What is the electron-pair geometry for N in NOCl? There are _____ lone pair(s) around the central atom, so the geometry of NOCl is _____.

Answers

Answer 1

Answer:What is the electron-pair geometry for N in NOCl? There are _____ lone pair(s) around the central atom, so the geometry of NOCl is _____.

learn more about electron-pair geometry

https://brainly.com/question/29470595?referrer=searchResults

#SPJ11


Related Questions

1. Why was the acetone the limiting reagent for this lab? What would have likely happened if benzaldehyde was the limiting reagent instead? 2. What is the driving force for this reaction? What physical property also assists in keeping the equilibrium headed towards product? 3. The same physical property that helps drive the reaction to completion can also stall out the reaction before it starts. What do we do in the procedure that helps minimize this concern? 4. What is this reaction classified as? 5. The protocol says that, after adding in all the reactants, stir for an additional 15 minutes. A student swirled for only 8 minutes and then correctly, stopped and proceeded with isolating the product. What did the student do that gave such confidence and accuracy?

Answers

The driving force for this reaction is the formation of a stable intermediate, the imine.

The physical property that assists in keeping the equilibrium headed towards product is the removal of water from the reaction mixture, which helps shift the equilibrium towards the imine formation. The reason why acetone was the limiting reagent for this lab is because it was present in the smallest amount among the reactants.

If benzaldehyde was the limiting reagent instead, it would have meant that there was not enough acetone to react with all the benzaldehyde present. This would have resulted in the formation of less product than expected, as well as unreacted benzaldehyde being left over.

To know more about reaction visit :-

https://brainly.com/question/30349319

#SPJ11

Calculate the specific heat ( in joules/ g. °C) if 2927 joules requiresd to raise the temperature of 55.9 grams of unknown metal from 27 °C to 95 Oc. Heat = mass XS.HXAT 0.42 0.077 O 0.77 0.39

Answers

The specific heat of the unknown metal is 0.42 J/g.°C, calculated by dividing the heat (2927 J) by the mass (55.9 g) and the temperature change.

How to calculate specific heat of unknown metal?

To calculate the specific heat of the unknown metal, we can use the formula:

q = m * c * ∆T

where q is the amount of heat transferred, m is the mass of the metal, c is the specific heat of the metal, and ∆T is the change in temperature.

We are given that:

q = 2927 J

m = 55.9 g

∆T = 95°C - 27°C = 68°C

Substituting these values into the formula, we get:

2927 J = (55.9 g) * c * 68°C

Simplifying:

c = 2927 J / (55.9 g * 68°C)

c = 0.420 J/(g·°C)

Therefore, the specific heat of the unknown metal is 0.420 joules per gram per degree Celsius (J/g·°C).

Learn more about specific heat

brainly.com/question/13110575

#SPJ11

Calculate G° for each reaction at 298K using G°f values. (a) BaO(s) + CO2(g) BaCO3(s) 1 kJ (b) H2(g) + I2(s) 2 HI(g) 2 kJ (c) 2 Mg(s) + O2(g) 2 MgO(s) 3 kJ Please explain every step and what the delta Gf values are

Answers

The standard free energy change for reaction (a) is -130 kJ/mol, for reaction (b) is -62.4 kJ/mol, and for reaction (c) is -1202 kJ/mol.

To calculate the standard free energy change (ΔG°) for each of the reactions at 298K using standard free energy of formation (ΔG°f) values, we can use the equation:

ΔG° = ΣΔG°f(products) - ΣΔG°f(reactants)

where Σ means the sum of the values.

(a) BaO(s) + CO2(g) → BaCO3(s) ΔG° = ΔG°f(BaCO3) - [ΔG°f(BaO) + ΔG°f(CO2)]


From the table of ΔG°f values, we find that ΔG°f(BaCO3) = -1128 kJ/mol, ΔG°f(BaO) = -604 kJ/mol, and ΔG°f(CO2) = -394 kJ/mol.

Substituting these values into the equation, we get:

ΔG° = (-1128 kJ/mol) - [(-604 kJ/mol) + (-394 kJ/mol)] = -130 kJ/mol

(b) H2(g) + I2(s) → 2 HI(g) ΔG° = ΣΔG°f(products) - ΣΔG°f(reactants)


ΔG° = [2ΔG°f(HI)] - [ΔG°f(H2) + ΔG°f(I2)]

From the table of ΔG°f values, we find that ΔG°f(HI) = 0 kJ/mol, ΔG°f(H2) = 0 kJ/mol, and ΔG°f(I2) = 62.4 kJ/mol.

Substituting these values into the equation, we get:

ΔG° = [2(0 kJ/mol)] - [0 kJ/mol + 62.4 kJ/mol] = -62.4 kJ/mol

(c) 2 Mg(s) + O2(g) → 2 MgO(s) ΔG° = ΣΔG°f(products) - ΣΔG°f(reactants)


ΔG° = [2ΔG°f(MgO)] - [2ΔG°f(Mg) + ΔG°f(O2)]


From the table of ΔG°f values, we find that ΔG°f(MgO) = -601 kJ/mol, ΔG°f(Mg) = 0 kJ/mol, and ΔG°f(O2) = 0 kJ/mol.

Substituting these values into the equation, we get:


ΔG° = [2(-601 kJ/mol)] - [2(0 kJ/mol) + 0 kJ/mol] = -1202 kJ/mol

Therefore, the standard free energy change for reaction (a) is -130 kJ/mol, for reaction (b) is -62.4 kJ/mol, and for reaction (c) is -1202 kJ/mol.

Know more about Standard free energy here:

https://brainly.com/question/6556762

#SPJ11

How much energy is needed for the reaction of 1.22 moles of h3b04

Answers

To determine the energy needed for the reaction of 1.22 moles of H_{3}BO_{4}, additional information is required. The energy change of a reaction, known as the enthalpy change (ΔH), can be used to calculate the energy needed or released. However, the specific reaction and its associated enthalpy change are necessary to provide a precise answer.

The energy change of a reaction, ΔH, represents the difference in enthalpy between the reactants and products. It can be positive (endothermic) if energy is absorbed during the reaction or negative (exothermic) if energy is released. To calculate the energy needed for a specific reaction, we need the balanced equation and the corresponding enthalpy change.

If the balanced equation and ΔH are provided, we can use the stoichiometry of the reaction to calculate the energy needed for a given amount of substance. The enthalpy change (ΔH) is usually expressed in joules per mole (J/mol) or kilojoules per mole (kJ/mol).

Without the specific reaction and its associated enthalpy change, it is not possible to determine the exact amount of energy needed for the reaction of 1.22 moles of H_{3}BO_{4} However, once the reaction and ΔH are known, the energy can be calculated using the stoichiometry of the reaction and the given number of moles of [tex]H_{3}BO_{4}[/tex]

Learn more about enthalpy here: https://brainly.com/question/28303513

#SPJ11

5 mL of 0.0040 M AgNO3 is added to 5 mL of 0.0024M K2CrO4:
- a) write a balanced equation for this reaction
- b) how many millimoles of AgNO3 will be produced from 5 mL of 0.0040 M AgNO3?
- c) how many millimoles of K2CrO4 will be produced from 5 mL of 0.0024 M K2CrO4?
- d) Which reactant is in excess?

Answers

a) The balanced equation for this reaction is 2 AgNO₃(aq) + K₂CrO₄(aq) → Ag₂CrO₄(s) + 2 KNO₃(aq)

b) The amount in millimoles of AgNO₃ will be produced from 5 mL of 0.0040 M AgNO₃ is 20 mmol.

c) The amount in millimoles of K₂CrO₄ will be produced from 5 mL of 0.0024 M K₂CrO₄ is 12 mmol.

d) The excess reactant is AgNO₃.

a) Balanced equation for this reaction:
2 AgNO₃(aq) + K₂CrO₄(aq) → Ag₂CrO₄(s) + 2 KNO₃(aq)

b) To find the millimoles of AgNO₃:
millimoles = volume (mL) × concentration (M)
millimoles of AgNO₃ = 5 mL × 0.0040 M = 20 mmol

c) To find the millimoles of K₂CrO₄:
millimoles = volume (mL) × concentration (M)
millimoles of K₂CrO₄ = 5 mL × 0.0024 M = 12 mmol

d) To determine the limiting reactant, we compare the mole ratio of the reactants:
Mole ratio of AgNO₃ to K₂CrO₄ = 2:1
Actual mole ratio = 20 mmol AgNO₃ : 12 mmol K₂CrO₄ = 10:6

Since the actual mole ratio has more moles of AgNO₃ than needed, K₂CrO₄ is the limiting reactant, and AgNO₃ is in excess.

Learn more about limiting reactant here: https://brainly.com/question/26905271

#SPJ11

2.) A particular unknown element is isolated and put into a reactor vessel it is reacted with various metals and non-metals where no chemistry occurs. It is then heated up: it produces an incredibly powerful blue llet However, overall, it is still unreactive with other elements. What is the likely identity of the unknown element from the following species: F, Zn, Be, Rb, Cu, Se, & xe.

Answers

Based on the given information about the unknown element in a reactor vessel, its reactions with metals and non-metals, and its properties when heated, the likely identity of the unknown element is Xe (Xenon).

The fact that it does not react with other elements and produces a blue light when heated is a characteristic of inert gases. Additionally, the fact that it did not react with both metals and non-metals suggests that it is not an active element, further supporting the idea that it is an inert gas.


Xenon is a noble gas, which explains its unreactive behavior with other elements. Noble gases have a full valence electron shell, making them stable and unreactive with metals and non-metals. The production of a powerful blue light when heated is also characteristic of Xenon, as it emits light when its electrons return to their ground state after being excited by heat.

Learn more about metals at https://brainly.com/question/26984331

#SPJ11

Determine the identity of the daughter nuclide from the alpha decay of 224 88 Ra. 223 87 Fr 224 89 Ac 230 90 Th 222 84 Po 220 86 Rn

Answers

The daughter nuclide from the alpha decay of 224 88 Ra is 220 86 Rn. This is due to the release of an alpha particle, which consists of 2 protons and 2 neutrons.

In the alpha decay of 224 88 Ra, an alpha particle is emitted from the nucleus. An alpha particle is made up of 2 protons and 2 neutrons. When an atom undergoes alpha decay, it loses 2 protons and 2 neutrons, resulting in a decrease of 2 in both its atomic number and its mass number. In the case of 224 88 Ra, after alpha decay, the resulting daughter nuclide will have an atomic number of 88 - 2 = 86 and a mass number of 224 - 4 = 220. Therefore, the daughter nuclide from the alpha decay of 224 88 Ra is 220 86 Rn (radon).

To know more about the alpha decay visit:

https://brainly.com/question/1898040

#SPJ11

Which solution would contain the highest concentration of ions? a. 1.0 M CaCO3 b.1.0 M Na2SO4 O c. 1.0 M KCI d. 1.2 M NaCl e. 0.75 M LiBr

Answers

The solution that would contain the highest concentration of ions is the one that dissociates the most in water. option b, 1.0 M Na2SO4, will contain the highest concentration of ions as it produces a total of 3 ions when dissolved in water.

In this case, we need to consider the number of ions each compound will produce when dissolved in water.

a. 1.0 M [tex]CaCo_{3}[/tex] will dissociate into [tex]Ca_{2+}[/tex] and [tex]CO_{32-}[/tex] ions.

b. 1.0 M [tex]Na_{2}SO_{4}[/tex] will dissociate into 2 Na+ and [tex]SO_{42-}[/tex]ions.

c. 1.0 M KCI will dissociate into K+ and Cl- ions.

d. 1.2 M NaCl will dissociate into Na+ and Cl- ions.

e. 0.75 M LiBr will dissociate into Li+ and Br- ions.

Comparing the number of ions produced, option b, 1.0 M [tex]Na_{2}SO_{4}[/tex], will contain the highest concentration of ions as it produces a total of 3 ions when dissolved in water. The other options will only produce 2 ions or less.

To know more about ions, refer here:

https://brainly.com/question/13692734#

#SPJ11

give the oxidation state of the metal species in the complex [co(nh3)5cl]cl2 .

Answers

The oxidation state of the metal species in the complex [tex][Co(NH_{3})_{5}Cl_{2}][/tex] can be determined by considering the charges of the ligands and the overall charge of the complex.

Here, [tex]NH_{3}[/tex] and Cl- are both neutral ligands, while the [tex]Cl_{2-}[/tex] ion has a charge of -2. The overall charge of the complex is zero since it is electrically neutral.

Therefore, we can set up the following equation: x + 5(0) + (-1) = 0, where x is the oxidation state of the metal ion. Simplifying, we get: x - 1 = 0, x = +1.

Therefore, the oxidation state of the metal species in the complex is +1.

To know more about oxidation state, refer here:

https://brainly.com/question/11313964#

#SPJ11

11. the antifreeze used in a car could also be called ""antiboil."" explain.

Answers

Essentially, "antiboil" is another term for the antifreeze's function of preventing the engine from overheating.

The antifreeze used in a car is a chemical mixture that is added to the engine's cooling system to prevent the engine from freezing in cold temperatures and overheating in hot temperatures, by raising the boiling point of the coolant.

This ensures that the car's cooling system maintains a stable and efficient temperature range, protecting the engine from overheating or freezing.

The term "antiboil" refers to the antifreeze's ability to prevent the engine's coolant from boiling and evaporating in high temperatures, which could cause the engine to overheat and potentially cause damage.

To know more about the antifreeze, click below.

https://brainly.com/question/16468627

#SPJ11

in sih4, could d orbitals be used to form the bonds? if so, which d orbitals?

Answers

In SiH4, the bonding occurs through the overlap of the hybridized orbitals of silicon and the 1s orbitals of hydrogen. The hybridization of the silicon atom in SiH4 is sp3, meaning that it has four hybrid orbitals. These hybrid orbitals are formed by the mixing of one 3s and three 3p orbitals of silicon.

The d orbitals of silicon are not involved in the bonding in SiH4. This is because the energy of the d orbitals is higher than that of the hybridized orbitals, and thus, they are not available for bonding. Additionally, the size of the silicon atom is such that the 3s and 3p orbitals are the ones that best overlap with the hydrogen 1s orbitals to form the sigma bonds.
In summary, the bonding in SiH4 occurs through the hybridization of the 3s and 3p orbitals of silicon, which form four sp3 hybrid orbitals. The d orbitals are not involved in bonding because their energy is higher than that of the hybridized orbitals.
In SiH4, the central atom is silicon, which is in the third period of the periodic table. Silicon has an electron configuration of [Ne] 3s² 3p², meaning it has access to the 3s and 3p orbitals for bonding. SiH4 forms four single bonds with hydrogen atoms in a tetrahedral structure. These bonds involve the overlap of silicon's 3s and 3p orbitals with the 1s orbitals of the hydrogen atoms.
D orbitals are not involved in the bonding of SiH4. Silicon does have empty 3d orbitals, but they do not participate in bonding as the energy difference between 3d and 3s/3p orbitals is significant. The 3s and 3p orbitals of silicon are sufficient to accommodate the four bonding electron pairs with hydrogen atoms, making the use of d orbitals unnecessary in SiH4.

To know more about  silicon visit:

https://brainly.com/question/14505564

#SPJ11

Identify the items that are consistent with the determination of a rock's numeric age. Multiple select question. Actual age of the rock in thousands, millions, or billions of years Measuring the ratio of K atoms to Ar atoms Determining the mineralogical composition of the rock Noting the rock's position relative to other layers of sedimentary rocks Investigating natural radioactive decay

Answers

The items that are consistent with the determination of a rock's numeric age are:

1. Actual age of the rock in thousands, millions, or billions of years: This involves using various dating methods to determine the precise age of the rock in terms of time.

2. Measuring the ratio of K atoms to Ar atoms: This method, known as potassium-argon dating, is used to determine the age of rocks that contain potassium-bearing minerals by measuring the ratio of potassium to argon isotopes.

3. Investigating natural radioactive decay: Radioactive decay is a process that occurs in certain isotopes, and by measuring the ratio of parent isotopes to daughter isotopes, scientists can determine the age of the rock.

Determining the mineralogical composition of the rock and noting the rock's position relative to other layers of sedimentary rocks are not direct methods for determining numeric age but can provide supporting evidence and contextual information for age determination.

 To  learn  more  about rocks click here:brainly.com/question/19930528

#SPJ11

For the common neutral oxyacids of general formula HxEOy (where E is an element), when x = 3 and y = 4, what could be E?
P
CL
S
N
For the common neutral oxyacids of general formula HxEOy (where E is an element), when x = 1 and y = 3, what could be E?For the common neutral oxyacids of general formula HxEOy (where E is an element), when x = 4 and y = 1, what could be E?

Answers

When x = 1, y = 3 the possible element E is sulfur (S).

The common neutral oxyacids of general formula [tex]$H_{x}E O_{y}$[/tex], where E is an element, are compounds that contain hydrogen, oxygen, and one other element E. The values of x and y determine the number of hydrogen and oxygen atoms in the molecule, respectively.

The common neutral oxyacid with this formula is sulfuric acid ([tex]$H_{2}S O_{4}$[/tex]), which is a strong acid widely used in industry and laboratory settings.

When x=1 and y=3, the possible elements E include phosphorus (P), chlorine (Cl), and nitrogen (N). The common neutral oxyacids with this formula are phosphoric acid ([tex]$H_{3}P O_{4}$[/tex]), chloric acid ([tex]$H C l O_{3}$[/tex]), and nitric acid ([tex]$H N O_{3}$[/tex]), respectively.

When x=4 and y=1, the possible element E is silicon (Si). The common neutral oxyacid with this formula is silicic acid ([tex]$H_{4}S i O_{4}$[/tex]), which is a weak acid and a precursor to many important industrial and biological materials.

In general, the properties of these neutral oxyacids depend on the nature of the element E and the number of hydrogen and oxygen atoms in the molecule.

The presence of these compounds in natural and industrial settings can have significant impacts on the environment and human health, making their study and understanding important for a range of fields, including chemistry, environmental science, and engineering.

To learn more about sulfur refer here:

https://brainly.com/question/1478186

#SPJ11

Draw structures for the alkene (or alkenes) that gives the following reaction product. Br Br2 2123 Br You do not have to consider stereochemistry . Submit more than one structure only if the structures are constitutional isomers.

Answers

The above structure represents one possible alkene that would give the specified reaction product. Other alkene isomers may also give the same product.

Provide the alkene (or alkene isomers) that would give the product "Br Br2 2123 Br" when reacted with bromine (Br2) without considering stereochemistry?

I am unable to generate or provide visual images.

I can describe the reaction and provide you with the structural formula of the alkene that gives the specified reaction product.

When an alkene reacts with Br2 (bromine), it undergoes a halogenation reaction.

In this reaction, one bromine atom adds to each carbon atom of the alkene, resulting in the addition of a Br atom to each carbon and the formation of a vicinal dibromide product.

Based on the given reaction product "Br Br2 2123 Br," it suggests that two bromine atoms have been added to a carbon-carbon double bond, resulting in a vicinal dibromide.

The structural formula of the alkene that would give this product can be represented as follows:

CH2=CH-CH2-CH=CH2

In this structure, the double bond between the second and third carbon atoms is where the bromine atoms would be added to form the vicinal dibromide product.

Learn more about structure represents

brainly.com/question/29692235

#SPJ11

Answer the following questions related to H2O.
Substance ΔG°f at 298K(kJ/mol)
H2O(l) −237.2
H2O(g) −228.4

(a) Using the information in the table above, determine the value of ΔG° at 298K for the process represented by the equation H2O(l)⇄H2O(g).

Question 2
(b) Considering your answer to part (a), indicate whether the process is thermodynamically favorable at 298K. Justify your answer.

Answers

Here are the answers to the questions related to H2O:

(a) Using the ΔG°f values given for H2O(l) and H2O(g) at 298K:

ΔG°(H2O(l) ⇄ H2O(g)) = ΔG°f(H2O(g)) - ΔG°f(H2O(l))

= -228.4 - (-237.2) kJ/mol

= +8.8 kJ/mol

(b) The ΔG° value for the process H2O(l) ⇄ H2O(g) is +8.8 kJ/mol, which is positive.

Therefore, the process is not thermodynamically favorable at 298K.

A negative ΔG° indicates a thermodynamically favorable process while a positive ΔG° means the process proceeds in the opposite direction.

The positive ΔG° value shows that at 298K, the equilibrium lies on the left side favoring the liquid state.

In summary, the melting of H2O is not spontaneous at 298K due to the positive ΔG° value.

Let me know if you need any clarification or have additional questions!

which pure molecular substance will have the lowest vapor pressure at 25 oc? data sheet and periodic table ch3oh ch3ch2oh ch3ch2ch2oh ch3ch2ch2ch2oh

Answers

The pure molecular substance with the lowest vapor pressure at 25°C is CH₃(CH₂)₃OH (1-pentanol).

The vapor pressure of a substance depends on the strength of its intermolecular forces. The stronger the intermolecular forces, the lower the vapor pressure. The intermolecular forces in a molecule depend on its size and shape, as well as the types of atoms and functional groups present.

Out of the given options, 1-pentanol (CH₃(CH₂)₃OH) has the largest molecular size and longest carbon chain, making it the most polar and having the strongest intermolecular forces of attraction.

Therefore, it has the lowest vapor pressure at 25°C compared to the other molecules. On the other hand, methanol (CH₃OH) has the smallest molecular size and the weakest intermolecular forces, making it the most volatile and having the highest vapor pressure at 25°C.

Learn more about vapor pressure here:

https://brainly.com/question/30447018

#SPJ11

waht are reactions with negetie reation free enegies occur spontaneoulst and repidly false

Answers

Reactions with negative reaction free energies occur spontaneously and rapidly, the given statement is false because it is essential to understand that spontaneity and reaction rate are two different aspects of a chemical reaction.

A reaction with negative reaction free energy (also known as Gibbs free energy) indicates that the reaction is spontaneous, the Gibbs free energy (ΔG) is a thermodynamic quantity that helps predict whether a reaction will occur spontaneously. If ΔG is negative, the reaction is thermodynamically favored and occurs spontaneously. However, this does not necessarily mean that the reaction will happen rapidly. The reaction rate depends on the activation energy (Ea), which is the minimum energy required to initiate a chemical reaction.

A reaction with high activation energy will proceed slowly because it needs a higher input of energy to overcome the energy barrier, even if the reaction is spontaneous. Therefore, it the given statements is false, to assume that reactions with negative reaction free energies always occur rapidly. While negative reaction free energies indicate spontaneity, the reaction rate is determined by factors such as activation energy, temperature, and concentration of reactants.

To learn more about Gibbs free energy here:

https://brainly.com/question/9179942

#SPJ11

Part D


Complete the following table for the reactions that occur when the black powder is ignited, Balance the equations by


replacing the "?" in front of each substance with a number (or leave it blank if it's a 1). Then fill in the type of reaction


for each compound.


BI X? X2 10pt


Av 三三三三三三yp>


ubmit For


Score


es


Balanced Chemical Equation


Type of Reaction


Comments


Name and Formula of Compound


Charcoal


C(s) + O2(g) - CO2(8)


Sulfur


S


S(s) + O2(8) - SO2(8)


Potassium Perchlorate


KCIO4


KCIO4 - KCI + 20 (8)


Potassium Chlorate


I


?KCIO3 -- ?KCI +702(8)


KCIO3


Potassium Nitrate


KNO3


?KNO3 -- ?K,0 + ?N2(g)+ ?O2(8)


Characters used: 297 / 15000


к


оо


5:45

Answers

The balanced chemical equations and types of reactions for reactions that occur when black powder is ignited are as follows:

1. Charcoal: C(s) + [tex]O_2[/tex](g) → [tex]CO_2[/tex](g) - Combustion reaction

2. Sulfur: S(s) + [tex]O_2[/tex](g) →[tex]SO_2[/tex]g) - Combustion reaction

3. Potassium Perchlorate: [tex]2KCIO_4[/tex](s) → 2KCI(s) +[tex]5O_2[/tex](g) - Decomposition reaction

4. Potassium Chlorate: [tex]2KCIO_3[/tex](s) → 2KCI(s) +[tex]3O_2[/tex](g) - Decomposition reaction

5. Potassium Nitrate: [tex]2KNO_3[/tex](s) → [tex]2K_2O[/tex](s) + [tex]N_2[/tex]N2(g) + [tex]3O_2[/tex](g) - Decomposition reaction

1. Charcoal undergoes a combustion reaction when ignited, combining with oxygen (O2) to form carbon dioxide (CO2).

2. Sulfur also undergoes a combustion reaction when ignited, combining with oxygen (O2) to form sulfur dioxide (SO2).

3. Potassium Perchlorate decomposes when ignited, breaking down into potassium chloride (KCI) and oxygen gas (O2).

4. Potassium Chlorate also decomposes when ignited, breaking down into potassium chloride (KCI) and oxygen gas (O2).

5. Potassium Nitrate undergoes decomposition when ignited, breaking down into potassium oxide (K2O), nitrogen gas (N2), and oxygen gas (O2).

The types of reactions involved in this process include combustion reactions, where substances combine with oxygen to produce carbon dioxide and sulfur dioxide. The other reactions are decomposition reactions, where compounds break down into simpler substances upon heating. These reactions release gases such as oxygen and nitrogen.

Learn more about combustion reaction here:

https://brainly.com/question/14335621

#SPJ11

click in the answer box to activate the palette. write the balanced nuclear equation for the formation of 228 ac 89 through β− decay.

Answers

The balanced nuclear equation for the formation of 228Ac89 through β− decay is:

228Th90 → 228Ac89 + β−

In β− decay, a neutron in the nucleus is converted into a proton, an electron, and an antineutrino. The electron (β− particle) is ejected from the nucleus, and the proton remains in the nucleus, increasing the atomic number by one. The resulting nucleus has one less neutron and one more proton than the original nucleus. In the case of the formation of 228Ac89 through β− decay, the parent nucleus is 228Th90, which undergoes β− decay by emitting an electron and an antineutrino. The neutron in the nucleus is converted into a proton, and the atomic number of the nucleus increases from 90 to 91. The resulting daughter nucleus is 228Ac89, which has one fewer neutron and one more proton than the parent nucleus. The equation for the process is balanced by conserving both mass number and atomic number.

learn more about decay here:

https://brainly.com/question/27394417

#SPJ11

Consider the titration of a 60.0 mL of 0.317 M weak acid HA (Ka = 4.2 x 10) with 0.400 M KOH. What is the pH before any base has been added? Consider the titration of a 60.0 mL of 0.317 M weak acid HA (Ka = 4.2 x 10) with 0.400 M KOH. After 30.0 mL of KOH have been added, what would the pH of the solution be? Consider the titration of a 60.0 mL of 0.317 M weak acid HA (Ka = 4.2 x 10) with 0.400 M KOH. After 75.0 mL of KOH have been added, what would the pH of the solution be?

Answers

The pH of the weak acid solution before titration is 3.39. After the addition of 30.0 mL of 0.133 M KOH, the pH of the solution is 6.25, and after the addition of 75.0 mL of KOH, the pH of the solution is 6.80.

The steps for each part of the question:

1. Calculate the initial concentration of [H⁺] ions before any base has been added:

[H+] = sqrt(Ka x [HA]) = sqrt(4.2 x 10⁻⁷ x 0.317) = 4.06 x 10⁻⁴ M

pH = -log[H⁺] = -log(4.06 x 10⁻⁴) = 3.39

2. After 30.0 mL of KOH have been added, the number of moles of KOH is:

moles of KOH = Molarity x Volume = 0.400 x 0.0300 = 0.0120 moles

moles of HA remaining = initial moles - moles of KOH added = (0.317 x 0.0600) - 0.0120 = 0.01602 moles

moles of A⁻ formed = moles of KOH added = 0.0120 moles

Concentration of A⁻ = moles of A-/total volume = (0.0120/0.0900) = 0.133 M

Concentration of HA = (0.01602/0.0900) = 0.178 M

Ka = [H⁺][A⁻]/[HA]

[H+] = Ka x [HA]/[A⁻] = 4.2 x 10⁻⁷ x (0.178)/(0.133) = 5.60 x 10⁻⁷ M

pH = -log[H⁺] = -log(5.60 x 10⁻⁷) = 6.25

3. After 75.0 mL of KOH have been added, the number of moles of KOH is:

moles of KOH = Molarity x Volume = 0.400 x 0.0750 = 0.0300 moles

moles of HA remaining = initial moles - moles of KOH added = (0.317 x 0.0600) - 0.0300 = 0.01142 moles

moles of A- formed = moles of KOH added = 0.0300 moles

Concentration of A- = moles of A-/total volume = (0.0300/0.135) = 0.222 M

Concentration of HA = (0.01142/0.135) = 0.0846 M

Ka = [H⁺][A⁻]/[HA]

[H+] = Ka x [HA]/[A⁻] = 4.2 x 10⁻⁷ x (0.0846)/(0.222) = 1.60 x 10⁻⁷ M

pH = -log[H⁺] = -log(1.60 x 10⁻⁷) = 6.80

To know more about the KOH refer here :

https://brainly.com/question/7949561#

#SPJ11

Reaction of ortho-bromotoluene with sodium amide in liquid ammonia produces two major products, ortho-toluidine (i.e., 2-methylaniline) and mete-toluidine (i.e., 3-methylaniline). From the list of possible intermediates shown at the right, choose those that would be: an intermediate in the formation of ortho-toluidine. an intermediate in the formation of meta-toluidine. Possible Intermediates

Answers

According to the statement aniline is an intermediate in the formation of both ortho-toluidine and meta-toluidine.

The reaction of ortho-bromotoluene with sodium amide in liquid ammonia is a classic example of nucleophilic aromatic substitution. This reaction involves the replacement of a leaving group (i.e., bromine in this case) with a nucleophile (i.e., sodium amide) on an aromatic ring. In this reaction, the sodium amide acts as a strong base and generates an intermediate, which then attacks the electrophilic carbon atom of the bromotoluene.
The possible intermediates shown at the right are benzene, aniline, 2-bromotoluene, and 3-bromotoluene. Among these, aniline is an intermediate in the formation of both ortho-toluidine and meta-toluidine. Aniline is generated by the reaction of sodium amide with ortho-bromotoluene, and it serves as a nucleophile in the subsequent step to form either ortho-toluidine or meta-toluidine. The position of the substituent (i.e., methyl group) is determined by the electronic nature of the substituent itself and the substituents on the ring. In this case, the methyl group directs the nucleophilic attack to the ortho or meta position relative to it, resulting in the formation of ortho-toluidine and meta-toluidine, respectively.
Therefore, aniline is an intermediate in the formation of both ortho-toluidine and meta-toluidine.

To know more about ammonia visit :

https://brainly.com/question/17009256

#SPJ11

My theoretical yield of beryllium chloride was 12. 4 grams. In a experiment, if my actual yield was 7. 8 grams, what was my percent yield?

Answers

Therefore, the percent yield of the experiment is approximately 62.9%. This indicates that the actual yield obtained was 62.9% of the amount predicted by the theoretical yield.

The percent yield is a measure of the efficiency of a chemical reaction or process in terms of the amount of product obtained compared to the theoretically predicted amount (the theoretical yield). It is calculated using the formula: (Actual Yield / Theoretical Yield) * 100.

In this scenario, the theoretical yield of beryllium chloride was 12.4 grams, and the actual yield obtained in the experiment was 7.8 grams. Plugging these values into the formula, we have: (7.8 g / 12.4 g) * 100 = 62.9%.

Therefore, the percent yield of the experiment is approximately 62.9%. This indicates that the actual yield obtained was 62.9% of the amount predicted by the theoretical yield. Factors such as experimental errors, incomplete reactions, and side reactions can contribute to a lower percent yield.

To learn more about experiment click here, brainly.com/question/15088897

#SPJ11

Pyruvate is produced in glycolysis and used by Kreb's Cycle in the mitochondrial matrix. How does pyruvate get into the matrix? A. It moves through the membrane by simple diffusion. B Facilitated diffusion through a specific uniport C. Transformation into acetate, which moves through a facilitated transporter D. A transporter is not needed because pyruvate from glycolysis is already in the matrix. E. Through the Malate Shuttle system

Answers

Pyruvate, a product of glycolysis, needs to be transported into the mitochondrial matrix to participate in the Kreb's cycle. However, the mitochondrial membrane is impermeable to pyruvate ions due to their size and charge. Therefore, a specific transporter is required to: facilitate its movement across the membrane. The correct option is (B).

In eukaryotes, the transporter responsible for pyruvate uptake is the pyruvate translocase, also known as the mitochondrial pyruvate carrier (MPC).

The MPC is a protein complex that is embedded in the inner mitochondrial membrane and acts as a specific uniporter, transporting pyruvate into the mitochondrial matrix in exchange for a proton.

The process of pyruvate transport into the matrix by the MPC is an active process and requires energy in the form of a proton gradient across the inner mitochondrial membrane.

To know more about "Kreb's cycle" refer here:

https://brainly.com/question/13153590#

#SPJ11

consider three gases all at 298 k : hcl , h2 , and o2 . list the gases in order of increasing average speed.

Answers

Plugging these values into the formula, we find that HCl has the lowest average speed, followed by O2, and then H2 with the highest mass average speed. Therefore, the order of increasing average speed is HCl, O2, and H2.

The average speed of a gas is directly proportional to its temperature and inversely proportional to its molar mass. At the same temperature, lighter gases will have higher average speeds than heavier gases. H2 has the lowest molar mass among the three gases and thus the highest average speed. O2 has a higher molar mass than H2 but lower than HCl, and therefore it has a moderate average speed. HCl has the highest molar mass among the three gases and thus the lowest average speed.

To determine the order of increasing average speed, we can use the formula for the average speed of gas particles, which is given by: Average speed = √(8 * R * T) / (π * M)
where R is the gas constant, T is the temperature in Kelvin, and M is the molar mass of the gas.
For HCl, O2, and H2, we can calculate their average speeds at 298 K using their molar masses:
- HCl: 36.5 g/mol
- O2: 32 g/mol
- H2: 2 g/mol.

To know more about mass average visit:

https://brainly.com/question/13753702

#SPJ11

calculate the root-mean-square speed of the air pollutant gas so2 at 25 degreees celsius

Answers

The root-mean-square speed of SO₂ at 25°C is approximately 465 m/s.

The root-mean-square (RMS) speed of a gas molecule is given by the equation:

vᵣₘₛ = √(3kT/m)

where k is the Boltzmann constant (1.38 × 10⁻²³ J/K), T is the temperature in Kelvin (25°C = 298 K), and m is the mass of the molecule in kg.

The molecular mass of SO₂ is 64.06 g/mol, which is equivalent to 0.06406 kg/mol or 6.706 × 10⁻²⁶ kg/molecule.

Therefore, substituting these values into the equation above, we get:

vᵣₘₛ = √(3 × 1.38 × 10⁻²³ J/K × 298 K / 6.706 × 10⁻²⁶ kg/molecule)

Simplifying this expression, we get:

vᵣₘₛ = 464.8 m/s (rounded to three significant figures)

Hence, the root-mean-square speed of SO₂ at 25°C is approximately 465 m/s.

To know more about root-mean-square refer here:

https://brainly.com/question/30403276#

#SPJ11

how many moles of o are in 5.40 moles of aluminum nitrate?

Answers

The molar ratio of O to aluminum nitrate is 15:3, which simplifies to 5:1. Therefore, there are 27.0 moles of O in 5.40 moles of aluminum nitrate.

The formula for aluminum nitrate is Al(NO₃)₃, which indicates that there are three nitrate ions (NO₃⁻) per one aluminum ion (Al³⁺). The nitrate ion consists of one nitrogen atom and three oxygen atoms. Therefore, each aluminum nitrate molecule contains three aluminum atoms, nine nitrogen atoms, and 27 oxygen atoms.

To determine the number of moles of oxygen in 5.40 moles of aluminum nitrate, we need to use the molar ratio between oxygen and aluminum nitrate. From the formula of aluminum nitrate, we know that there are 27 oxygen atoms per one aluminum nitrate molecule.

Since we are given 5.40 moles of aluminum nitrate, we can use the mole-to-mole ratio to calculate the number of moles of oxygen. The molar ratio of oxygen to aluminum nitrate is 27:1, which means that for every one mole of aluminum nitrate, there are 27 moles of oxygen.

Therefore, to find the number of moles of oxygen in 5.40 moles of aluminum nitrate, we multiply 5.40 by the molar ratio of oxygen to aluminum nitrate:

5.40 moles Al(NO₃)₃ x (27 moles O / 1 mole Al(NO₃)₃) = 145.8 moles O

To know more about number of moles, refer here:

https://brainly.com/question/15209553#

#SPJ11

In this exercise you will draw the Lewis structure for the five molecules/ions indicated below. For the Lewis structures, please include formal charges for each atom and any important resonance structures. State the electronic and molecular geometries. For each structure you should also sketch the molecular geometry (shape), indicate whether the molecule is polar or non-polar, and draw a net molecular dipole (if it exists). Your work should be presented neatly in the space below or at the back of the page. Work that is not clearly presented and legible will not be graded. Six points for each molecule/ion for a total of 30 points for the assignment. Assignment Checklist - for each molecule/ion you should have/do: 1. Lewis structure (show the valence electron count, formal charges, and important resonance structures) 2. State electronic (EG) and molecular geometries (MG) 3. Sketch molecular geometry 4. State whether the molecule is polar or non-polar, and draw a net dipole (if applicable) Molecules and ions SiO32- PO33- SbF2- IF 2 NO2

Answers

For SiO32-, PO33-, SbF2-, IF2, and NO2, Lewis structures were drawn with formal charges and resonance structures. Electronic and molecular geometries were determined and the molecular shapes were sketched. The polarity of each molecule was determined, and net dipoles were drawn if applicable.

For SiO32-, the Lewis structure shows that the central Si atom has four electron groups, giving it a tetrahedral electron geometry and a trigonal planar molecular geometry. The molecule is polar due to the asymmetry of the oxygen atoms and the lone pair on the central Si atom, which creates a net dipole pointing towards the oxygen atoms.

For PO33-, the Lewis structure shows that the central P atom has five electron groups, giving it a trigonal bipyramidal electron geometry and a trigonal pyramidal molecular geometry. The molecule is polar due to the asymmetry of the oxygen atoms and the lone pair on the central P atom, which creates a net dipole pointing towards the oxygen atoms.

For SbF2-, the Lewis structure shows that the central Sb atom has three electron groups, giving it a trigonal planar electron geometry and a bent molecular geometry. The molecule is polar due to the electronegativity difference between Sb and F, which creates a net dipole pointing towards the F atoms.

For IF2, the Lewis structure shows that the central I atom has three electron groups, giving it a trigonal planar electron geometry and a bent molecular geometry. The molecule is polar due to the electronegativity difference between I and F, which creates a net dipole pointing towards the F atoms.

For NO2, the Lewis structure shows that the central N atom has three electron groups, giving it a trigonal planar electron geometry and a bent molecular geometry. The molecule is polar due to the electronegativity difference between N and O, which creates a net dipole pointing towards the O atoms.

Learn more about Lewis structure here:

https://brainly.com/question/29603042

#SPJ11

How many grams are in 1.80 mol of Sodium Chloride (NaCl), Please express answer in grams and breakdown of how answer was derived

Answers

There are 105.192 grams in 1.80 mol of Sodium Chloride (NaCl).

To find out how many grams are in 1.80 mol of Sodium Chloride (NaCl), you'll need to use the molar mass of NaCl. Here's the

1. Find the molar mass of NaCl:

- Molar mass of Sodium (Na) = 22.99 g/mol

- Molar mass of Chlorine (Cl) = 35.45 g/mol

- Molar mass of NaCl = (22.99 + 35.45) g/mol = 58.44 g/mol

2. Use the given number of moles (1.80 mol) and the molar mass of NaCl to calculate the mass in grams:

- Mass = (number of moles) × (molar mass)

- Mass = (1.80 mol) × (58.44 g/mol)

3. Calculate the mass:

- Mass = 105.192 g

So, there are 105.192 grams in 1.80 mol of Sodium Chloride (NaCl).

Learn more about the Sodium Chloride here,

https://brainly.com/question/25555690

#SPJ11

Determine the number of moles of electrons that would flow through the resistor if the circuit is operated for 46.52 min.moles of electrons: ? (mol)

Answers

To determine the number of moles of electrons that would flow through the resistor if the circuit is operated for 46.52 min, we need to first calculate the total charge that would flow through the circuit.

The formula to calculate the total charge is:

Q = I * t

Where Q is the total charge (in Coulombs), I is the current (in Amperes), and t is the time (in seconds).

Since we have been given the time in minutes, we need to convert it to seconds. 46.52 minutes is equal to:

t = 46.52 * 60 = 2791.2 seconds

Now, we need to find the current flowing through the resistor. Let's assume that the resistor has a resistance of R ohms and a potential difference of V volts across it. Then, using Ohm's law:

V = IR

I = V / R

We can use the given values to calculate I. Let's say V = 10 volts and R = 5 ohms.

I = 10 / 5 = 2 Amperes

Now, we can use the formula to calculate the total charge:

Q = I * t = 2 * 2791.2 = 5582.4 Coulombs

Finally, we need to find the number of moles of electrons that would flow through the circuit. We know that one Coulomb of charge is equal to the charge on one mole of electrons, which is 96,485.3329 Coulombs. Therefore:

moles of electrons = Q / (96,485.3329)

moles of electrons = 5582.4 / (96,485.3329)

moles of electrons = 0.0579 mol

Therefore, the number of moles of electrons that would flow through the resistor if the circuit is operated for 46.52 min is 0.0579 mol.

To know more about Amperes visit

https://brainly.com/question/31971288

#SPJ11

A farmer plants corn in a field every year for several years. Each year he notices that his production of corn per acre has decreased even though the weather conditions have been very similar. A change in which abiotic factor is most likely causing the decrease in the production of corn?

increase in precipitation

increase in wind speed

decrease in soil nutrients

decrease in sunlight

Answers

The decrease in the production of corn per acre over several years, despite similar weather conditions, suggests a change in an abiotic factor affecting the corn growth. The most likely factor causing this decrease is a decrease in soil nutrients.

The abiotic factor that is most likely causing the decrease in the production of corn in a field planted every year is the decrease in soil nutrients. The soil contains the essential nutrients necessary for plant growth, such as nitrogen, phosphorus, and potassium.

Over time, continuous planting without adequate soil nutrient replacement can deplete the soil of these necessary nutrients, resulting in a decrease in the production of corn per acre despite similar weather conditions. The farmer should have used a method of soil conservation such as crop rotation, application of fertilizers, or fallow (giving the land a rest for a period). All these techniques aim at enriching the soil with nutrients.

Know more about abiotic factor    here:

https://brainly.com/question/2740442

#SPJ8

Other Questions
Calculate the volume of carbon dioxide formed with 2.50 l methane at 23c and a pressure of 1.05 atm reacting with 42 l oxygen gas at 32.0c and a pressure of 1.20 atm. what volume of carbon dioxide will form at 2.25 atm and 75.0c? radon has a half-life of 3.83 days. if 3.00 g of radon gas is present at time t=0, what mass of radon will remain after 1.50 days? write a single matlab command that plots [1, 10, 100, 1000, 10000] along x axis A 4.1-cm-long slide wire moves outward with a speed of 130 m/s in a 1.6 T magnetic field. At the instant the circuit forms a 4.1cm4.1cm square, with R = 1.6102 on each side. A)What is the induced emf? B)What is the induced current? C)What is the potential difference between the two ends of the moving wire? If there are 528 students in the school what is the best estimate of the number of students that say cleaning their room is there least favorite chore Of the following body areas, which one does not contain normal flora and should be sterile (free of microorganisms)? a. Skin b. Bladder c. Nose d. Urethra Some of the radical changes brought about by new technologies include: Group of answer choices the creation of an unprecedented set of security and espionage threats. The proliferation of telecommunications into the hands of a few. An increase in computing costs owing to the growth of licensed software. The stagnation of advertising. A decrease in the standards of corporate ethics What is the speed of a wave with a frequency of 1,000,000 Hz and a wavelength of 299. 79? according to the law of one price, if the exchange rate between the euro and the british pound is 1=1.10, a dress that retails for 220 in frankfurt should sell for _____ in london. determine if the given vector field f is conservative or not. f = {(y + 8z + 7) sin(x), cos(x), 8 cos(x)} If the starting volume of a hot air balloon is 55,500 m3and the initialtemperature is 21 C, what is the temperature inside the balloon is the final volume is 74,000 m3. Explain why the volume of the balloon increases when temperature is increased in terms of averagekinetic energy, collisions and volume. Explain how the balloon is actually able to lift off the groundin terms of density. (Useful info: density of hot air is 0. 946 kg/m3 and the density of normal (ambientair) is 1. 2 kg/m3. ) Suppose that a phone that originally sold for $800 loses 3/5 of its value each year after it is released In this assignment, you will implement two approximate inference methods for Bayesian networks, i.e., rejection sampling and Gibbs sampling in the given attached base code.Grading will be as follows:Rejection sampling: 70%Gibbs sampling: 30%Input:Bayesian network is represented as a list of nodes. Each node is represented as a list in the following order:name: stringparent names: a list of strings. Can be an empty listcpt: a conditional probability table represented as an array. Each entry corresponds to the conditional probability that the variable corresponding to this node is true. The rows are ordered such that the values of the nodes parent variable(s) are enumerated in the traditional way. That is, in a table, the rightmost variable alternates T, F, T, F, ; the variable to its left T, T, F, F, T, T, F, F, ; and so on.The nodes in the network will be ordered corresponding to the network topology, i.e., parent nodes will always come before their children. For example, the sprinkler network in Figure 13.15 and on our slides, is represented as:nodes = [["Cloudy", [], [0.5]],["Sprinkler", ["Cloudy"], [0.1, 0.5]],["Rain", ["Cloudy"], [0.8, 0.2]],["WetGrass", ["Sprinkler", "Rain"], [0.99, 0.9, 0.9, 0.0]]]b = BayesNet(nodes)b.print()You can call b.print() to see the conditional probability tables organized for each node.Output:A query will ask you to compute a possibly conditional probability of a single variable such as P(Rain | Cloudy = false, Sprinkler = true). Queries will always be for a distribution, not a specific events probability.The following methods will be called for queries:rejectionSampling(queryNodeName, evidence, N)orgibbsSampling(queryNodeName, evidence, N)queryNodeName: a string for the query nodes nameevidence: a set of pairsN: total number of iterationsFor instance, given the network b, a sample Gibbs sampling query can be called and printed as follows:out = b.gibbsSampling("Rain", {"Sprinkler":True}, 100000)print(out)The output will look like:> [0.299, 0.700]NotesYou may (actually, should) implement helper methods, but do not change the class structure or the signatures of existing methods.Please submit your code, including comments that explain your approach, by uploading a .py filebayesNet.py here-------------------------------------------------------------------------------------------------------------import randomclass Node:name =""parentNames = []cpt = []def __init__(self, nodeInfo):""":param nodeInfo: in the format as [name, parents, cpt]"""# name, parents, cptself.name = nodeInfo[0]self.parentNames = nodeInfo[1].copy()self.cpt = nodeInfo[2].copy()def format_cpt(self):s_cpt = '\t'.join(self.parentNames) + '\n'for i in range(len(self.cpt)):s_cpt += bin(i).replace("0b", "").zfill(len(self.parentNames)).replace('0', 'T\t').replace('1', 'F\t')s_cpt += str(self.cpt[i]) + '\n'return s_cptdef print(self):print("name: {}\nparents:{}\ncpt:\n{}".format(self.name, self.parentNames, self.format_cpt()))class BayesNet:nodes = []def __init__(self, nodeList):for n in nodeList:self.nodes.append(Node(n))def print(self):for n in self.nodes:n.print()def rejectionSampling(self, qVar, evidence, N):""":param qVar: query variable:param evidence: evidence variables and their values in a dictionary:param N: maximum number of iterationsE.g. ['WetGrass',{'Sprinkler':True, 'Rain':False}, 10000]:return: probability distribution for the query"""return []def gibbsSampling(self, qVar, evidence, N):""":param qVar: query variable:param evidence: evidence variables and their values in a dictionary:param N: maximum number of iterationsE.g. ['WetGrass',{'Sprinkler':True, 'Rain':False}, 10000]:return: probability distribution for the query"""return []# Sample Bayes netnodes = [["Cloudy", [], [0.5]],["Sprinkler", ["Cloudy"], [0.1, 0.5]],["Rain", ["Cloudy"], [0.8, 0.2]],["WetGrass", ["Sprinkler", "Rain"], [0.99, 0.9, 0.9, 0.0]]]b = BayesNet(nodes)b.print()# Sample queries to test your code# print(b.gibbsSampling("Rain", {"Sprinkler":True, "WetGrass" : False}, 100000))# print(b.rejectionSampling("Rain", {"Sprinkler":True}, 1000)) A high-end luxury car manufacturer sells 5,000 cars per year to four dealerships in four regions of a country. Assume 50 weeks per year.Out of this total sale, the following percentages are sold in each region.RegionPercentage SoldNorth-Region15%East-Region20%West-Region16%South-RegionThe restOn average there are 400 cars of this manufacturer in all dealerships. Out of this total inventory, the following percentages are in each region.RegionPercentage of InventoryNorth-Region18%East-Region15%West-Region28%South-RegionThe restOn average how long does it take to sell a car in the South-Region? Enter your answer in terms of weeks with ONE decimal point.ANSWER:________? airlines measure revenues and cost by fuel used. number of passengers per flight. miles logged. available seat miles.\ Does your correlation change when a constant is added to every score? list 4 separation techniques you have learnt so far in the organic chemistry labs. (4 pts) Help I need the answer to this One village has 275 houses for people live in each house. How many peoples live in three such villages A reaction A+ 2B l. A reactio rate constant, k, if the rate is expressed in units of moles per liter per minute? (c) M-min (d) min (e) M-min- units of the (a) M 1min (b) M solution is not correct? 2. Which of the following statements regarding a 1 M sucrose (a) The boiling point is greater than 100 C (b) The freezing point is lower than that of a 1 MNaClI solution. (c) The freezing point is less than 0.0 C (d) The boiling point is lower than that of a 1 M NaCl solution. (c) The vapor pressure at 100 C is less than 760 torr. The boiling point of pure water in Winter Park, CO (elev. 9000 ft) is 94 C. What boiling point of a solution containing 11.3 g of glucose (180 g/'mol) in 55 mL of wator 3. Winter Park? K, for water-0.512C/m (a) 94.6 C (b) 95.1C (c) 98.6C (d) 100C (e) 93.4C