16[/tex]
_______________________
HELP!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Answer:
1. 10L
2.
[tex]( \frac{p}{10} ) - 9[/tex]
Step-by-step explanation:
let length be L.
let width be W.
W = 4L
Perimeter = 2L + 2W
P = 8L + 2L
P = 10L
Sam is building a model of an antique car. The scale of his model to the actual car is 1:10. His model is 19.5 inches long. How long is the actual car?
Answer: 195 inches.
Step-by-step explanation:
Given: Sam is building a model of an antique car.
The scale of his model to the actual car is 1:10.
⇒Scale factor = [tex]\dfrac1{10}[/tex]
Since, Length of actual figure = (Length of model ) ÷ Scale factor.
If length of model of car = 19.5 inches.
Then, the length of the actual car = [tex]19.5\div\dfrac{1}{10}=19.5\times10=195\text{ inches}[/tex]
Hence, the length of the actual car = 195 inches.
-4(v+1) Polynomials Equation
Answer:
-4(v+1)
(-4 X v ) + -4 X 1
-4v + -4
it is your polynomial equation....
In another baseball division, one team had a winning percentage of 0.444 repeating What fraction of their games did this team win? Let x=0.4 repeating
Answer:
[tex]x = \frac{4}{9}[/tex]
Step-by-step explanation:
Given
Winning Percentage = 0.444 repeating
Required
Represent as a fraction
Represent the percentage with x
[tex]x = 0.444[/tex]
Convert to fraction
[tex]x = \frac{444}{1000}[/tex]
Next step, is to convert to fraction repeating
To do this, we simply subtract 1 from the denominator
[tex]x = \frac{444}{1000 - 1}[/tex]
[tex]x = \frac{444}{999}[/tex]
Simplify to the lowest term: Divide numerator and denominator by 37
[tex]x = \frac{444/37}{999/37}[/tex]
[tex]x = \frac{12}{27}[/tex]
Simplify to the lowest term: Divide numerator and denominator by 3
[tex]x = \frac{12/3}{27/3}[/tex]
[tex]x = \frac{4}{9}[/tex]
Hence;
There winning fraction is [tex]\frac{4}{9}[/tex]
At Statebert University, 70% of the students are female. If there are 210 male students
at Statebert U., how many female students are there?
Answer:
490 female students
Step-by-step explanation:
If 70% of students are female, 30% are male.
If 30% of students = 210 students, we can divide both sides of the equation by 3.
30/3 = 10
210/3 = 70
10% of students = 70 students
To get 70% of students, multiply both sides by 7.
10*7 = 70
70 * 7 = 490
70% of students = 490 students
Hope this helps!
From the observation deck of the lighthouse at Sasquatch Point 55 feet above the surface of Lake Ippizuti, a lifeguard spots a boat out on the lake sailing directly toward the light
house. The first sighting had a angle of depression of 8.1 and the second sighting had an angle of depression of 25.7°. How far had the boat traveled between the sightings?
Answer:
272.17 ft
Step-by-step explanation:
Since the angle of depression of the sighting equals the angle of elevation of the lighthouse from the boat, using trigonometric ratios,
tanθ = x/d where θ = angle of sighting, x = height of lighthouse =55 ft and d = distance of boat from lighthouse at sighting
So, d = x/tanθ
when θ = 8.1°, for the first sighting,
d₁ = 55/tan8.1 = 386.45 ft
when θ = 25.7°, for the second sighting,
d₂ = 55/tan8.1 = 114.28 ft
The distance the boat traveled between the two sightings is thus d₁ - d₂ = 386.45 ft - 114.28 ft = 272.17 ft
The element bromine turns into a liquid at 27°C, and it turns into a gas at 59°C From the temperature at which bromine becomes a liquid, by how many degrees must the temperature change for it to turn into a gas?
Answer:
32°C
Step-by-step explanation:
59°C - 27°C = 32°C
g(x)=x+2; find g (5)
g(x)=x+2
g(5)=?
now
g(5)=5+2
=7
5x + 3y + 5 +7a – 3x – 2y + 3 =
Answer:
8+7 times a+2 times x+y
Step-by-step explanation:
If BD BC, BD = 5x – 26, BC = 2x + 1, and AC = 43, find AB.
Answer:
AB = 24
Step-by-step explanation:
BD = 5x – 26
BC = 2x + 1
AC = 43
Using the segment addition postulate, AC = AB + BC.
We know that BD = BC, BD = 5x-26 and BC = 2x+1. We can set up an equation to find the value of x:
5x - 26 = 2x + 1 Subtract 2x from each side
5x - 26 - 2x = 2x + 1 - 2x
3x-26 = 1 Add 26 to each side
3x-26+26 = 1+26
3x=27 Divide both sides by 3
3x/3 = 27/3
x = 9
This means that BC = 2x + 1 = 2(9) + 1 = 18 + 1 = 19.
We know that AC = AB + BC; using our given information as well as the value of BC we just found, we have
43 = AB + 19 Subtract 19 from each side
43 - 19 = AB + 19 - 19
24 = AB
a 27 piece of steel is cut into three pieces so that the second piece is twice as long as the first piece and the third piece is 3 inches more than three times the length of the first piece what's the length of the first piece
Answer:
4 in, 8 in, 15 in
Step-by-step explanation:
If x, y, z are the three pieces, then:
x + y + z = 27
y = 2x
z = 3 + 3x
Substitute the second and third equations into the first.
x + 2x + 3 + 3x = 27
6x + 3 = 27
6x = 24
x = 4
y = 8
z = 15
please help :d in on a time limit before it becomes late!!
The water level in the beaker was 10 mL before the small toy was placed into it. After the toy was submerged in the water, the level was 23 mL. The toy has as much volume as how many mL of water?
Answer:
volume of toy = volume of water after placing toy in it - volume of water before placing toy in it
volume of toy = 23mL - 10mL
volume of toy = 13mL
The increase in the volume of water when the toy is submerged in it is equal to the volume of the toy.
SO VOLUME OF WATER IS 13mL
Indicate which property is illustrated in Step 2.
Step 1 12x + 2 + 5x + 1 = (12x + 2) + (5x + 1)
Step 2 = 12x + (2 + 5x) + 1
Step 3 = 12x + (5x + 2) + 1
Step 4 = (12x + 5x) + (2 + 1)
Step 5 = (12 + 5)x + (2 + 1)
Step 6 = 17x + 3
A.
distributive
B.
associative
C.
arithmetic fact
D.
commutative
Answer:
b
Step-by-step explanation:
A length of rope is divided into two pieces in the ratio 2:5 If the longer
piece is 120 m, what is the length of the shorter piece? (SHOW WORKING)
Answer:
The answer is
34.3 mStep-by-step explanation:
To find the length of the shorter piece we must first find the total parts
That's
2 + 5 = 7
Looking at the ratio above we can see that 2 is the smaller part which makes it the shorter piece
Now divide 2 by the total parts and multiply by 120
That's
[tex] \frac{2}{7} \times 120 \\ = \frac{240}{7} \\ = 34.285714[/tex]
We have the final answer as
34.3 mHope this helps you
Nine and two hundred thirty-five thousand as decimals
9.235
"nine and two hundred thirty-five"
You're going to start with the number(s) before and which would be 9 in this case then lake your number(s) after the and, the number would be 235 in this case now you have 9 and 235 replace the and for a decimal and you will get your answer :) 9.235
Given x=-3, y=6, and z=-4 3x-2y+z=
The given figure is a rectangular prism.
Which edges are parallel to QT ?
Select all answers that are correct.
ΡΗ
HA
PR
QE
Answer:
PR and HA
Step-by-step explanation:
The edges parallel to QT are HA and PR.
Here,
The given figure is rectangular prism.
We have to find the edges parallel to QT.
What are Parallel lines?
Parallel lines are never intersect and always lie in a plane that are always the same distance apart.
Now,
Edge HA and QT are never intersect.
Hence, HA and QT are parallel lines.
Edge PR and QT are never intersect.
Hence, PR and QT are parallel lines.
Therefore, The edges parallel to QT are HA and PR.
Learn more about the parallel lines visit:
https://brainly.com/question/24607467
#SPJ2
9y²)³ simplified answer
Answer:
729[tex]y^{6}[/tex]
Step-by-step explanation:
(9[tex]y^{2}[/tex])^3
(9 * 9 * 9) (y* y * y * y* y* y)
Evaluate 4.1 + 6. 16 + 0.
How can someone's knowledge of math be applied to be more successful life?
Convert 0.83 into a fraction.
0.83 * 100 = 83, so 0.83 = 83/100.
But in case you meant the slightly more interesting repeating decimal, 0.8333...:
Let x denote this number. Then
10x = 8.333...
100x = 83.333...
==> 100x - 10x = 83.333... - 8.333...
==> 90x = 83 - 8 = 75
==> x = 75/90 = 5/6
i bought a house for 55,000 with a simple interest rate of 7% for 15 years.How much did she pay for her house?
Answer:
57,750
Step-by-step explanation:
you would take 7% of 55000 which is 3,850 and multiply that by 15 which is 57,750 and that is the final answer
You plan to rent a car from XYZ Car Rental Company for a flat rate of $35 a
day. If you plan to use the car for 3 days or fewer, you must also pay a $10
insurance fee per day. If you plan to use the car for more than 3 days, there is
a $5 insurance fee per day. Write a piecewise-defined function that models this
function.
Thanks for any help!
Answer:
The piece-wise function is;
[tex]f\left (x \right ) = \begin{cases} \$ 45 \times x & \text{ if } x \leq 3 \ days \\ \$40 \times x & \text{ if } x > 3 \ days\end{cases}[/tex]
Step-by-step explanation:
The flat rate for renting the car = $35 per day
The amount charged as insurance fee per day for renting the car for 3 days or less = $10
The insurance fee charged per day when the car is rented for more than 3 days = $5
Let the number of days = x
Therefore, we have;
For x ≤ 3, f(x) = 35 × x + 10 × x = x × (35+10) = 45·x
For x > 3, f(x) = 35 × x + 5 × x = x × (35+5) = 40·x
Therefore;
The charge rate for renting the car for less than or equal to 3 days = 45·x
The charge rate for renting the car for more than 3 days = 40·x
The piece-wise function can be presented as follows;
[tex]f\left (x \right ) = \begin{cases} \$ 45 \times x & \text{ if } x \leq 3 \ days \\ \$40 \times x & \text{ if } x > 3 \ days\end{cases}[/tex]
A recipe calls for 3/4 cup of sugar for every 1/2 teaspoon of cinnamon. What is the unit rate in teaspoons of cinnamon per cup of sugar?
Answer:
[tex]\frac{2}{3}[/tex] teaspoons of cinnamon per cup of sugar.
Step-by-step explanation:
A recipe calls for [tex]\frac{3}{4}[/tex] cups of sugar for every [tex]\frac{1}{2}[/tex] teaspoons of cinnamon.
For one cup of sugar;
1 × [tex]\frac{1}{2}[/tex] ÷ [tex]\frac{3}{4}[/tex] = [tex]\frac{1}{2}[/tex] × [tex]\frac{4}{3}[/tex] = [tex]\frac{2}{3}[/tex] teaspoons of cinnamon will be needed.
can u help me ASAP!!!! WILL MARK U BRAINLIEST IF ITS CORRECT
Answer:
OPTION 2
Step-by-step explanation:
The vertical line test can be used to determine whether a graph represents a function. A vertical line includes all points with a particular x value. The y value of a point where a vertical line intersects a graph represents an output for that input x value. If we can draw any vertical line that intersects a graph more than once, then the graph does not define a function because that x value has more than one output. A function has only one output value for each input value.
--------------------------------------------------------------------------
HOW TO: GIVEN A GRAPH, USE THE VERTICAL LINE TEST TO DETERMINE IF THE GRAPH REPRESENTS A FUNCTION.
1.Inspect the graph to see if any vertical line drawn would intersect the curve more than once.
2.If there is any such line, the graph does not represent a function.
3.If no vertical line can intersect the curve more than once, the graph does represent a function.
(The 2nd pic represents a graph that has a function)
Complete the inequality below to describe the
domain of the graph shown.
Domain:
DONE
Complete the inequality below to describe the
range of the graph shown.
Range:
Sy <5
-5
or
DONE
Domain: [tex]-4 < x \le 4[/tex]
Range: [tex]-2 \le y < 5[/tex]
=======================================
Explanation:
The domain is the set of allowed x values.
The left-most point on this graph is at (-4,5). This means x > -4 or -4 < x. The open hole indicates we don't include x = -4 as part of the domain.
The right most point is at (4,-2). So [tex]x \le 4[/tex]
Combine [tex]-4 < x[/tex] and [tex]x \le 4[/tex] together to get the domain [tex]-4 < x \le 4[/tex]
----------------------
The range is the set of possible y values.
The range spans from -2 to 5, including -2 but excluding 5. This is because the smallest y value possible is y = -2, and the upper bound for the y values is y < 5 due to the open hole.
Therefore the range is the compound inequality [tex]-2 \le y < 5[/tex]
Answer: domain - -4
Range- -2
Step-by-step explanation:
Evaluate the expression. 7⋅4+6−12÷4
Answer:
27+6-2=31
Step-by-step explanation:
Is 3.12 repeating a irrational or a rational
Answer:
a repeating decimal can be written as a fraction using algebraic methods, so any repeating decimal is a rational number.
Answer:
repeating decimals are rational becoz they can be written in the form p/q
Step-by-step explanation:
(PLS HELP ASAP) A basketball player scored 351 points last year. If the player plays 18 games this year, how many points will he need to average per game to beat last year’s total?
Answer:
I think it's 19 I'm pretty sure
Answer:
20
Step-by-step explanation:
The first step would be to divide 351 by 18 to see what score he would need to tie his previous record. The answer to that would be 19.5, so if you round to the nearest whole, you would get 20.