The energy of the photon emitted by the hydrogen atom during the n = 6 to n = 2 transition is 2.7222 electron Volts (eV). To calculate the energy of the photon emitted by the hydrogen atom during a transition from one energy level to another, we can use the formula:
ΔE =[tex]E_{final} - E_{initial[/tex]
where ΔE is the change in energy,[tex]E_{final[/tex] is the energy of the final state, and[tex]E_{initial[/tex]is the energy of the initial state. The energy levels of a hydrogen atom can be determined using the formula:
E = -13.6 eV / [tex]n^2[/tex]
where E is the energy of the level and n is the principal quantum number. In this case, the transition is from the n = 6 to the n = 2 energy level. Substituting these values into the energy formula, we have:
[tex]E_{final[/tex] = -13.6 eV / ([tex]2^2)[/tex] = -13.6 eV / 4 = -3.4 eV
[tex]E_{initial[/tex] = -13.6 eV / [tex](6^2)[/tex] = -13.6 eV / 36 = -0.3778 eV
Substituting these values into the ΔE formula, we get:
ΔE = -3.4 eV - (-0.3778 eV) = -2.7222 eV
The energy of the photon emitted is equal to the magnitude of the change in energy, so we have:
Energy of photon = |ΔE| = 2.7222 eV
Therefore, the energy of the photon emitted by the hydrogen atom during the n = 6 to n = 2 transition is 2.7222 electron Volts (eV).
In summary, by using the formula for the energy levels of a hydrogen atom and calculating the change in energy between the initial and final states, we can determine the energy of the photon emitted during the transition.
Learn more about photon here:
https://brainly.com/question/31591565
#SPJ11
A pump takes water at 70°F from a large reservoir and delivers it to the bottom of an open elevated tank through a 3-in Schedule 40 pipe. The inlet to the pump is located 12 ft. below the water surface, and the water level in the tank is constant at 150 ft. above the reservoir surface. The suction line consists of 120 ft. of 3-in Schedule 40 pipe with two 90° elbows and one gate valve, while the discharge line is 220 ft. long with four 90° elbows and two gate valves. Installed in the line is a 2-in diameter orifice meter connected to a manometer with a reading of 40 in Hg. (a) What is the flow rate in gal/min? (b) Calculate the brake horsepower of the pump if efficiency is 65% (c) Calculate the NPSH +
The paragraph discusses a pumping system involving water transfer, and the calculations required include determining the flow rate in gallons per minute, calculating the brake horsepower of the pump, and calculating the Net Positive Suction Head (NPSH).
What does the paragraph discuss regarding a pumping system and what calculations are required?The paragraph describes a pumping system involving the transfer of water from a reservoir to an elevated tank. The system includes various pipes, elbows, gate valves, and a orifice meter connected to a manometer.
a) To determine the flow rate in gallons per minute (gal/min), information about the system's components and measurements is required. By considering factors such as pipe diameter, length, elevation, and pressure readings, along with fluid properties, the flow rate can be calculated using principles of fluid mechanics.
b) To calculate the brake horsepower (BHP) of the pump, information about the pump's efficiency and flow rate is needed. With the given efficiency of 65%, the BHP can be determined using the formula BHP = (Flow Rate × Head) / (3960 × Efficiency), where the head is the energy imparted to the fluid by the pump.
c) The Net Positive Suction Head (NPSH) needs to be calculated. NPSH is a measure of the pressure available at the suction side of the pump to prevent cavitation. The calculation involves considering factors such as the fluid properties, system elevation, and pressure drops in the suction line.
In summary, the paragraph presents a pumping system and requires calculations for the flow rate, brake horsepower of the pump, and the Net Positive Suction Head (NPSH) to assess the performance and characteristics of the system.
Learn more about pumping system
brainly.com/question/32671089
#SPJ11
A storage tank at STP contains 28.9 kg of nitrogen (N2).
What is the pressure if an additional 34.8 kg of nitrogen is
added without changing the temperature?
A storage tank at STP contains 28.9 kg of nitrogen (N₂). We applied the Ideal Gas Law to determine the pressure when 34.8 kg of nitrogen was added without changing the temperature.
The pressure inside the storage tank is determined using the Ideal Gas Law, which is given by:
PV = nRT
where P is the pressure, V is the volume of the gas, n is the number of moles of the gas, R is the gas constant, and T is the temperature in Kelvin.
Knowing that the temperature is constant, the number of moles of nitrogen in the tank can be calculated as follows:
n1 = m1/M
where m1 is the mass of nitrogen already in the tank and M is the molar mass of nitrogen (28 g/mol).
n1 = 28.9 kg / 0.028 kg/mol = 1032.14 mol
When an additional 34.8 kg of nitrogen is added to the tank, the total number of moles becomes:
n₂ = n₁ + m₂/M
where m₂ is the mass of nitrogen added to the tank.
n₂ = 1032.14 mol + (34.8 kg / 0.028 kg/mol) = 2266.14 mol
Since the volume of the tank is constant, we can equate the two forms of the Ideal Gas Law to obtain:
P1V = n₁RT and P₂V = n₂RT
Dividing the two equations gives:
P₂/P₁ = n₂/n₁
Plugging in the values:
n₂/n₁ = 2266.14 mol / 1032.14 mol = 2.195
P₂/P₁ = 2.195
Therefore, the pressure inside the tank after the additional nitrogen has been added is:
P₂ = P₁ x 2.195
In conclusion, A storage tank at STP contains 28.9 kg of nitrogen (N₂). To calculate the pressure when 34.8 kg of nitrogen is added without changing the temperature, we used the Ideal Gas Law.
The number of moles of nitrogen already in the tank and the number of moles of nitrogen added to the tank were calculated separately. These values were then used to find the ratio of the pressures before and after the additional nitrogen was added. The pressure inside the tank after the additional nitrogen was added is 2.195 times the original pressure.
To know more about nitrogen refer here:
https://brainly.com/question/29506238#
#SPJ11
A 24.5-kg child is standing on the outer edge of a horizontal merry-go-round that has a moment of inertia of about a vertical axis through its center and a radius of 2.40 m. The entire system (including the child) is initially rotating at 0.180 rev/s.
a. What is the moment of inertia of the child + merry go round when standing at the edge?
b. What is the moment of inertial of the child + merry go round when standing 1.10 m from the axis of rotation?
c. Find the angular velocity if the child moves to a new position 1.10 m from the center of the merry-go-round.
d. What is the change in rotational kinetic energy between the edge and 2.40 m distance?
a.The moment of inertia of the child + merry-go-round when standing at the edge is 14.7 kg·m².
b. The moment of inertia of the child + merry-go-round when standing 1.10 m from the axis of rotation is 20.2 kg·m².
c. The angular velocity if the child moves to a new position 1.10 m from the center of the merry-go-round is 0.165 rev/s.
d. The change in rotational kinetic energy between the edge and 2.40 m distance is 54.6 J.
a. To calculate the moment of inertia when the child is standing at the edge, we use the equation:
I =[tex]I_mg + m_cr^2[/tex]
where I_mg is the moment of inertia of the merry-go-round, m_c is the mass of the child, and r is the radius of the merry-go-round. Plugging in the given values, we find the moment of inertia to be 14.7 kg·m².
b. To calculate the moment of inertia when the child is standing 1.10 m from the axis of rotation, we use the parallel axis theorem. The moment of inertia about the new axis is given by:
I' = [tex]I + m_c(h^2)[/tex]
where I is the moment of inertia about the axis through the center of the merry-go-round, m_c is the mass of the child, and h is the distance between the new axis and the original axis. Plugging in the values, we find the moment of inertia to be 20.2 kg·m².
c. When the child moves to a new position 1.10 m from the center of the merry-go-round, the conservation of angular momentum tells us that the initial angular momentum is equal to the final angular momentum. We can write the equation as:
Iω = I'ω'
where I is the initial moment of inertia, ω is the initial angular velocity, I' is the final moment of inertia, and ω' is the final angular velocity. Rearranging the equation, we find ω' to be 0.165 rev/s.
d. The change in rotational kinetic energy can be calculated using the equation:
ΔKE_rot = (1/2)I'ω'^2 - (1/2)Iω^2
Plugging in the values, we find the change in rotational kinetic energy to be 54.6 J.
Learn more about moment of inertia
brainly.com/question/15461378
#SPJ11
A parallel-plate capacitor with circular plates and a capacitance of 13.3 F is connected to a battery
which provides a voltage of 14.9 V
a) What is the charge on each plate?
b) How much charge would be on the plates if their separation were doubled while the capacitor remained connected to the battery
c) How much charge would be on the plates if the capacitor were connected to the battery after the radius of each plate was doubled with changing their separation
The charge on each plate of the capacitor is 197.77 Coulombs.
a) To calculate the charge on each plate of the capacitor, we can use the formula:
Q = C * V
where:
Q is the charge,
C is the capacitance,
V is the voltage.
Given:
Capacitance (C) = 13.3 F,
Voltage (V) = 14.9 V.
Substituting the values into the formula:
Q = 13.3 F * 14.9 V
Q ≈ 197.77 Coulombs
Therefore, the charge on each plate of the capacitor is approximately 197.77 Coulombs.
b) If the separation between the plates is doubled while the capacitor remains connected to the battery, the capacitance (C) would change.
However, the charge on each plate remains the same because the battery maintains a constant voltage.
c) If the radius of each plate is doubled while the separation between the plates remains unchanged, the capacitance (C) would change, but the charge on each plate remains the same because the battery maintains a constant voltage.
Learn more about charge from the given link
https://brainly.com/question/18102056
#SPJ11
Determine the volume in m3 of 17.6 moles of helium at normal air pressure and room temperature. p=101,000m2N T=20∘C→? K p⋅V=nRT→V=? R=8.314KJ
The volume of 17.6 moles of helium at normal air pressure and room temperature is approximately 0.416 m³.
To determine the volume (V) of 17.6 moles of helium, we can use the ideal gas law equation: p⋅V = nRT.
Given:
Number of moles (n) = 17.6 moles
Pressure (p) = 101,000 N/m²
Temperature (T) = 20°C
First, we need to convert the temperature from Celsius to Kelvin. The conversion can be done by adding 273.15 to the Celsius value:
T(K) = T(°C) + 273.15
Converting the temperature:
T(K) = 20°C + 273.15 = 293.15 K
Next, we substitute the values into the ideal gas law equation:
p⋅V = nRT
Plugging in the values:
101,000 N/m² ⋅ V = 17.6 moles ⋅ 8.314 KJ/K ⋅ 293.15 K
Now, we can solve for the volume (V) by rearranging the equation:
V = (17.6 moles ⋅ 8.314 KJ/K ⋅ 293.15 K) / 101,000 N/m²
Calculating the volume:
V ≈ 0.416 m³
To learn more about temprature -
brainly.com/question/13771035
#SPJ11
A baseball of mass m = 0.34 kg is dropped from a heighth, = 2.95 m. It bounces from the concrete below and returns to a final height of A2 = 1.13 m. Neglect air resistance. Randomized Variables -0.34 kg h, -2,95 m 12 - 1.13 m X Incorrect! *33% Part(a) Select an expression for the impulse / that the baseball experiences when it bounces off the concrete. Feedback: is available 33% Part (b) What is this impulse, in kilogram meters per second? 33% Part (e) If the baseball was in contact with the concrete for -0,01 s. what average force Fuvo did the concrete exert on the baseball, in newtons?
The change in momentum of a particle is equivalent to the impulse that the particle undergoes. The equation for the impulse is given asI = pf − pi where pf and pi are the final and initial momenta of the particle, respectively.
In this situation, the ball is dropped from a height of 2.95 m and is brought to rest upon striking the concrete. As a result, the impulse on the ball is twice the ball’s momentum immediately prior to striking the concrete, or twice the product of the ball’s mass and its velocity just before striking the concrete. Thus, the expression for the impulse of the baseball when it bounces off the concrete is as follows.
I = 2mvPart (b)The impulse is calculated using the expression I = 2mv where m is the mass of the baseball and v is the velocity of the ball immediately before striking the concrete. v is calculated using the conservation of energy principle because energy is conserved in this situation as there is no loss of energy. The total energy of the baseball is the sum of its kinetic and potential energy and is given as E = K + P
To know more about momentum visit:
https://brainly.com/question/30677308
#SPJ11
: Problem 2.10 Incoming high-energy cosmic-ray protons strike earth's upper atmo- sphere and collide with the nuclei of atmospheric atoms, producing a downward- directed shower of particles, including (among much else) the pions , π, and 7º. The charged pions decay quickly into muons and neutrinos: + →μ++ and →+v. The muons are themselves unstable, with a half-life of 1.52 us in their rest frame, decaying into electrons or positrons and additional neutrinos. Nearly all muons are created at altitudes of about 15 km and more, and then those that have not yet decayed rain down upon the earth's surface. Consider muons with speeds (0.995±0.001)c, with their numbers measured on the ground and in a balloon- lofted experiment at altitude 12 km. (a) How far would such muons descend toward the ground in one half-life if there were no time dilation? (b) What fraction of these muons observed at 12 km would reach the ground? (c) Now take into account time dilation, in which the muon clocks run slow, extending their half-lives in the frame of the earth. What fraction of those observed at 12 km would make it to the ground? (Such experiments supported the fact of time dilation.)
How far would such muons descend toward the ground in one half-life if there were no time dilation.
The half-life of the muons is 1.52 µs.
If there were no time dilation, then a muon will travel without any decay for that duration only.
the distance traversed by the muons without decay can be determined as follows:
D = 1/2at2Here, a is the acceleration of the muons.
Since we are neglecting any decay, the acceleration is due to gravity which is given as g.
a = g = 9.8 m/s
2t = 1.52 x 10-6s
D = 1/2
at2 = 1/2 x 9.8 x (1.52 x 10-6)2 m
D = 1.12 x 10-8 m
What fraction of these muons observed at 12 km would reach the ground?
Let us first calculate the time taken by the muons to travel from 15 km to 12 km.
Speed of light,
c = 3 x 108 m/s
Speed of the muons = 0.995 c = 2.985 x 108 m/s
time taken to travel 3 km = Distance/Speed = 1000/2.985 x 108 = 3.35 x 10-6 s
the total time taken by the muons to travel from an altitude of 15 km to 12 km will be 3.35 x 10-6 + 1.52 x 10-6 = 4.87 x 10-6 s.
According to the muon's half-life, 1.52 µs, approximately 1/3.3 x 105 muons would decay in the duration 4.87 x 10-6 s.
According to time dilation,τ = τ0/γHere,γ = 1/√(1-v2/c2) Since v
To know more about dilation visit:
https://brainly.com/question/29138420
#SPJ11
In an EM wave which component has the higher energy density? Depends, either one could have the larger energy density. Electric They have the same energy density Magnetic
An electromagnetic wave, often abbreviated as EM wave, is a transverse wave consisting of mutually perpendicular electric and magnetic fields that fluctuate simultaneously and propagate through space.
The electric and magnetic field components of an electromagnetic wave (EM wave) are inextricably linked, with each of them being perpendicular to the other and in phase with one another. As a result, one cannot claim that one field component carries more energy than the other. The electric and magnetic fields both carry the same amount of energy and are equal to each other.
In an electromagnetic wave, the electric and magnetic field components are inextricably linked, with each of them being perpendicular to the other and in phase with one another. Therefore, one cannot claim that one field component carries more energy than the other. The electric and magnetic fields both carry the same amount of energy and are equal to each other. Thus, both the electric and magnetic field components have the same energy density.
To know more about electromagnetic wave visit:
brainly.com/question/29774932
#SPJ11
The work done by a constant 50 V/m electric field on a +2.0 C
charge over along a displacement of 0.50 m parallel to the electric
field in question is:
The work done by a constant 50 V/m electric field on a +2.0 C charge over along a displacement of 0.50 m parallel to the electric field is 50 J.
Potential difference (V) = 50 V/mCharge (Q) = +2.0 CDisplacement (d) = 0.50 mWe have to calculate the work done by a constant 50 V/m electric field on a +2.0 C charge over a displacement of 0.50 m parallel to the electric field.Let's start with the formula that is used to find the work done by the electric field.Work Done (W) = Potential difference (V) * Charge (Q) * Displacement (d)W = V * Q * dPutting the values in the above formula, we get;W = 50 V/m × +2.0 C × 0.50 m= 50 × 2.0 × 0.50 J= 50 J. Hence, the work done by a constant 50 V/m electric field on a +2.0 C charge over along a displacement of 0.50 m parallel to the electric field is 50 J.
Learn more about electric field :
https://brainly.com/question/30544719
#SPJ11
Energy is conserved in the collision. Write an expression in
terms of photon wavelength to represent the electron’s increase in
energy as a result of the collision.
In the collision, the energy is conserved. The expression in terms of photon wavelength that represents the electron's increase in energy as a result of the collision can be given by:E=hc/λwhere, E is energy,h is the Planck constant,c is the speed of light, andλ is the wavelength of the photon.
To understand the relationship between energy and wavelength, you can consider the equation: E = hf, where, E is energy,h is Planck's constant, and f is frequency.We can relate frequency with wavelength as follows:f = c/λwhere,f is frequency,λ is wavelength,c is the speed of light. Substitute the value of frequency in the equation E = hf, we get:E = hc/λTherefore, energy can also be written as E = hc/λ, whereλ is the wavelength of the photon.
Learn more about energy:
brainly.com/question/2003548
#SPJ11
Roberto is observing a black hole using the VLA at 22 GHz. What is the wavelength of the radio emission he is studying? (Speed of light – 3 x 10' m/s) a. 1.36 nm b. 1.36 mm c. 1.36 cm d. 1.36 m Mega
The wavelength of the radio emission that Roberto is studying is 1.36 m (option d).
Radio emission refers to the radiation of energy as electromagnetic waves with wavelengths ranging from less than one millimeter to more than 100 kilometers. As a result, the radio emission is classified as a long-wave electromagnetic radiation.The VLA stands for Very Large Array, which is a radio telescope facility in the United States. It comprises 27 individual antennas arranged in a "Y" pattern in the New Mexico desert. It observes radio emission wavelengths ranging from 0.04 to 40 meters.
Now, let's use the formula to find the wavelength of the radio emission;
v = fλ,where, v is the speed of light, f is the frequency of the radio emission, and λ is the wavelength of the radio emission.
Given that Roberto is observing a black hole using the VLA at 22 GHz, the frequency of the radio emission (f) is 22 GHz. The speed of light is given as 3 x 10⁸ m/s.
Substituting the given values in the formula above gives:
v = fλ3 x 10⁸ = (22 x 10⁹)λ
Solving for λ gives;
λ = 3 x 10⁸ / 22 x 10⁹
λ = 0.0136 m
Convert 0.0136 m to Mega ; 0.0136 m = 13.6 x 10⁻³ m = 13.6 mm = 1.36 m
Therefore, the wavelength of the radio emission that Roberto is studying is 1.36 m.
Learn more about radio emission https://brainly.com/question/9106359
#SPJ11
A metallic sphere has a charge of +4.00 nC. A negatively charged rod has a charge of -6.00 nC. When the rod touches the sphere, 7.48 x 10º electrons are transferred. What is the new charge on the sphere?
The new charge on the sphere after the transfer of electrons is -7.97 nC.
Given:
Charge on the metallic sphere = +4.00 nC
Charge on the rod = -6.00 nC
Number of electrons transferred = 7.48 x 10¹⁰ electrons.
One electron carries a charge of -1.6 x 10⁻¹⁹ C.
By using the formula:
Charge gained by the sphere = (7.48 x 10¹⁰) × (-1.6 x 10⁻¹⁹)
Charge gained by the sphere = -1.197 x 10⁻⁸ C
New charge on the sphere = Initial charge + Charge gained by the sphere.
New charge on the sphere = 4.00 nC - 11.97 nC
New charge on the sphere ≈ -7.97 nC.
Hence, the new charge on the sphere after the transfer of electrons is -7.97 nC.
To know more about the charge:
https://brainly.com/question/13871705
#SPJ4
The new charge on the sphere is -9.57 x 10^-9 C (or -9.57 nC, to two significant figures).
When the negatively charged rod touches the metallic sphere having a charge of +4.00 nC, 7.48 x 10^10 electrons are transferred. We have to determine the new charge on the sphere. We can use the formula for the charge of an object, which is given as:Q = ne
Where, Q = charge of the object in coulombs (C)n = number of excess or deficit electrons on the object e = charge on an electron = -1.60 x 10^-19 C
Here, number of electrons transferred is: n = 7.48 x 10^10 e
Since the rod is negatively charged, electrons will transfer from the rod to the sphere. Therefore, the sphere will gain 7.48 x 10^10 electrons. So, the total number of electrons on the sphere after transfer will be: Total electrons on the sphere = 7.48 x 10^10 + (No. of electrons on the sphere initially)
No. of electrons on the sphere initially = Charge of the sphere / e= 4.00 x 10^-9 C / (-1.60 x 10^-19 C)= - 2.5 x 10^10
Total electrons on the sphere = 7.48 x 10^10 - 2.5 x 10^10= 5.98 x 10^10The new charge on the sphere can be determined as:Q = ne= 5.98 x 10^10 × (-1.60 x 10^-19)= - 9.57 x 10^-9 C
Note: The charge on the rod is not required to calculate the new charge on the sphere.
Learn more about charge
https://brainly.com/question/13871705
#SPJ11
Compute the voltage drop along a 21 m longth of household no. 14 coppor wire (used in 15−A circuits). The wire has ciameter 1.628 mm and carries a 14 A current: Express your answer using two significant figures.
The voltage drop along a 21 m length of household no. 14 copper wire (used in 15−A circuits) is 24.64 V.
Ohm's law is used to calculate the voltage drop along a wire or conductor, which is used to measure the efficiency of the circuit. Here is the solution to your problem:
Given that,Length of the wire, l = 21 m,Diameter of wire, d = 1.628 mm,Current, I = 14 A,
Voltage, V = ?To find voltage, we use Ohm's law. The formula of Ohm's law is:V = IR,
Where,V is voltageI is current,R is resistance. We know that,The cross-sectional area of the wire, A = π/4 d²R = ρ l / Awhere l is length of wire and ρ is resistivity of the material.
Using the values of the given diameter of the wire, we get
A = π/4 (1.628/1000)² m²A.
π/4 (1.628/1000)² m²A = 2.076 × 10⁻⁶ m².
Using the values of resistivity of copper, we get ρ = 1.72 × 10⁻⁸ Ωm.
Using the formula of resistance, we get R = ρ l / AR,
(1.72 × 10⁻⁸ Ωm) × (21 m) / 2.076 × 10⁻⁶ m²R = 1.76 Ω.
Using Ohm's law, we get V = IRV,
(14 A) × (1.76 Ω)V = 24.64 V.
The voltage drop along a 21 m length of household no. 14 copper wire (used in 15−A circuits) is 24.64 V.
The voltage drop along a wire or conductor increases with its length and decreases with its cross-sectional area. Therefore, it is important to choose the right gauge of wire based on the current flow and the distance between the power source and the appliance. In addition, using copper wire is preferred over other metals due to its high conductivity and low resistivity.
To know more about Ohm's law visit:
brainly.com/question/1247379
#SPJ11
The wavefunction for a wave on a taut string of linear mass density u = 40 g/m is given by: y(xt) = 0.25 sin(5rt - Tx + ф), where x and y are in meters and t is in
seconds. The energy associated with three wavelengths on the wire is:
The energy associated with three wavelengths on the wire cannot be calculated without the value of λ
Given that the wave function for a wave on a taut string of linear mass density u = 40 g/m is:y(xt) = 0.25 sin(5rt - Tx + ф)
The energy associated with three wavelengths on the wire is to be calculated.
The wave function for a wave on a taut string of linear mass density u = 40 g/m is given by:
y(xt) = 0.25 sin(5rt - Tx + ф)
Where x and y are in meters and t is in seconds.
The linear mass density, u is given as 40 g/m.
Therefore, the mass per unit length, μ is given by;
μ = u/A,
where A is the area of the string.
Assuming that the string is circular in shape, the area can be given as;
A = πr²= πd²/4
where d is the diameter of the string.
Since the diameter is not given, the area of the string cannot be calculated, hence the mass per unit length cannot be calculated.
The energy associated with three wavelengths on the wire is given as;
E = 3/2 * π² * μ * v² * λ²
where λ is the wavelength of the wave and v is the speed of the wave.
Substituting the given values in the above equation, we get;
E = 3/2 * π² * μ * v² * λ²
Therefore, the energy associated with three wavelengths on the wire cannot be calculated without the value of λ.
#SPJ11
Let us know more about wavelengths : https://brainly.com/question/31322456.
Consider a parallel-plate capacitor with empty space between its plates, which are separated by a distance of 3 mm.
If the charge on the positive plate is 8 μC, and the electrical potential energy stored in this capacitor is 12 nJ, what is the magnitude of the electric field in the region between the plates?
Group of answer choices
4 V/m
6 V/m
3 V/m
1 V/m
2 V/m
The magnitude of the electric field in the region between the plates is 2 V/m (Option E).
The electrical potential energy (U) stored in a parallel-plate capacitor is given by the formula:
U = (1/2) × C × V²
The capacitance of a parallel-plate capacitor is given by the formula:
C = (ε₀ × A) / d
Where:
ε₀ is the permittivity of free space (ε₀ ≈ 8.85 x 10⁻¹² F/m)
A is the area of the plates
d is the separation distance between the plates
Given:
Separation distance (d) = 3 mm = 0.003 m
Charge on the positive plate (Q) = 8 μC = 8 x 10⁻⁶ C
Electrical potential energy (U) = 12 nJ = 12 x 10⁻⁹ J
First, we can calculate the capacitance (C) using the given values:
C = (ε₀ × A) / d
Next, we can rearrange the formula for electrical potential energy to solve for voltage (V):
U = (1/2) × C × V²
Substituting the known values:
12 x 10⁻⁹ J = (1/2) × C × V²
Now, we can solve for V:
V² = (2 × U) / C
Substituting the calculated value of capacitance (C):
V² = (2 × 12 x 10⁻⁹ J) / C
Finally, we can calculate the electric field (E) using the formula:
E = V / d
Substituting the calculated value of voltage (V) and separation distance (d):
E = V / 0.003 m
After calculating the values, the magnitude of the electric field in the region between the plates is approximately 2 V/m (option E).
Read more on Electric Potential Energy here: https://brainly.com/question/14306881
#SPJ11
A technologist must administer 8 mCi of Tc-99m mebrofenin at 1100. Based on the vial label info below, what volume should be administered to the patient? cal. time 0.700 Aug, 4 total activity 100 mCi total volume 85 ml concentration 11.8 mCi/ml expiration 1500 Aug. 4Calibration 0700 august 4th, total activity 100mCi, total volume 8.5mL, concentration 11.8mCi/ml, expiration 1500 august 4th
A volume of 67.8 ml should be administered to the patient.
In order to calculate the required volume that should be administered to the patient, we can use the formula for dilution as follows:
C1V1 = C2V2, where C1 = initial concentration of the radioactive substance, C2 = final concentration of the radioactive substance, V1 = initial volumeV2 = final volume
We are given:
C1 = 11.8 mCi/ml
V1 = ?
C2 = 8 mCi
V2 = From the formula above, we can determine V2 as follows:
V2 = (C1V1) / C2
Substituting the values we have,
V2 = (11.8 x V1) / 8
Given that C1V1 = 100 mCi,
we can substitute this value and solve for V1: 100 = (11.8 x V1) / 8
Multiplying both sides by 8,8 x 100 = 11.8 x V1
V1 = (8 x 100) / 11.8
V1 = 67.8 ml
Therefore, a volume of 67.8 ml should be administered to the patient.
To learn about volume here:
https://brainly.com/question/28564792
#SPJ11
2. An electron is xeleased from rest at a distance of 9.00 cm from a proton. If the proton is held in place, how fast will the electron be moving when it is 300 cm from the proton? (me = 9.11 X 103 kg, q= 1.6810-196)
The electron's speed can be determined using conservation of energy principles.
Initially, at a distance of 9.00 cm, the electron possesses zero kinetic energy and potential energy given by -U = kqQ/r.
At a distance of 300 cm, the electron has both kinetic energy (1/2)mv² and potential energy -U = kqQ/r. The total energy of the system, the sum of kinetic and potential energy, remains constant. Thus, applying conservation of energy, we can solve for the electron's speed.
Calculating the values using the given data:
Electron mass (me) = 9.11 x 10³ kg
Electron charge (q) = 1.68 x 10⁻¹⁹ C
Coulomb constant (k) = 9 x 10⁹ Nm²/C²
Proton charge (Q) = q = 1.68 x 10⁻¹⁹ C
Initial distance (r) = 9.00 cm = 0.0900 m
Final distance (r') = 300 cm = 3.00 m
Potential energy (U) = kqQ/r = 2.44 x 10⁻¹⁶ J
Using the equation (1/2)mv² - kqQ/r = -U, we find that v = √(3.08 x 10¹¹ m²/s²) = 5.55 x 10⁵ m/s.
Hence, the electron's speed at any point in its trajectory is 5.55 x 10⁵ m/s.
To learn more about the principles of conservation of energy and related topics, click this link:
brainly.com/question/16974883
#SPJ11
cefazonin (Kefzol) 350 mg IM q4h. Supply: cefazonin (Kefzol) 500 mg Add 2 mL of 0.9% sodium chloride and shake well. Provides a volume of 2.2 mL. (225mg/mL) Store in refrigerator and discard after 24 hours. The correct amount to administer is:
The correct amount to administer is approximately 1.556 mL of Cefazonin (Kefzol).
Dose required: 350 mg
Stock concentration: 225 mg/mL
To calculate the volume required, we can use the formula:
Volume required = Dose required / Stock concentration
Substituting the given values:
Volume required = 350 mg / 225 mg/mL
Calculating this expression gives us:
Volume required ≈ 1.556 mL
Now, according to the given information, the total volume provided when 500 mg of Cefazonin (Kefzol) is added to 2 mL of 0.9% sodium chloride is 2.2 mL. Since the volume required (1.556 mL) is less than the total volume provided (2.2 mL), it is appropriate to administer this amount for a single dose.
Therefore, the correct amount to administer is approximately 1.556 mL of Cefazonin (Kefzol).
Please note that it is essential to follow the storage instructions and discard the medication after 24 hours, as mentioned in the given information.
Learn more about Dose at: https://brainly.com/question/13318948
#SPJ11
Consider the same problem as 5_1. In case A, the collision time is 0.15 s, whereas in case B, the collision time is 0.20 s. In which case (A or B), the tennis ball exerts greatest force on the wall? Vector Diagram Case A Case B Vi= 10 m/s Vf=5 m/s V₁=30 m/s =28 m/s
In case A, the tennis ball exerts a greater force on the wall.
When comparing the forces exerted by the tennis ball on the wall in case A and case B, it is important to consider the collision time. In case A, where the collision time is 0.15 seconds, the force exerted by the tennis ball on the wall is greater than in case B, where the collision time is 0.20 seconds.
The force exerted by an object can be calculated using the equation F = (m * Δv) / Δt, where F is the force, m is the mass of the object, Δv is the change in velocity, and Δt is the change in time. In this case, the mass of the tennis ball remains constant.
As the collision time increases, the change in time (Δt) in the denominator of the equation becomes larger, resulting in a smaller force exerted by the tennis ball on the wall. Conversely, when the collision time decreases, the force increases.
Therefore, in case A, with a collision time of 0.15 seconds, the tennis ball exerts a greater force on the wall compared to case B, where the collision time is 0.20 seconds.
Learn more about denominator.
brainly.com/question/32621096
#SPJ11
If a rock is launched at an angle of 70 degrees above the horizontal, what is its acceleration vector just after it is launched? Again, the units are m/s2 and the format is x-component, y-component. 0,- 9.8 sin(709) 0,- 9.8 9.8 cos(709), -9.8 sin(709) 9.8 Cos(709), 9.8 sin(709)
To determine the acceleration vector just after the rock is launched, we need to separate the acceleration into its x-component and y-component.
Here, acceleration due to gravity is approximately 9.8 m/s² downward, we can determine the x- and y-components of the acceleration vector as follows:
x-component: The horizontal acceleration remains constant and equal to 0 m/s² since there is no acceleration in the horizontal direction (assuming no air resistance).
y-component: The vertical acceleration is influenced by gravity, which acts downward. The y-component of the acceleration is given by:
ay = -9.8 m/s²
Therefore, the acceleration vector just after the rock is launched is:
(0 m/s², -9.8 m/s²)
https://brainly.com/question/30899320
#SPJ11
When a feritis player serves a tennis bali, what is the agent of the force applied to the batl?
The force applied to the tennis ball by a tennis player's serve is generated by the player's swing and contact.
When a tennis player serves, the force applied to the ball is generated by the player's swing and contact with the racket. The player initiates the serve by swinging the racket, transferring energy from their body to the racket. As the racket makes contact with the ball, the strings deform, creating a rebound effect.
This interaction generates a force that propels the ball forward. The player's technique, timing, and power determine the magnitude and direction of the force applied to the ball.
Factors such as the angle of the racket face, the speed of the swing, and the contact point on the ball all contribute to the resulting force and trajectory of the serve.
To learn more about energy
Click here brainly.com/question/8630757
#SPJ11
10 Two identical balls of putty moving perpendicular to each other, both moving at 9.38 m/s, experience a perfectly inelastic colision. What is the opood of the combined ball after the collision? Give your answer to two decimal places
The speed of the combined ball after the perfectly inelastic collision is 6.64 m/s. Since the total momentum after the collision is equal to the total momentum before the collision .
In a perfectly inelastic collision, two objects stick together and move as a single mass after the collision. To determine the final speed, we can use the law of conservation of momentum, which states that the total momentum before the collision is equal to the total momentum after the collision.
Let's consider the two balls as Ball 1 and Ball 2, moving perpendicular to each other. Since they have the same mass, we can assume their masses to be equal (m1 = m2 = m).
The momentum of each ball before the collision is given by
momentum = mass × velocity.
Momentum of Ball 1 before the collision = m × 9.38 m/s
= 9.38m
Momentum of Ball 2 before the collision = m × 9.38 m/s
= 9.38m
The total momentum before the collision is the vector sum of the individual momenta in the perpendicular directions. In this case, since the balls are moving perpendicularly, the total momentum before the collision is given by:
Total momentum before the collision = √((9.38m)^2 + (9.38m)^2)
= √(2 × (9.38m)^2)
= √(2) × 9.38m
= 13.26m
After the perfectly inelastic collision, the two balls stick together, forming a combined ball. The total mass of the combined ball is 2m (m1 + m2).
The final speed of the combined ball is given by the equation: Final speed = Total momentum after the collision / Total mass of the combined ball.
Since the total momentum after the collision is equal to the total momentum before the collision (due to the conservation of momentum), we can calculate the final speed as:
Final speed = 13.26m / (2m)
= 13.26 / 2
= 6.63 m/s (rounded to two decimal places)
The speed of the combined ball after the perfectly inelastic collision is 6.64 m/s.
To know more about speed ,visit:
https://brainly.com/question/13943409
#SPJ11
Question 4 An electron has a total energy of 4.41 times its rest energy. What is the momentum of this electron? (in keV) с 1 pts
Main Answer:
The momentum of the electron is approximately 1882.47 keV.
Explanation:
To calculate the momentum of the electron, we can use the equation relating energy and momentum for a particle with mass m:
E = √((pc)^2 + (mc^2)^2)
Where E is the total energy of the electron, p is its momentum, m is its rest mass, and c is the speed of light.
Given that the total energy of the electron is 4.41 times its rest energy, we can write:
E = 4.41 * mc^2
Substituting this into the earlier equation, we have:
4.41 * mc^2 = √((pc)^2 + (mc^2)^2)
Simplifying the equation, we get:
19.4381 * m^2c^4 = p^2c^2
Dividing both sides by c^2, we obtain:
19.4381 * m^2c^2 = p^2
Taking the square root of both sides, we find:
√(19.4381 * m^2c^2) = p
Since the momentum is typically expressed in units of keV/c (keV divided by the speed of light, c), we can further simplify the equation:
√(19.4381 * m^2c^2) = p = √(19.4381 * mc^2) * c = 4.41 * mc
Plugging in the numerical value for the energy ratio (4.41), we get:
p ≈ 4.41 * mc ≈ 4.41 * (rest energy) ≈ 4.41 * (0.511 MeV) ≈ 2.24 MeV
Converting the momentum to keV, we multiply by 1000:
p ≈ 2.24 MeV * 1000 ≈ 2240 keV
Therefore, the momentum of the electron is approximately 2240 keV.
Learn more about:
The equation E = √((pc)^2 + (mc^2)^2) is derived from the relativistic energy-momentum relation. This equation describes the total energy of a particle with mass, taking into account both its kinetic energy (related to momentum) and its rest energy (mc^2 term). By rearranging this equation and substituting the given energy ratio, we can solve for the momentum. The result is the approximate momentum of the electron in keV.
#SPJ11
The 300 m diameter Arecibo radio telescope detects radio waves with a 3.35 cm average wavelength.
(a)What is the angle (in rad) between two just-resolvable point sources for this telescope?
(b) How close together (in ly) could these point sources be at the 2 million light year distance of the Andromeda galaxy?
"At the distance of the Andromeda galaxy (2 million light-years), the two just-resolvable point sources could be approximately 2.74 × 10⁴ light years close together." The resolution of a telescope refers to its ability to distinguish between two closely spaced objects or details in an observed image. It is a measure of the smallest angular separation or distance that can be resolved by the telescope.
To calculate the angle between two just-resolvable point sources for the Arecibo radio telescope, we can use the formula for the angular resolution of a telescope:
θ = 1.22 * (λ / D),
where:
θ is the angular resolution,
λ is the wavelength of the radio waves, and
D is the diameter of the telescope.
From question:
λ = 3.35 cm (or 0.0335 m),
D = 300 m.
(a) Calculating the angle (θ) between two just-resolvable point sources:
θ = 1.22 * (0.0335 m / 300 m) = 0.0137 rad.
Therefore, the angle between two just-resolvable point sources for the Arecibo radio telescope is approximately 0.0137 radians.
To calculate how close together these point sources could be at the 2 million light-year distance of the Andromeda galaxy, we need to convert the angle (θ) into a linear distance at that distance.
From question:
Distance to Andromeda galaxy = 2 million light years,
1 light year ≈ 9.461 × 10¹⁵ meters.
(b) Calculating the linear distance between two just-resolvable point sources at the distance of the Andromeda galaxy:
Distance to Andromeda galaxy = 2 million light years * (9.461 × 10¹⁵ m / 1 light year) = 1.892 × 10²² m.
The linear distance (d) between two point sources can be calculated using the formula:
d = θ * distance.
Substituting the values:
d = 0.0137 rad * 1.892 × 10²² m = 2.589 × 10²⁰ m.
To convert this distance into light-years, we divide by the conversion factor:
2.589 × 10²⁰ m / (9.461 × 10¹⁵ m / 1 light year) ≈ 2.74 × 10⁴ light years.
Therefore, at the distance of the Andromeda galaxy (2 million light-years), the two just-resolvable point sources could be approximately 2.74 × 10⁴ light years close together.
To know more about the resolution of the telescope visit:
https://brainly.com/question/25821830
#SPJ11
2 (a) A scientist measures the internal energy U in a gas as a function of temperature T. The quantities are found to be related by the equation 5A U = KBT0.5 + f(P,V), (1) 2 where A is a constant, and f(P, V) is a function of pressure and volume only. (i) Is this an ideal gas? Justify your answer in one or two sentences. (ii) What is the specific heat capacity of the gas for a constant volume process, cy? [Hint How did we calculate heat capacity cy for the ideal gas?] [3] [4]
The gas described by the equation is not an ideal gas because the relationship between internal energy U and temperature T does not follow the ideal gas law, which states that U is directly proportional to T.
(i) An ideal gas is characterized by the ideal gas law, which states that the internal energy U of an ideal gas is directly proportional to its temperature T. However, in the given equation, the internal energy U is related to temperature T through an additional term, f(P,V), which depends on pressure and volume. This indicates that the gas deviates from the behavior of an ideal gas since its internal energy is influenced by factors other than temperature alone.
(ii) The specific heat capacity at constant volume, cy, refers to the amount of heat required to raise the temperature of a gas by 1 degree Celsius at constant volume. The equation provided, 5A U = KBT^0.5 + f(P,V), relates the internal energy U to temperature T but does not directly provide information about the specific heat capacity at constant volume. To determine cy, additional information about the behavior of the gas under constant volume conditions or a separate equation relating heat capacity to pressure and volume would be required.
Learn more about ideal gas law here:
https://brainly.com/question/30458409
#SPJ11
Please answer all parts
a Problems (25 pts. Each) 1. A charged insulating cylinder of radius a and infinite length has a uniform charge per unit length 2. It is surrounded by a concentric thick conducting shell of inner radi
A charged insulating cylinder of radius a and infinite length has a uniform charge per unit length of 2. It is surrounded by a concentric thick conducting shell of inner radius b and outer radius c. The electric field inside the cylinder is zero, and the electric field outside the shell is equal to the electric field of an infinite line charge with charge per unit length of 2.
The electric field inside the cylinder is zero because the charge on the cylinder is uniformly distributed. This means that the electric field lines are parallel to the axis of the cylinder, and there are no electric field lines pointing radially inward or outward.
The electric field outside the shell is equal to the electric field of an infinite line charge with charge per unit length of 2. This is because the shell is a conductor, and the charge on the cylinder is distributed evenly over the surface of the shell. The electric field lines from the cylinder are therefore perpendicular to the surface of the shell, and they extend to infinity in both directions.
Learn more about insulated cylinder here:
brainly.com/question/30749236
#SPJ11
Please answer all parts
a Problems (25 pts. Each) 1. A charged insulating cylinder of radius a and infinite length has a uniform charge per unit length 2. It is surrounded by a concentric thick conducting shell of inner radius
When an object is placed 20 cm from a diverging lens, a reduced image is formed. Which of the following propositions is necessarily true?
A. The power of the lens must be greater than 0.05 diopters.
B. the image is virtual
C. the image could be real
D. the distance of the image should be greater than 20 cm
E. the focal length of the lens could be less than 20 cm
The correct option among A) the power of the lens must be greater than 0.05 diopters. B) the image is virtual and E) the focal length of the lens could be less than 20 cm. Option A, B, and E are correct propositions that are necessarily true.
According to the question, an object is placed 20 cm from a diverging lens. Therefore, the image formed is virtual, diminished, and located at a distance of 15 cm. If we calculate the magnification of the image, it will be -1/4.A diverging lens is also known as a concave lens. It always produces a virtual image. The image is erect, diminished, and located closer to the lens than the object.
The power of a lens is defined as the reciprocal of its focal length in meters. So, if the focal length of the lens is less than 20 cm, then its power will be greater than 0.05 diopters. Therefore, option A is also correct. Hence, the correct options are A, B, and E, which are necessarily true.
Learn more about lens:
https://brainly.com/question/27752292
#SPJ11
A beam of particles is directed at a 0.012-kg tumor. There are 1.2 x 1010 particles per second reaching the tumor, and the energy of each particle is 5.4 MeV. The RBE for the radiation is 14. Find the biologically equivalent dose given to the tumor in 27 s
The biologically equivalent dose given to the tumor in 27s is 3.8904 J.
A beam of particles is directed at a 0.012-kg tumor.
Conversion of MeV to Joules:
1 eV = 1.6022 × 10^-19 J
1 MeV = 1.6022 × 10^-13 J
Hence, the energy of one particle in Joules is as follows:
5.4 MeV = 5.4 × 1.6022 × 10^-13 J= 8.66228 × 10^-13 J
Find the kinetic energy of each particle:
K.E. = (1/2) mv²= (1/2) × 1.67 × 10^-27 kg × (3 × 10^8 m/s)²= 1.503 × 10^-10 J/ particle
Now, let's calculate the total energy that falls on the tumor in one second:
Energy of one particle x Number of particles = 8.66228 × 10^-13 J x 1.2 x 10^10= 1.03 x 10^-2 J/s
Mass of the tumor = 0.012 kg
Using the RBE formula we have:
RBE= Dose of standard radiation / Dose of test radiation
Biologically Equivalent Dose (BED) = Physical Dose x RBE
In this problem, we know that BED = 14
Physical dose = Total energy that falls on the tumor in one second x Time= 1.03 x 10^-2 J/s × 27 s= 2.781 x 10^-1 J
Hence, the biologically equivalent dose is BED = Physical Dose x RBE= 2.781 x 10^-1 J × 14= 3.8904 J
Learn more about biologically equivalent dose :
https://brainly.com/question/28384838
#SPJ11
Let’s visualize a parallel plate capacitor with a paper dielectric in-between the plates. Now, a second identical capacitor, but this one has a glass sheet in-between now. Will the glass sheet have the same dependence on area and plate separation as the paper?
Swapping the paper for glass has what effect? This is the precise idea of dielectric: given the same capacitor, the material makes a difference. Comparing the paper and glass dielectrics, which would have the higher dielectric and hence the higher total capacitance? Why?
Dielectric materials, such as paper and glass, affect the capacitance of a capacitor by their dielectric constant. The dielectric constant is a measure of how effectively a material can store electrical energy in an electric field. It determines the extent to which the electric field is reduced inside the dielectric material.
The glass sheet will not have the same dependence on area and plate separation as the paper dielectric. The effect of swapping the paper for glass is that the glass will have a different dielectric constant (also known as relative permittivity) compared to paper.
In general, the higher the dielectric constant of a material, the higher the total capacitance of the capacitor. This is because a higher dielectric constant indicates that the material has a greater ability to store electrical energy, resulting in a larger capacitance.
Glass typically has a higher dielectric constant compared to paper. For example, the dielectric constant of paper is around 3-4, while the dielectric constant of glass is typically around 7-10. Therefore, the glass dielectric would have a higher dielectric constant and hence a higher total capacitance compared to the paper dielectric, assuming all other factors (such as plate area and separation) remain constant.
In summary, swapping the paper for glass as the dielectric material in the capacitor would increase the capacitance of the capacitor due to the higher dielectric constant of glass.
To know more about dielectric constant click this link -
brainly.com/question/13265076
#SPJ11
A insulating sphere of radius R has a charge distribution that is non-uniform and characterized by a charge density that depends on the radius as ()=2 for ≤ and 0 for > where is a positive constant. Using Gauss’ Law, calculate the electric field everywhere. Be sure to state any assumptions that you are making.
the electric field is zero outside the sphere and given by [tex]E = V_enc[/tex] (4πε₀r²) inside the sphere, where [tex]V_{enc[/tex] is the volume enclosed by the Gaussian surface and ε₀ is the permittivity of free space.
To calculate the electric field everywhere for the given non-uniform charge distribution, we can use Gauss's Law. Gauss's Law states that the electric flux through a closed surface is proportional to the net charge enclosed by that surface.
Assumptions:
1. We assume that the insulating sphere is symmetrical and has a spherically symmetric charge distribution.
2. We assume that the charge density is constant within each region of the sphere.
Now, let's consider a Gaussian surface in the form of a sphere with radius r and centered at the center of the insulating sphere.
For r > R (outside the sphere), there is no charge enclosed by the Gaussian surface. Therefore, by Gauss's Law, the electric flux through the Gaussian surface is zero, and hence the electric field outside the sphere is also zero.
For r ≤ R (inside the sphere), the charge enclosed by the Gaussian surface is given by:
[tex]Q_{enc[/tex] = ∫ ρ dV = ∫ (2) dV = 2 ∫ dV.
The integral represents the volume integral over the region inside the sphere.
Since the charge density is constant within the sphere, the integral simplifies to:
[tex]Q_{enc[/tex] = 2 ∫ dV = [tex]2V_{enc[/tex],
where V_enc is the volume enclosed by the Gaussian surface.
The electric flux through the Gaussian surface is given by:
∮ E · dA = E ∮ dA = E(4πr²),
where E is the magnitude of the electric field and ∮ dA represents the surface area of the Gaussian surface.
Applying Gauss's Law, we have:
E(4πr²) = (1/ε₀) Q_enc = (1/ε₀) (2V_enc) = (2/ε₀) V_enc.
Simplifying, we find:
E = (2/ε₀) V_enc / (4πr²) = (1/2ε₀) V_enc / (2πr²) = V_enc / (4πε₀r²).
Therefore, the electric field inside the insulating sphere (for r ≤ R) is given by:
[tex]E = \frac{V_{\text{enc}}}{4\pi\epsilon_0r^2}[/tex],
where [tex]V_{enc[/tex] is the volume enclosed by the Gaussian surface and ε₀ is the permittivity of free space.
In conclusion, the electric field is zero outside the sphere and given by [tex]E = V_{enc[/tex] (4πε₀r²) inside the sphere, where [tex]V_{enc[/tex] is the volume enclosed by the Gaussian surface and ε₀ is the permittivity of free space.
Know more about Gauss's Law:
https://brainly.com/question/30490908
#SPJ4
The electric field inside the sphere varies as r³ and outside the sphere, it varies as 1/r².
Consider a non-uniformly charged insulating sphere of radius R. The charge density that depends on the radius as ρ(r) = {2ρ₀r/R², for r ≤ R, and 0 for r > R}, where ρ₀ is a positive constant. To calculate the electric field, we will apply Gauss' law.
Gauss' law states that the electric flux through any closed surface is proportional to the charge enclosed by that surface. Mathematically, it is written as ∮E·dA = Q/ε₀ where Q is the charge enclosed by the surface, ε₀ is the permittivity of free space, and the integral is taken over a closed surface. If the symmetry of the charge distribution matches the symmetry of the chosen surface, we can use Gauss' law to calculate the electric field easily. In this case, the symmetry of the sphere allows us to choose a spherical surface to apply Gauss' law. Assuming that the sphere is a non-conducting (insulating) sphere, we know that all the charge is on the surface of the sphere. Hence, the electric field will be the same everywhere outside the sphere. To apply Gauss' law, let us consider a spherical surface of radius r centered at the center of the sphere. The electric field at any point on the spherical surface will be radial and have the same magnitude due to the symmetry of the charge distribution. We can choose the surface area vector dA to be pointing radially outwards. Then, the electric flux through this surface is given by:Φₑ = E(4πr²)where E is the magnitude of the electric field at the surface of the sphere.
The total charge enclosed by this surface is: Q = ∫ᵣ⁰ρ(r)4πr²dr= ∫ᵣ⁰2ρ₀r²/R²·4πr²dr= (8πρ₀/R²)∫ᵣ⁰r⁴dr= (2πρ₀/R²)r⁵/5|ᵣ⁰= (2πρ₀/R²)(r⁵ - 0)/5= (2πρ₀/R²)r⁵/5
Hence, Gauss' law gives:Φₑ = Q/ε₀⇒ E(4πr²) = (2πρ₀/R²)r⁵/5ε₀⇒ E = (1/4πε₀)(2πρ₀/5R²)r³
Assumptions: Assuming that the sphere is a non-conducting (insulating) sphere and all the charge is on the surface of the sphere. It has also been assumed that the electric field is the same everywhere outside the sphere and that the electric field is radial everywhere due to the symmetry of the charge distribution.
The electric field for r ≤ R is given by:E = (1/4πε₀)(2πρ₀/5R²)r³
Learn more about electric field
brainly.com/question/11482745
#SPJ11