Frequency = (speed) / (wavelength)
Frequency = (3 x 10⁸ m/s) / (124 x 10⁻⁹ m)
Frequency = 2.42 x 10¹⁵ Hz
A car traveling 85 km/h is 250 m behind a truck
traveling 73 km/h.
Time needed = t = 20.83 s
Further explanationGiven
car speed = 85 km/h
truck speed = 73 km/h
Required
the time it takes for the car to reach the truck
Solution
When the car reaches the truck, the distance between them will be the same
x car - 250 m = x truck
General formula for distance (d) :
d = v.t
So the equation becomes :
85t-250 = 73t
12t=250
t = 20.83 s
Using your knowledge on personal care products, how does sunscreen
lotion protect your skin from the damaging effect of ultraviolet rays?
Explain why of x-rays and gamma rays are commonly used in
radiotherapy.
Answer:
Ultraviolet rays from sun are very harmful from skin and can cause sunburn and skin diseases especially ultraviolet B rays. A sunscreen lotion act as a protection barrier on the skin that restrict the direct contact of UV rays with skin and filter the harmful rays to enter the skin.
Radiotherapy is a medical therapy use to treat cancer. Radiotherapy commonly uses x-rays and gamma rays because they are high-energy particles or waves that kills or destroys the cancer cells.
Sunscreen lotion is able to filter this damaging ultraviolet radiation and prevent it from damaging the skin.
The sun reaches us from outer space brings ultraviolet rays to us. Ultraviolet rays are known to have some damaging effects on the skin. One way to protect our skin from this damaging ultraviolet rays is to use sunscreen lotion which is able to filter this damaging ultraviolet radiation and prevent it from damaging the skin.
X-rays and gamma rays are used in radiotherapy because they are light energy rays which are able to penetrate and destroy malignant cells in the body.
Learn more: https://brainly.com/question/13695751
An ideal monatomic gas initially has a temperature of 300 K and a pressure of 5.79 atm. It is to expand from volume 420 cm3 to volume 1450 cm3. If the expansion is isothermal, what are (a) the final pressure and (b) the work done by the gas
Answer:
a) The final pressure is 1.68 atm.
b) The work done by the gas is 305.3 J.
Explanation:
a) The final pressure of an isothermal expansion is given by:
[tex] T = \frac{PV}{nR} [/tex]
[tex] T_{i} = T_{f} [/tex]
[tex] \frac{P_{i}V_{i}}{nR} = \frac{P_{f}V_{f}}{nR} [/tex]
Where:
[tex]P_{i}[/tex]: is the initial pressure = 5.79 atm
[tex]P_{f}[/tex]: is the final pressure =?
[tex]V_{i}[/tex]: is the initial volume = 420 cm³
[tex]V_{f}[/tex]: is the final volume = 1450 cm³
n: is the number of moles of the gas
R: is the gas constant
[tex] P_{f} = \frac{P_{i}V_{i}}{V_{f}} = \frac{5.79 atm*420 cm^{3}}{1450 cm^{3}} = 1.68 atm [/tex]
Hence, the final pressure is 1.68 atm.
b) The work done by the isothermal expansion is:
[tex] W = P_{i}V_{i}ln(\frac{V_{f}}{V_{i}}) = 5.79 atm*\frac{101325 Pa}{1 atm}*420 cm^{3}*\frac{1 m^{3}}{(100 cm)^{3}}ln(\frac{1450 cm^{3}}{420 cm^{3}}) = 305.3 J [/tex]
Therefore, the work done by the gas is 305.3 J.
I hope it helps you!
What is the mass of an object if it is moving at a speed of 10 m/s and has 400 J of kinetic energy?
Answers:
8 kg
Explanation:
Kinetic Energy = (mass × velocity × velocity) ÷ 2
We know that Kinetic Energy = 400 J and velocity = 10 m/s.
KE = (m × v × v) ÷ 2
400 J = (m × 10 m/s × 10 m/s) ÷ 2
400 J = m × 50 m^2/s^2
To find the mass you will divide 400 J and 50 m^2/s^2.
m = 8 kg
You can also check it if it gives you 400 J.
KE = (m × v × v) ÷ 2
KE = (8 kg × 10 m/s × 10 m/s) ÷ 2
KE = 400 J
So this means that the mass is 8 kg. I know that it is a bit confusing, but when you do J (joules) ÷ m^2/s^2 = kg (kilograms). Hope this helps, thank you !!