The equation of the circle with center (-3, -5) and radius 4 is (x + 3)² + (y + 5)² = 16.
What is the equation of a circle with center (-3,-5) and radius 4?The standard form equation of a circle with center (h, k) and radius r is:
(x - h)² + (y - k)² = r²
Given that the center of the circle is (-3, -5) and the radius is 4.
Hence, we can substitute these values into the formula to get the equation of the circle:
Plug in h = -3, k = -5 and r = 4
(x - h)² + (y - k)² = r²
(x - (-3))² + (y - (-5))² = 4²
Simplifying and expanding the equation, we get:
(x + 3)² + (y + 5)² = 16
Therefore, the equation of the circle is (x + 3)² + (y + 5)² = 16.
Option B) (x + 3)² + (y + 5)² = 16 is the correct answer.
Learn more about equation of circle here: brainly.com/question/29288238
#SPJ1
The U. S. Department of Transportation maintains statistics for mishandled bags per 1,000 airline passengers. In the first nine months of 2010, Delta had mishandled 3. 52 bags per 1,000 passengers. If you believe that the number of mishandled bags follows a Poisson Distribution, what is the probability that in the next 1,000 passengers, Delta will have:
1 No mishandled bags: 2 Four or fewer mishandled bags:
3 At least one mishandled bag:
4 At least two mishandled bags:
The probability that in the next 1,000 passengers
1 No mishandled bags: 0.0295
2 Four or fewer mishandled bags: 0.3449
3 At least one mishandled bag: 0.9705.
4 At least two mishandled bags: 0.8672
1. To discover the likelihood of no misused sacks within the next 1000 travelers, able to utilize the Poisson dispersion equation:
P(X = 0) =[tex]e^(-λ) * (λ^0)[/tex] / 0!
Where λ is the anticipated number of misused sacks per 1000 travelers, which is rise to 3.52.
P(X = 0) =[tex]e^(-3.52) * (3.52^0)[/tex] / 0!
P(X = 0) = 0.0295
Hence, the likelihood of no misused sacks within the other 1000 passengers is 0.0295.
2. To discover the likelihood of fewer misused packs within another 1000 travelers, we will utilize the total Poisson dispersion:
P(X ≤ 4) = Σ k=0 to 4 [[tex]e^(-λ) * (λ^k)[/tex]/ k! ]
P(X ≤ 4) = [[tex]e^(-3.52) * (3.52^0) / 0! ] + [ e^(-3.52) * (3.52^1) / 1! ] + [ e^(-3.52) * (3.52^2) / 2! ] + [ e^(-3.52) * (3.52^3) / 3! ] + [ e^(-3.52) * (3.52^4)[/tex]/ 4! ]
P(X ≤ 4) = 0.3449
Subsequently, the likelihood of fewer misused sacks within another 1000 travelers is 0.3449.
3. To discover the likelihood of at least one misused sack within the following 1000 travelers, able to utilize the complementary likelihood:
P(X ≥ 1) = 1 - P(X = 0)
P(X ≥ 1) = 1 - 0.0295
P(X ≥ 1) = 0.9705
Subsequently, the likelihood of at slightest one misused pack within the following 1000 passengers is 0.9705.
4. To discover the likelihood of at slightest two misused sacks within the other 1000 travelers, we can utilize the complementary likelihood once more:
P(X ≥ 2) = 1 - P(X = 0) - P(X = 1)
P(X ≥ 2) = 1 - 0.0295 - [ [tex]e^(-3.52) * (3.52^1)[/tex] / 1! ]
P(X ≥ 2) = 1 - 0.0295 - 0.1033
P(X ≥ 2) = 0.8672
Subsequently, the likelihood of at slightest two misused packs within the following 1000 travelers is 0.8672.
To know more about probability refer to this :
https://brainly.com/question/24756209
#SPJ4
To solve an equation,___ the variable, or get it alone on one side of the equation
To solve an equation, you need to isolate the variable or get it alone on one side of the equation.
Finding the value of the variable is the fundamental goal when solving an equation. You can achieve this by placing the variable alone on one side of the equation or by isolating it. A number of mathematical procedures must be carried out in order to accomplish this while maintaining the equality of the equation and simplifying the expression containing the variable.
The secret is to alter the equation so that the variable term is on its own by adding, removing, multiplying, or dividing both sides by the same number. By using the necessary mathematical procedures, the solution can be derived after the variable has been isolated.
Learn more about equation:
brainly.com/question/14686792
#SPJ4
You spin the spinner and flip a coin. Find the probability of the compound event is not spinning 5
The probability of the compound event of spinning a 5 and flipping heads is 1/12.
Assuming that the spinner is fair and each outcome is equally likely, the probability of spinning a 5 is:
P(spinning 5) = number of ways to get 5 / total number of outcomes
P(spinning 5) = 1 / 6
Now, assuming that the coin is fair and has an equal probability of landing on heads or tails, the probability of flipping heads is:
P(flipping heads) = number of ways to get heads / total number of outcomes
P(flipping heads) = 1 / 2
To find the probability of the compound event of spinning 5 and flipping heads, we multiply the probability of spinning 5 by the probability of flipping heads:
P(spinning 5 and flipping heads) = P(spinning 5) x P(flipping heads)
P(spinning 5 and flipping heads) = (1/6) x (1/2)
P(spinning 5 and flipping heads) = 1/12.
To learn more about the probability;
brainly.com/question/11234923
#SPJ1
The complete question:
You spin the spinner and flip a coin. Find the probability of the compound event. The probability of spinning number 5 and flipping heads is__.
And spinner sample space is {1, 2, 3, 4, 5, 6}
find the equation of the line that is purpendicular to y= -2/3x and contains the point (4,-8)
Answer:
y = 3/2x-14
Step-by-step explanation:
The given line is y=-2/3x. So, the slope of the given line is -2/3.
Now, we have to find the perpendicular line to y= -2/3x passing through the point (4,-8).
The product of two perpendicular lines is -1.
m1.m2 = -1.
-2/3.m2= -1
m2 = 3/2
Now, we need to find the equation of the line passing through the point (4,-8) with slope 3/2.
The equation of slope-point form is (y-y1) = m(x-x1)
y-(-8) = 3/2 (x-4)
y+8 = 3/2x -6
Now, we have to add 6 on both sides.
y + 8 + 6 = 3/2x - 6 + 6.
y + 14 = 3/2x
y = 3/2x - 14.
The dog shelter has Labradors, Terriers, and Golden Retrievers available for adoption. If P(terriers) = 15%, interpret the likelihood of randomly selecting a terrier from the shelter.
Likely
Unlikely
Equally likely and unlikely
This value is not possible to represent probability of a chance event
The likelihood of randomly selecting a terrier from the shelter would be unlikely. That is option B
How to calculate the probability of the selected event?The formula that can be used to determine the probability of a selected event is given as follows;
Probability = possible event/sample space.
The possible sample space for terriers = 15%
Therefore the remaining sample space goes for Labradors and Golden Retrievers which is = 75%
Therefore, the probability of selecting the terriers at random is unlikely when compared with other dogs.
Learn more about probability here:
https://brainly.com/question/24756209
#SPJ1
Find all the complex roots. Write the answer in exponential
form. The complex fourth roots of 3−33i. Z0= z1= z2= z3=
The complex fourth roots of 3−33i are: [tex]z_0[/tex] = 3.062[tex]e^{(-21.603)}[/tex], [tex]z_1[/tex] = 1.513[tex]e^{(22.247)}[/tex], [tex]z_2[/tex] = 0.3826[tex]e^{(22.247)}[/tex] and [tex]z_3[/tex] = 1.198[tex]e^{(76.247)}[/tex].
To find the complex fourth roots of 3-33i, we can use the polar form of the complex number:
3-33i = 33∠(-86.41)
Then, the nth roots of this complex number are given by:
[tex]z_k[/tex] = [tex]33^{(1/n)}[/tex] × ∠((-86.41 + 360k)/n) for k = 0, 1, 2, ..., n-1
For n = 4, we have:
[tex]z_0[/tex] = [tex]33^{(1/4)}[/tex] × ∠(-86.41/4) ≈ 3.062∠(-21.603°)
[tex]z_1[/tex] = [tex]33^{(1/4)}[/tex] × ∠(88.99/4) ≈ 1.513∠(22.247°)
[tex]z_2[/tex] = [tex]33^{(1/4)}[/tex] × ∠(196.99/4) ≈ 0.3826∠(49.247°)
[tex]z_3[/tex] = [tex]33^{(1/4)}[/tex] × ∠(304.99/4) ≈ 1.198∠(76.247)
So the complex fourth roots of 3-33i are approximate:
[tex]z_0[/tex] = 3.062[tex]e^{(-21.603)}[/tex]
[tex]z_1[/tex] = 1.513[tex]e^{(22.247)}[/tex]
[tex]z_2[/tex] = 0.3826[tex]e^{(22.247)}[/tex]
[tex]z_3[/tex] = 1.198[tex]e^{(76.247)}[/tex]
Learn more about the complex roots at
https://brainly.com/question/5498922
#SPJ4
Use the figure to find the Volume.
12 un3
16 un3
20 un3
The volume of the cylinder is 12π units³.
Option A is the correct answer.
We have,
The formula for the volume V of a cylinder with radius r and height h is:
V = πr²h
Now,
Radius = 2 units
Height = 3 units
Now,
Volume.
= πr²h
= π x 2 x 2 x 3
= 12π units³
Thus,
The volume of the cylinder is 12π units³.
Learn more about cylinder here:
https://brainly.com/question/15891031
#SPJ1
Casey went to her favorite pizza place where she always bought lunch for $5.50. When she got to the restaurant, she was surprised to see the pizza now cost $6. What percentage was the pizza marked up?
A. between 8% and 9%
B. between 9% and 10%
C. between 10% and 11%
D. between 11% and 12%
Answer:
option B.
Step-by-step explanation:
The original price of Casey's favorite pizza was $5.50, but now it costs $6. To find the percentage markup, we can use the formula:
(markup / original price) * 100%
The markup is the difference between the new price and the original price:
$6.00 - $5.50 = $0.50
So the markup is $0.50.
Using the formula above:
(markup / original price) * 100% = ($0.50 / $5.50) * 100% = 9.09%
Therefore, the pizza was marked up by about 9%, which is option B.
You need to set a 5-digit PIN, but adjacent digits in the PIN
cannot be identical. You are permitted to use the digits 0-9.
There are 59,049 possible 5-digit PINs where adjacent digits cannot be identical, and you are permitted to use digits 0-9.
To determine the number of possible 5-digit PINs where adjacent digits cannot be identical and using the digits 0-9, follow these steps:
Step 1: Consider the first digit. Since there are no restrictions, you have 10 choices (0-9).
Step 2: For the second digit, you can't have it identical to the first digit. Therefore, you have 9 choices left.
Step 3: For the third digit, it can't be identical to the second digit. So, you again have 9 choices.
Step 4: Similarly, for the fourth digit, you have 9 choices.
Step 5: Finally, for the fifth digit, you have 9 choices.
Now, multiply the choices for each digit together: 10 × 9 × 9 × 9 × 9 = 59,049.
So, there are 59,049 possible 5-digit PINs where adjacent digits cannot be identical, and you are permitted to use digits 0-9.
Learn more about Combinations: https://brainly.com/question/13387529
#SPJ11
A manufacturer knows that their items have a normally distributed lifespan, with a mean of 6.3 years, and standard deviation of 1.6 years. If 25 items are picked at random, 8% of the time their mean life will be less than how many years? Give your answer to one decimal place.
The mean life of the 25 items will be less than 5.9 years (rounded to one decimal place) 8% of the time.
We'll use the concepts of normal distribution, mean, standard deviation, and the z-score.
Step 1: Calculate the standard error of the mean. Standard error = (Standard deviation) / sqrt(Number of items) Standard error = 1.6 / sqrt(25) = 1.6 / 5 = 0.32 years
Step 2: Find the z-score corresponding to the 8% probability. We look for the z-score in a standard normal distribution table, which tells us that 8% of the time (0.08 probability), the z-score is approximately -1.4.
Step 3: Use the z-score formula to find the mean life (x) that corresponds to this probability. Z = (x - Mean) / Standard error -1.4 = (x - 6.3) / 0.32
Step 4: Solve for x. x - 6.3 = -1.4 * 0.32 x = 6.3 - (1.4 * 0.32) x ≈ 5.852
The mean life of the 25 items will be less than 5.9 years (rounded to one decimal place) 8% of the time.
Learn more about mean,
https://brainly.com/question/19243813
#SPJ11
What is the distance between (1, 2) and (1, -10)?
The distance between the points (1, 2) and (1, -10) is 12 square units
We have to find the distance between (1, 2) and (1, -10)
The length along a line or line segment between two points on the line or line segment.
Distance=√(x₂-x₁)²+(y₂-y₁)²
=√(1-1)²+(-10-2)²
=√-12²
=√144
=12 square units
Hence, the distance between (1, 2) and (1, -10) is 12 square units
To learn more on Distance click:
https://brainly.com/question/15172156
#SPJ1
HELPPP MEEEEEE FAST PLEASE!
The area of the composite figure is
120 square ftHow to find the area of the composite figureThe area is calculated by dividing the figure into simpler shapes.
The simple shapes used here include
rectangle andtriangleArea of rectangle = length x width
= 12 x 7
= 84 square ft
Area of triangle = 1/2 base x height
= 1/2 x 12 x 6
= 36 square ft
Total area
= 84 square ft + 36 square ft
= 120 square ft
Learn more about area of rectangle at
https://brainly.com/question/2607596
#SPJ1
In
△
A
B
C
,
∠
C
is a right angle and
sin
A
=
4
5
.
What is the ratio of cos A?
Answer:
cos A = 45
Step-by-step explanation:
90 - sin A = 45 = cos A
90 Minus whatever the cos value for the angle is = the sin and vice versa.
The length of a diagonal of a square is 37√2 millimeters. Find the perimeter of the square
The perimeter of the square based on the dimensions of the diagonal is 145.27 millimeters.
We will begin with calculating the side of square from the diagonal of square. It will form right angled triangle and hence the formula will be represented as -
diagonal² = 2× side²
Keep the value of diagonal
(37✓2)² = 2× side²
Side² = 2638/2
Side² = 1319
Side = ✓1319
Side = 36.32 millimetres
Perimeter of the square = 4 × side
Perimeter = 145.27 millimeters
Thus, the perimeter of the square is 145.27 millimeters.
Learn more about square -
https://brainly.com/question/479529
#SPJ4
After 22 people used product A for a month, 17 people were satisfied and 5 people were not satisfied. Find the HPD interval of 95% of θ when the pre-distribution of satisfaction θ of this product is Beta(1,1).
To find the HPD (Highest Posterior Density) interval of 95% of θ, we need to first calculate the posterior distribution of θ using the Beta prior distribution with parameters α = 1 and β = 1, and the observed data of 17 satisfied and 5 not satisfied.
The posterior distribution of θ is also a Beta distribution with parameters α' = α + number of satisfied and β' = β + number of not satisfied. In this case, α' = 1 + 17 = 18 and β' = 1 + 5 = 6.
So, the posterior distribution of θ is Beta(18,6).
To find the HPD interval, we can use a numerical method such as Markov Chain Monte Carlo (MCMC) simulation. However, since the Beta distribution has a closed-form expression for the quantiles, we can use the following formula to calculate the HPD interval:
HPD interval = [Beta(q1,α',β'), Beta(q2,α',β')]
where q1 and q2 are the quantiles of the posterior distribution that enclose 95% of the area under the curve.
Using a Beta distribution calculator or software, we can find that the 0.025 and 0.975 quantiles of Beta(18,6) are approximately 0.633 and 0.898, respectively.
Therefore, the HPD interval of 95% of θ is [0.633, 0.898].
Learn more about HPD interval:
https://brainly.com/question/31435794
#SPJ11
hey can you guys explain this to me and how to do it using a proportion method thing.
Answer:a to b is 21 and b to c is 6 so I think you would need 21+6 divided by 2 i don't know for sure.
Step-by-step explanation:
In Problems 1 through 16, transform the given differential equation or system into an equivalent system of first-order differential equations.x(3)−2x′′+x′=1+tet.
The equivalent system of first-order differential equations for the given problem is: 1. dv1/dt = v2 2. dv2/dt = v3 3. dv3/dt = 2v2 - v1 + 1 + t*e ^t
Given differential equation: x''' - 2x'' + x' = 1 + t*e ^t
Step 1: Define new variables.
Let's introduce new variables:
v1 = x'
v2 = v1'
v3 = v2'
Now we have:
v1 = x'
v2 = v1'
v3 = v2'
Step 2: Rewrite the given equation using new variables.
Substitute the new variables into the given differential equation:
v3 - 2v2 + v1 = 1 + t*e ^t
Step 3: Write the equivalent system of first-order differential equations.
Now we have the following equivalent system of first-order differential equations:
dv1/dt = v2
dv2/dt = v3
dv3/dt = 2v2 - v1 + 1 + t*e ^t
So, the equivalent system of first-order differential equations for the given problem is:
1. dv1/dt = v2
2. dv2/dt = v3
3. dv3/dt = 2v2 - v1 + 1 + t*e ^t
Learn more about differential equations here:
brainly.com/question/25731911
#SPJ11
A pulse of sound takes 1/100 seconds to travel about 25 feet to the sea floor and back. A ship stops in an area where the sea floor extends to the bottom of the sunlight zone. At this spot an echo sounder gives a pulse of sound that takes 26/100 second to travel to the sea floor and back. How deep is the ocean at the bottom of the sunlight Zone?
The depth of the ocean is 650 feets at the bottom of the sunlight zone.
The distance travelled by echo sound is given by the formula -
Speed = 2×distance/time
So, calculating the speed of sound from the formula using distance and time
Speed = 2×25/(1/100)
Speed = 50×1000
Speed of sound = 5000 feet/second
Now, calculating the distance or depth of ocean at the bottom of the sunlight zone -
Distance = (speed×time)/2
Distance = (5000×26/100)/2
Distance = 1300/2
Distance = 650 feets
Hence, the depth of ocean is 650 feets.
Learn more about echo -
https://brainly.com/question/19579065
#SPJ4
PLEASE HURRY ILL GIVE BRANILIST!!!!
The balloon that was farther from the town at the beginning, and which traveled more quickly is option D. Tasha's balloon was farther from the town at the beginning, but Henry's balloon traveled more quickly.
What is the balloon about?In order for us to know or to figure out which balloon had a faster journey, we can employ the speed equation:
Speed: Distance divided by time
Note that from the question, Henry's balloon was one that covered a distance of 16 miles within a span of 2 hours resulting in its velocity being 8 miles per hour and Tasha's balloon was situated y = 5x + 25 miles away from the town.
Theis mean that its distance from the town would be y = 5(2) + 25 = 35 miles, after a duration of 2 hours. So, Tasha's balloon covered a distance of 10 miles within a span of 2 hours, showing a speed of 5 mph.
Learn more about balloon from
https://brainly.com/question/21360487
#SPJ1
See text below
Two hot air balloons are traveling along the same path away from a town, beginning from different locations at the same time. Henry's balloon begins 15 miles from the town and is 31 miles from the town after 2 hours. The distance of Tasha's balloon from the town is represented by the function y = 5x+25.
Which balloon was farther from the town at the beginning, and which traveled more quickly?
A. Tasha's balloon was farther from the town at the beginning, and it traveled more quickly.
B. Henry's balloon was farther from the town at the beginning, and it traveled more quickly.
C. Henry's balloon was farther from the town at the beginning, but Tasha's balloon traveled more quickly.
D. Tasha's balloon was farther from the town at the beginning, but Henry's balloon traveled more quickly.
What is the value of x?
The value of the variable x for the arc angle m∠AB and the angle it subtends at the center of the circle C is equal to 73.
What is angle subtended by an arc at the centerThe angle subtended by an arc of a circle at it's center is twice the angle it substends anywhere on the circles circumference. Also the arc measure and the angle it subtends at the center of the circle are directly proportional.
Thus:
3x - 46 = x + 98
3x - x = 98 + 46 {collect like terms}
2x = 146
x = 146/2 {divide through by 2}
x = 73
Therefore, the value of the variable x for the arc angle m∠AB and the angle it subtends at the center of the circle C is equal to 73.
Read more about angle here:https://brainly.com/question/24423151
#SPJ1
The regression line for a data set showing the monthly utility bill U in a certain city versus the square footage F of the residence is given by U = 0.2F – 200 dollars. What monthly utility bill would be expected for a 2200 square foot home in this city? $
The expected monthly utility bill for a 2200 square foot home in this city would be $340.
Given regression equation: U = 0.2F - 200
Where U is the monthly utility bill and F is the square footage of the residence.
Substitute F = 2200 in the equation
U = 0.2(2200) - 200
U = 440 - 200
U = $340
Hence, the expected monthly utility bill for a 2200 square foot home in this city is $340.
For more questions like Regression click the link below:
https://brainly.com/question/28178214
#SPJ11
The monthly utility bill would be expected for a 2200 square foot home in this city is $240
The given regression line represents a relationship between the monthly utility bill (U) and the square footage of a residence (F) in a certain city. The equation U = 0.2F - 200 is in the form of a linear equation, where the coefficient 0.2 represents the rate of change in the utility bill for every one unit increase in square footage.
To find the expected monthly utility bill for a 2200 square foot home, we substitute F = 2200 into the equation. By plugging in this value, we can calculate the corresponding value of U, which represents the expected utility bill for that particular square footage.
Substituting F = 2200 into the equation U = 0.2F - 200, we get:
U = 0.2(2200) - 200
Calculating the expression within the parentheses gives us:
U = 440 - 200
Simplifying further:
U = 240
Therefore, the expected monthly utility bill for a 2200 square foot home in this city is $240. This means that, based on the given regression line, on average, residents with a 2200 square foot home can expect a monthly utility bill of $240 in this city.
For more questions like Regression click the link below:
brainly.com/question/28178214
#SPJ11
sphere $\mathcal{s}$ is tangent to all 12 edges of a cube with edge length 6. find the volume of the sphere.
The sphere is tangent to all 12 edges, meaning that it just touches each edge at one point without intersecting it.
First, we need to find the radius of the sphere. Since the sphere is tangent to each edge, it can be thought of as inscribed within the cube.
Drawing a diagonal of the cube creates a right triangle with legs of length 6. Using the Pythagorean theorem, we find that the length of the diagonal is $6\sqrt{3}$.
Since the sphere is inscribed within the cube, its diameter is equal to the diagonal of the cube. Therefore, the radius of the sphere is half of the diagonal, which is $\frac{1}{2}(6\sqrt{3}) = 3\sqrt{3}$.
Now that we have the radius of the sphere, we can use the formula for the volume of a sphere: $V = \frac{4}{3}\pi r^3$. Substituting in the value for the radius, we get:
$V = \frac{4}{3}\pi (3\sqrt{3})^3 \approx 113.10$
So the volume of the sphere is approximately 113.10 cubic units.
To find the volume of the sphere tangent to all 12 edges of a cube, we'll first need to determine the sphere's radius.
1. Consider the cube with edge length 6. Let's focus on one of its vertices.
2. At this vertex, there are 3 edges, each tangent to sphere S.
3. Since the sphere is tangent to all these edges, they form a right-angled triangle inside the sphere, with the edges being its legs and a diameter of the sphere being its hypotenuse.
4. Let r be the radius of sphere S.
5. Using the Pythagorean theorem, we have: (2r)^2 = 6^2 + 6^2 + 6^2
6. Simplifying, we get: 4r^2 = 108
7. Solving for r, we have: r^2 = 27, so r = √27
Now, we can find the volume of the sphere using the formula:
Volume = (4/3)πr^3
8. Substitute the value of r into the formula: Volume = (4/3)π(√27)^3
9. Simplifying, we get: Volume ≈ 36π(√27)
Thus, the volume of sphere S tangent to all 12 edges of the cube with edge length 6 is approximately 36π(√27) cubic units.
Learn more about tangent at : brainly.com/question/19064965
#SPJ11
prove if a/b = c/d = e/f
The proof that of the above expression on the condition of a/b = c/d = e/f is given below.
How can one arrive at the proof?Given: a/b = c/d = e/f
Let e/b = e/c = k
Then, a/b = k and c/d = k, so a = kb and c = kd
Now we have:
√((a⁴ + c⁴)/ (b⁴ + d⁴)) = √(((k b) ⁴ + ( kd )⁴ )/(b ⁴ + d ⁴) )
= √ (k ⁴ * (b⁴ + d⁴ ) / (b⁴ + d⁴))
= k²
Let p = 1 and q = k², then:
(p a² + q * c²)/(p * b² + q * d²) = (a² + k² * c²)/(b² + k⁴ * d²)
= (k² * b² + k² * d ²)/(b ² + k ⁴ * d ²)
= k ²
Therefore, we have shown that √ ((a ⁴ + c ⁴)/(b ⁴ + d ⁴)) = (p x a ² + q * c ²) / (p * b ² + q * d² )
if a/b = c/ d = e/f.
Learn more about Proof:
https://brainly.com/question/30792483
#SPJ1
Please help i dont know how to do this
Aaron hikes from his home to a park by walking 3 km at a bearing of N 30" E. Then 6 km due east, and then 4 km at a bearing of N 50° E. What are the magnitude and direction of the vector that represents the straight path from Aaron's home to the park? Round the magnitude to the nearest tenth and the direction to the nearest degree
The magnitude and direction of the vector that represents the straight path from Aaron's home to the park are approximately 8.5 km and N 34° E, respectively.
We can solve this problem by using vector addition. Let's break down Aaron's path into three vectors:
1. The first vector is 3 km at a bearing of N 30° E, which we can represent as a vector with components <2.598, 1.5>.
2. The second vector is 6 km due east, which we can represent as a vector with components <6, 0>.
3. The third vector is 4 km at a bearing of N 50° E, which we can represent as a vector with components <2.828, 3.053>.
To find the vector that represents the straight path from Aaron's home to the park, we need to add these three vectors together. We can do this by adding their components:
<2.598, 1.5> + <6, 0> + <2.828, 3.053> = <11.426, 4.553>
So the vector that represents the straight path from Aaron's home to the park has a magnitude of √(11.426² + 4.553²) = 12.3 km (rounded to the nearest tenth) and a direction of tan⁻¹(4.553/11.426) = 21° (rounded to the nearest degree) north of east.
To know more about vector, visit,
https://brainly.com/question/31289115
#SPJ4
A scatter plot is shown on the coordinate plane.
scatter plot with points plotted at 1 comma 5, 1 comma 8, 2 comma 4, 3 comma 5, 3 comma 6, 5 comma 6, 6 comma 4, 7 comma 2, 9 comma 1, and 10 comma 1
Which two points would a line of fit go through to best fit the data?
(6, 4) and (9, 1)
(3, 5) and (10, 1)
(1, 8) and (5, 6)
(1, 5) and (7, 3)
Answer:
I believe (3, 5) and (10, 1) is the answer
Step-by-step explanation:
Find the distance between (-11,-6) and (13,-16)
Answer:
26 units
Step-by-step explanation:
The distance between two points with coordinates
Suppose that X is an exponentially distributed random variable with lambda = 0.47 . Find each of the following probabilities:
A. P(X > 1) =
B. P(X > 0.36) =
C. P(X < 0.47) =
D. P(0.32 < X < 2.46) =
The requested probabilities are: A. P(X > 1) ≈ 0.628; B. P(X > 0.36) ≈ 0.844; C. P(X < 0.47) ≈ 0.226; D. P(0.32 < X < 2.46) ≈ 0.524
The probability density function of an exponentially distributed random variable with parameter lambda is given by:
f(x) = lambda * e^(-lambda * x), for x >= 0
The cumulative distribution function (CDF) of X is given by:
F(x) = P(X <= x) = 1 - e^(-lambda * x), for x >= 0
Using the given value of lambda = 0.47, we can solve for each probability as follows:
A. P(X > 1) = 1 - P(X <= 1) = 1 - (1 - e^(-0.47 * 1)) = e^(-0.47) ≈ 0.628
B. P(X > 0.36) = 1 - P(X <= 0.36) = 1 - (1 - e^(-0.47 * 0.36)) = e^(-0.1692) ≈ 0.844
C. P(X < 0.47) = P(X <= 0.47) = 1 - e^(-0.47 * 0.47) ≈ 0.226
D. P(0.32 < X < 2.46) = P(X <= 2.46) - P(X <= 0.32) = (1 - e^(-0.47 * 2.46)) - (1 - e^(-0.47 * 0.32)) ≈ 0.524
Know more about probabilities here:
https://brainly.com/question/13604758
#SPJ11
dy Find the general solution of r = y2 – 1 dr
The general solution of the given differential equation is:
y = (r^(1/2)) * (1 + Ce^(2r^(1/2))) or y = (r^(1/2)) * (-1 + Ce^(2r^(1/2)))
where C is the constant of integration.
To find the general solution of r = y^2 - 1 dr, we need to separate the variables and integrate both sides. We can start by rearranging the equation as:
dr/(y^2 - 1) = dy/r
Now, we can integrate both sides. On the left side, we can use partial fractions to make the integration easier. We can write:
dr/(y^2 - 1) = [1/(2*(y-1))] - [1/(2*(y+1))] dy
Integrating both sides, we get:
1/2 * ln|y-1| - 1/2 * ln|y+1| = ln|r| + C
where C is the constant of integration.
We can simplify this as:
ln|(y-1)/sqrt(r)| - ln|(y+1)/sqrt(r)| = 2C
Using logarithmic properties, we can simplify further as:
ln|[(y-1)/sqrt(r)] / [(y+1)/sqrt(r)]| = 2C
ln|[(y-1)/(y+1)]| = 2C
Exponentiating both sides, we get:
|[(y-1)/(y+1)]| = e^(2C)
Taking the positive and negative cases separately, we get:
(y-1)/(y+1) = e^(2C)
or
(y-1)/(y+1) = -e^(2C)
Solving for y in each case, we get the general solution as:
y = (r^(1/2)) * (1 + Ce^(2r^(1/2))) or y = (r^(1/2)) * (-1 + Ce^(2r^(1/2)))
where C is the constant of integration. This is the general solution of the given differential equation.
To learn more about differential equations visit : https://brainly.com/question/1164377
#SPJ11
the average monthly residential gas bill for black hills energy customers in cheyenne, wyoming is (wyoming public service commission website). how is the average monthly gas bill for a cheyenne residence related to the square footage, number of rooms, and age of the residence? the following data show the average monthly gas bill for last year, square footage, number of rooms, and age for typical cheyenne residences. average monthly gas number of bill for last year age square footage rooms $70.20 16 2537 6 $81.33 2 3437 8 $45.86 27 976 6 $59.21 11 1713 7 $117.88 16 3979 11 $57.78 2 1328 7 $47.01 27 1251 6 $52.89 4 827 5 $32.90 12 645 4 $67.04 29 2849 5 $76.76 1 2392 7 $60.40 26 900 5 $44.07 14 1386 5 $26.68 20 1299 4 $62.70 17 1441 6 $45.37 13 562 4 $38.09 10 2140 4 $45.31 22 908 6 $52.45 24 1568 5 $96.11 27 1140 10 a. develop an estimated regression equation that can be used to predict a residence's average monthly gas bill for last year given its age. round your answers to four decimals.
An estimated regression equation that can be used to predict a residence's average monthly gas bill for last year given its age is [tex]$\hat{y} = 115.14 - 3.167x$[/tex]. The average monthly gas bill for last year increases by $0.2456 on average.
Using age as the predictor variable and average monthly gas bill as the response variable, we can use linear regression to develop an estimated regression equation:
[tex]$\hat{y} = b_0 + b_1 x$[/tex]
where [tex]\hat{y}[/tex] is the predicted average monthly gas bill, x is the age of the residence, b₀ is the intercept and b₁ is the slope.
Using the given data, we can find the values of b₀ and b₁:
[tex]$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i = 17.6$[/tex]
[tex]$\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i = 55.906$[/tex]
[tex]$s_x = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n-1}} = 8.564$[/tex]
[tex]$s_y = \sqrt{\frac{\sum_{i=1}^{n} (y_i - \bar{y})^2}{n-1}} = 24.193$[/tex]
[tex]$r = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2} \sqrt{\sum_{i=1}^{n} (y_i - \bar{y})^2}} = -0.577$[/tex]
[tex]$b_1 = r \frac{s_y}{s_x} = -3.167$[/tex]
[tex]$b_0 = \bar{y} - b_1 \bar{x} = 115.14$[/tex]
Therefore, the estimated regression equation is:
[tex]$\hat{y} = 115.14 - 3.167x$[/tex]
where [tex]\hat{y}$[/tex] is the predicted average monthly gas bill and x is the age of the residence.
This equation suggests that as the age of the residence increases by one year, the average monthly gas bill for last year increases by $0.2456 on average.
Learn more about regression equation here:
brainly.com/question/17079948
#SPJ11
you randomly choose one shape from the bag. find the number of ways the event can occur. find the favorable outcomes of the event
(a) The number of ways that the event can occur is 6.
(b) Probabilities are :
1) 1/2, 2) 1/6 and 3) 1/3.
(a) Given a bag of different shapes.
Total number of shapes = 6
So, if we select one shape from random,
total number of ways that the event can occur = 6
(b) Number of squares in the bag = 3
Probability of choosing a square = 3/6 = 1/2
Number of circles in the bag = 1
Probability of choosing a circle = 1/6
Number of stars in the bag = 2
Probability of choosing a star = 2/6 = 1/3
Hence the required probabilities are found.
Learn more about Probability here :
https://brainly.com/question/14210034
#SPJ1