The discontinuity occurs when x is either -5 or 3.
That is determined by solving denominator = 0 quadratic equation for x.
Hope this helps.
A comprehensive survey released by a college reports that the true proportion of all students at the college who use drugs is 0.3. You survey 100 students in your dorm and record that the proportion of students who use drugs is 0.15. The proportion of all students at this college who use drugs is a
Complete Question
The proportion of all students at this college who use drugs is a_____and the proportion of students who use drugs in your dorm is a _____ .
Options
a. statistic; parameter b. parameter; statistic c. population; sample d. measure of central tendency, measure of variability e. none of the aboveAnswer:
b. parameter; statistic
Step-by-step explanation:
A parameter is a summary of data for an entire population.
Statistic, on the other hand, summarizes data for a sample of the population.
The proportion of all students at this college who use drugs is a parameter and the proportion of students who use drugs in your dorm is a sample.
The correct option is B
You can model that you expect a 1.25% raise each year that you work for a certain company. If you currently make $40,000, how many years should go by until you are making $120,000? (Round to the closest year.)
Answer:
94 years
Step-by-step explanation:
We can approach the solution using the compound interest equation
[tex]A= P(1+r)^t[/tex]
Given data
P= $40,000
A= $120,000
r= 1.25%= 1.25/100= 0.0125
substituting and solving for t we have
[tex]120000= 40000(1+0.0125)^t \\\120000= 40000(1.0125)^t[/tex]
dividing both sides by 40,000 we have
[tex](1.0125)^t=\frac{120000}{40000} \\\\(1.0125)^t=3\\\ t Log(1.0125)= log(3)\\\ t*0.005= 0.47[/tex]
dividing both sides by 0.005 we have
[tex]t= 0.47/0.005\\t= 94[/tex]
3/(2x-1)+4=6x/(2x-1)
When 440 junior college students were surveyed, 200 said they have a passport. Construct a 95% confidence interval for the proportion of junior college students that have a passport.
The Confidence Interval is 0.403 < p < 0.497
What is Confidence Interval?The mean of your estimate plus and minus the range of that estimate constitutes a confidence interval. Within a specific level of confidence, this is the range of values you anticipate your estimate to fall within if you repeat the test. In statistics, confidence is another word for probability.
Given:
Sample proportion = 190/425
= 0.45
Now, [tex]\mu[/tex] = 1.96 x √[0.45 x 0.55/425]
[tex]\mu[/tex] = 0.047
So, 95% CI:
0.45-0.047 < p < 0.45+0.047
0.403 < p < 0.497
Learn more about Confidence Interval here:
https://brainly.com/question/24131141
#SPJ5
a bank teller has 340 one hundred dollar bills. how much money does the bank teller have?
Answer:
$34,000
Step-by-step explanation:
Since a one hundred dollar bill is equal to 100, we simply multiply 340 and 100 together:
340(100) = 34000
25% of a class do not play basketball.
27 children do play. How many
children are in the class?
Answer: 36 children
Step-by-step explanation:
3/4 of the class plays basketball. Thus 3/4x=27. Multiply each side by 4/3 to get x = 36
The line x + y - 6= 0 is the right bisector
of the segment PQ. If P is the point (4,3),
then the point Q is
Answer:
Therefore, the coordinates of point Q is (2,3)
Step-by-step explanation:
Let the coordinates of Q be(a,b)
Let R be the midpoint of PQ
Coordinates of R [tex]=(\frac{4+a}{2}, \frac{3+b}{2})[/tex]
R lies on the line x + y - 6= 0, therefore:
[tex]\implies \dfrac{4+a}{2}+ \dfrac{3+b}{2}-6=0\\\implies 4+a+3+b-12=0\\\implies a+b-5=0\\\implies a+b=5[/tex]
Slope of AR X Slope of PQ = -1
[tex]-1 \times \dfrac{b-3}{a-4}=-1\\b-3=a-4\\a-b=-3+4\\a-b=-1[/tex]
Solving simultaneously
a+b=5
a-b=-1
2a=4
a=2
b=3
Therefore, the coordinates of point Q is (2,3)
For the binomial distribution with the given values for n and p, state whether or not it is suitable to use the normal distribution as an approximation. n = 24 and p = 0.6.
Answer:
Since both np > 5 and np(1-p)>5, it is suitable to use the normal distribution as an approximation.
Step-by-step explanation:
When the normal approximation is suitable?
If np > 5 and np(1-p)>5
In this question:
[tex]n = 24, p = 0.6[/tex]
So
[tex]np = 24*0.6 = 14.4[/tex]
And
[tex]np(1-p) = 24*0.6*0.4 = 5.76[/tex]
Since both np > 5 and np(1-p)>5, it is suitable to use the normal distribution as an approximation.
Which benefits do employers commonly offer to full-time employees? 401(k) plan free gasoline health insurance life insurance paid vacation rent
Answer:
401k, health insurance, life insurance, paid vacation
Step-by-step explanation:
The benefit do employers commonly offer to full-time employees should involved the 401k, health insurance, life insurance, paid vacation.
Benefits made to employees:When the employees are doing full time job so the company gives the following benefits:
heath insurancePaid vacation. Life insurance401 (k) PlanThese benefits motivates the employees to stay longer with the organization and be effective in the process which they deal with.
learn more about insurance here: https://brainly.com/question/24461491
A piece of string is 120 centimeters long. How long would the piece of string measure in meters?. Enter your answer in the box.
Answer:
1.2 metres
Step-by-step explanation:
1 metre = 100cm
so 120cm has 120 cm * 1 m/ 100cm = 1.2 m
What is the sum of the measures of the interior angles of the stop sign?
Answer:
Sum of Interior Angles = (Number of Sides -2) • 180 degrees
Sum of Interior Angles = (8 -2) * 180 = 1,080
Refer to the following partial ANOVA results from Excel (some information is missing).
Source of Variation SS df MS F
Between groups 210.2778
Within groups 1483 74.15
Total 2113.833
The number of treatment groups is:_______.
a- 4
b- 3
c- 2
d- 1
Answer:
a) 4
Step-by-step explanation:
Take the equation:
x + 1483 = 2113.833
Solve for x:
x = 2113.833 - 1483
x = 630.833
To find df, take the equation:
[tex]\frac{x}{y} = 210.2778[/tex]
Where x = 630.833
[tex] \frac{630.833}{y} = 210.2778 [/tex]
Solve for y:
[tex] y = \frac{210.2778}{630.833} [/tex]
[tex] y = 2.9999 [/tex]
y ≈ 3
Take number of treatments = k
Degrees of freedom, df, of numberof treatments = k - 1
Therefore,
Where df = 3, we have:
k - 1 = 3
Solve for k:
k = 3 + 1
k = 4
The number of treatment groups is 4
The number of treatment groups is (a) 4
From the partial ANOVA results, we have:
SS total = 2113.833SS within = 1483MS between = 210.2778Start by calculating the SS between using the following formula
SS between= SS total - SS within
So, we have:
SS between = 2113.833-1483
SS between = 630.833
Next, calculate the degrees of freedom (df) using:
df = SS between / MS between
So, we have:
[tex]df = \frac{630.833}{210.2778}[/tex]
Divide
[tex]df = 2.99999809775[/tex]
Approximate
[tex]df = 3[/tex]
The number of treatment groups (n) is then calculated using:
[tex]n = df + 1[/tex]
This gives
[tex]n = 3+ 1[/tex]
Add 3 and 1
[tex]n = 4[/tex]
Hence, the number of treatment groups is (a) 4
Read more about ANOVA results at:
https://brainly.com/question/15394749
What is the simplified form of this expression?
(-3x^2+ 2x - 4) + (4x^2 + 5x+9)
OPTIONS
7x^2 + 7x + 5
x^2 + 7x + 13
x^2 + 11x + 1
x^² + 7x+5
Answer:
Option 4
Step-by-step explanation:
=> [tex]-3x^2+2x-4 + 4x^2+5x+9[/tex]
Combining like terms
=> [tex]-3x^2+4x^2+2x+5x-4+9[/tex]
=> [tex]x^2+7x+5[/tex]
plz give me correct answers
Answer:
Step-by-step explanation:
greatest number=8643
smallest number=3468
difference=8643-3468=5175
6.1. DCCLVI
CDXCIV
(II) 74,746
The monthly profit for a company that makes decorative picture frames depends on the price per frame. The company determines that the profit is approximated by f(p)= -80p + 3440p -36,000, where p is the price per frame and f(p) is the monthly profit based on that price.
Requried:
a. Find the price that generates the maximum profit.
b. Find the maximum profit.
c. Find the price(s) that would enable the company to break even.
Answer:
a. $21.50
b. $980
c. $25 and $18
Step-by-step explanation:
a. The price that generates the maximum profit is
In this question we use the vertex formula i.e shown below:
[tex](-\frac{b}{2a}, f(-\frac{b}{2a} ))\\\\[/tex]
where a = -80
b = 3440
c = 36000
hence,
P-coordinate is
[tex](-\frac{b}{2a}, (-\frac{3440}{2\times -80} ))\\\\[/tex]
[tex]= \frac{3440}{160}[/tex]
= $21.5
b. Now The maximum profit could be determined by the following equation
[tex]f(p) = 80p^2 + 3440p - 36000\\\\f($21.5) = -80(21.5)^2 + 3440(21.5) - 36000\\\\[/tex]
= $980
c. The price that would enable the company to break even that is
f(p) = 0
[tex]f(p) = -80p^2 + 3440p - 36000\\\\-80p^2 + 3440p - 36000 = 0\\\\p^2 -43p + 450 = 0\\\\p^2 - 25p - 18p + 450p = 0\\\\p(p - 25) - 18(p-25) = 0\\\\(p - 25) (p - 18) = 0[/tex]
By applying the factoring by -50 and then divided it by -80 and after that we split middle value and at last factors could come
(p - 25) = 0 or (p - 18) = 0
so we can write in this form as well which is
p = 25 or p = 18
Therefore the correct answer is $25 and $18
The foundation of a building is in the shape of a rectangle, with a length of 20 meters (m) and a width of 18 m. To the nearest meter, what is the distance from the top left corner of the foundation to the bottom right corner?
Answer:
27m
Step-by-step explanation:
It's the Pythagorean Theorem.
20^2+18^2=c^2
400+324=c^2
724=c^2
take the square root of both sides
26.9m=c
to the nearest meter = 27
what's the equivalent expression
Answer:
2^52
Step-by-step explanation:
(8^-5/2^-2)^-4 = (2^-15/2^-2)^-4= (2^-13)^-4= 2^((-13*(-4))= 2^52
Kara categorized her spending for this month into four categories: Rent, Food, Fun, and Other. The amounts she spent in each category are pictured here. Rent $433 Food $320 Fun $260 Other $487 What percent of her total spending did she spend on Rent? % (Please enter your answer to the nearest whole percent.) What percent of her total spending did she spend on Food? % (Please enter your answer to the nearest whole percent.) What percent of her total spending did she spend on Fun? % (Please enter your answer to the nearest whole percent.)
Answer: Rent = 29%, Food = 21%, Fun = 17%
Step-by-step explanation:
Rent = $433
Food = $320
Fun = $260
Other = $487
TOTAL = $1500
[tex]\dfrac{Rent}{Total}=\dfrac{433}{1500}\quad =0.2886\quad =\large\boxed{29\%}\\\\\\\dfrac{Food}{Total}=\dfrac{320}{1500}\quad =0.2133\quad =\large\boxed{21\%}\\\\\\\dfrac{Fun}{Total}=\dfrac{260}{1500}\quad =0.1733\quad =\large\boxed{17\%}[/tex]
If Aequals[Start 2 By 2 Matrix 1st Row 1st Column 1 2nd Column negative 4 2nd Row 1st Column negative 4 2nd Column 5 EndMatrix ] and ABequals[Start 2 By 3 Matrix 1st Row 1st Column negative 10 2nd Column 1 3rd Column 9 2nd Row 1st Column 7 2nd Column negative 15 3rd Column 8 EndMatrix ], determine the first and second columns of B. Let Bold b 1 be column 1 of B and Bold b 2 be colum
Answer:
[tex]b_1=\left(\begin{array}{ccc}-3\\3\end{array}\right),b_2=\left(\begin{array}{ccc}-\dfrac{65}{11}\\\\-\dfrac{19}{11}\end{array}\right)[/tex]
Step-by-step explanation:
Given matrix A and AB below:
[tex]A=\left(\begin{array}{ccc}1&-4\\-4&5\end{array}\right)\\\\\\ AB=\left(\begin{array}{ccc}-10&1&9\\7&-15&8\end{array}\right)[/tex]
For the product AB to be a 2 X 3 matrix, B must be a 2 X 3 matrix.
Let matrix B be defined as follows
[tex]B=\left[\begin{array}{ccc}a&c&e\\b&d&f\end{array}\right][/tex]
Therefore:
[tex]\left(\begin{array}{ccc}1&-4\\-4&5\end{array}\right)\left(\begin{array}{ccc}a&c&e\\b&d&f\end{array}\right)=\left(\begin{array}{ccc}-10&1&9\\7&-15&8\end{array}\right)[/tex]
This results in the equations
a-4b=-10-4a+5b=7c-4d=1-4c+5d=-15Solving the first two equations simultaneously
a-4b=-10 (a=-10+4b)
-4a+5b=7
Substitution of [tex]a=-10+4b[/tex] into the second equation
[tex]-4(-10+4b)+5b=7\\40-16b+5b=7\\-11b=-33\\b=3[/tex]
Recall that [tex]a=-10+4b[/tex]
[tex]a=-10+4(3)=-10+7\\a=-3[/tex]
Solving the other two equations
c-4d=1 (c=1+4d)
-4c+5d=-15
Substitution of c=1+4d into the second equation
[tex]-4(1+4d)+5d=-15\\-4-16d+5d=15\\-11d=19\\d=-\dfrac{19}{11}\\ Recall: c=1+4d\\c=1+4(-\frac{19}{11})\\c=-\dfrac{65}{11}[/tex]
Therefore, we have:
[tex]a=-3, b=3, c=-\dfrac{65}{11}, d=-\dfrac{19}{11}[/tex]
Thus:
[tex]b_1=\left(\begin{array}{ccc}-3\\3\end{array}\right)\\\\\\b_2=\left(\begin{array}{ccc}-\dfrac{65}{11}\\\\-\dfrac{19}{11}\end{array}\right)[/tex]
Answer:
option c
Step-by-step explanation:
it is said that a computer repairman makes 25 dollars per hour
this column shows the right amount of money he earns per hour
The first step in solving for the variable / in the equation P= 21 + 2w is:
A. Add the 2w to both sides of the equal sign.
B. Subtract the 2w to both sides of the equal sign.
C. Divide the 2 to both sides of the equal sign.
D. None of these choices are correct.
Suppose we write down the smallest positive 2-digit, 3-digit, and 4-digit multiples of 9,8 and 7(separate number sum for each multiple). What is the sum of these three numbers?
Answer:
Sum of 2 digit = 48
Sum of 3 digit = 317
Sum of 4 digit = 3009
Total = 3374
Step-by-step explanation:
Given:
9, 8 and 7
Required
Sum of Multiples
The first step is to list out the multiples of each number
9:- 9,18,....,99,108,117,................,999
,1008
,1017....
8:- 8,16........,96,104,...............,992,1000,1008....
7:- 7,14,........,98,105,.............,994,1001,1008.....
Calculating the sum of smallest 2 digit multiple of 9, 8 and 7
The smallest positive 2 digit multiple of:
- 9 is 18
- 8 is 16
- 7 is 14
Sum = 18 + 16 + 14
Sum = 48
Calculating the sum of smallest 3 digit multiple of 9, 8 and 7
The smallest positive 3 digit multiple of:
- 9 is 108
- 8 is 104
- 7 is 105
Sum = 108 + 104 + 105
Sum = 317
Calculating the sum of smallest 4 digit multiple of 9, 8 and 7
The smallest positive 4 digit multiple of:
- 9 is 1008
- 8 is 1000
- 7 is 1001
Sum = 1008 + 1000 + 1001
Sum = 3009
Sum of All = Sum of 2 digit + Sum of 3 digit + Sum of 4 digit
Sum of All = 48 + 317 + 3009
Sum of All = 3374
Use the data below, showing a summary of highway gas mileage for several observations, to decide if the average highway gas mileage is the same for midsize cars, SUV’s, and pickup trucks. Test the appropriate hypotheses at the α = 0.01 level.
n Mean Std. Dev.
Midsize 31 25.8 2.56
SUV’s 31 22.68 3.67
Pickups 14 21.29 2.76
Answer:
Step-by-step explanation:
Hello!
You need to test at 1% if the average highway gas mileage is the same for three types of vehicles (midsize cars, SUV's and pickup trucks) to compare the average values of the three groups altogether, you have to apply an ANOVA.
n | Mean | Std. Dev.
Midsize | 31 | 25.8 | 2.56
SUV’s | 31 | 22.68 | 3.67
Pickups | 14 | 21.29 | 2.76
Be the study variables :
X₁: highway gas mileage of a midsize car
X₂: highway gas mileage of an SUV
X₃: highway gas mileage of a pickup truck.
Assuming these variables have a normal distribution and are independent.
The hypotheses are:
H₀: μ₁ = μ₂ = μ₃
H₁: At least one of the population means is different.
α: 0.01
The statistic for this test is:
[tex]F= \frac{MS_{Treatment}}{MS_{Error}}[/tex]~[tex]F_{k-1;n-k}[/tex]
Attached you'll find an ANOVA table with all its components. As you see, to manually calculate the statistic you have to determine the Sum of Squares and the degrees of freedom for the treatments and the errors, next you calculate the means square for both and finally the test statistic.
For the treatments:
The degrees of freedom between treatments are k-1 (k represents the amount of treatments): [tex]Df_{Tr}= k - 1= 3 - 1 = 2[/tex]
The sum of squares is:
SSTr: ∑ni(Ÿi - Ÿ..)²
Ÿi= sample mean of sample i ∀ i= 1,2,3
Ÿ..= grand mean, is the mean that results of all the groups together.
So the Sum of squares pf treatments SStr is the sum of the square of difference between the sample mean of each group and the grand mean.
To calculate the grand mean you can sum the means of each group and dive it by the number of groups:
Ÿ..= (Ÿ₁ + Ÿ₂ + Ÿ₃)/ 3 = (25.8+22.68+21.29)/3 = 23.256≅ 23.26
[tex]SS_{Tr}[/tex]= (Ÿ₁ - Ÿ..)² + (Ÿ₂ - Ÿ..)² + (Ÿ₃ - Ÿ..)²= (25.8-23.26)² + (22.68-23.26)² + (21.29-23.26)²= 10.6689
[tex]MS_{Tr}= \frac{SS_{Tr}}{Df_{Tr}}= \frac{10.6689}{2}= 5.33[/tex]
For the errors:
The degrees of freedom for the errors are: [tex]Df_{Errors}= N-k= (31+31+14)-3= 76-3= 73[/tex]
The Mean square are equal to the estimation of the variance of errors, you can calculate them using the following formula:
[tex]MS_{Errors}= S^2_e= \frac{(n_1-1)S^2_1+(n_2-1)S^2_2+(n_3-1)S^2_3}{n_1+n_2+n_3-k}= \frac{(30*2.56^2)+(30*3.67^2)+(13*2.76^2)}{31+31+14-3} = \frac{695.3118}{73}= 9.52[/tex]
Now you can calculate the test statistic
[tex]F_{H_0}= \frac{MS_{Tr}}{MS_{Error}} = \frac{5.33}{9.52}= 0.559= 0.56[/tex]
The rejection region for this test is always one-tailed to the right, meaning that you'll reject the null hypothesis to big values of the statistic:
[tex]F_{k-1;N-k;1-\alpha }= F_{2; 73; 0.99}= 4.07[/tex]
If [tex]F_{H_0}[/tex] ≥ 4.07, reject the null hypothesis.
If [tex]F_{H_0}[/tex] < 4.07, do not reject the null hypothesis.
Since the calculated value is less than the critical value, the decision is to not reject the null hypothesis.
Then at a 1% significance level you can conclude that the average highway mileage is the same for the three types of vehicles (mid size, SUV and pickup trucks)
I hope this helps!
The solutions to the inequality y < to -x+1 sre shaded on the graph. Which point is a solution
There are two ways to confirm this is the answer. The first is to note that (3,-2) is on the boundary, so it is part of the solution set. This only works if the boundary line is a solid line (as opposed to a dashed or dotted line).
The second way is to plug (x,y) = (3,-2) into the given inequality to find that
[tex]y \le -x+1\\\\-2 \le -3+1\\\\-2 \le -2[/tex]
which is a true statement. So this confirms that (3,-2) is in the solution set of the inequality.
please help me, i will give you brainliest
Answer:
52°i think
Step-by-step explanation:
148°-96°=52°
Answer:
The answer is below
Step-by-step explanation:
The answer is 52 degrees
The third option in the line
Hope the answer helps
8. What is the lateral area of the cone?
Answer:
[tex]190.07 \: {yd}^{2} [/tex]Option D is the correct option.
Step-by-step explanation:
Diameter (d) = 10 yd
Radius(r) = 10/2 = 5 yd
Slant height (l)= 12.1 yd
We know,
Lateral surface area of cone:
[tex]\pi \: r \: l[/tex]
[tex] = 3.14 \times 5 \times 12.1[/tex]
[tex] = 189.97 \: {yd}^{2} [/tex]
which is nearly 190.07 square yards.
Hope this helps...
Good luck on your assignment..
Answer:
[tex]190.07 {yd}^{2} [/tex]
Step-by-step explanation:
[tex]lateral \: \: area \\ = \pi \: rl \\ = 3.14 \times 5 \times 12.1 \\ = 189.97[/tex]
189.97 square yards which is nearly 190.07 square yards
Find the sample size needed to estimate the percentage of Democrats among registered voters in Texas. Use a 0.01 margin of error, and use a confidence level of 96% and assume LaTeX: \hat{p}
p
^
=0.28.
Answer:
Step-by-step explanation:
Hello!
You have to determine the sample size to take to estimate the population proportion of Democrats among registered voters in Texas for a 96% interval with a margin of error of 0.01 and sample proportion p'= 0.28
The interval for the population proportion is
p' ± [tex]Z_{1-\alpha /2}[/tex]*[tex]\sqrt{\frac{p'(1-p')}{n} }[/tex]
The margin of error of the interval is:
d= [tex]Z_{1-\alpha /2}[/tex]*[tex]\sqrt{\frac{p'(1-p')}{n} }[/tex]
[tex]\frac{d}{Z_{1-\alpha /2}}= \sqrt{\frac{p'(1-p')}{n} }\\(\frac{d}{Z_{1-\alpha /2}} )^2= \frac{p'(1-p)}{n} \\n*(\frac{d}{Z_{1-\alpha /2}} )^2= p'(1-p)\\n= p'(1-p)*(\frac{Z_{1-\alpha /2}}{d} )^2\\[/tex]
[tex]Z_{1-\alpha /2}= Z_{0.98}= 2.054[/tex]
[tex]n= 0.28*(1-0.28)*(\frac{2.054}{0.01} )^2= 8505.33[/tex]
n= 8506 voters
I hope this helps!
Which of the following are solutions to the equation below?
Check all that apply.
x^2 + 3x - 18 = 0
Help ASAP
Answer: b & c
Step-by-step explanation: a p e x 2020
Evaluate
[tex]lim \: \frac{ \frac{1}{ \sqrt{x} } - 1}{ \sqrt{x} - 1} \: as \: x \: approaches \: 1[/tex]
Answer:
-1
Step-by-step explanation:
In many cases, the simplified expression is not undefined at the point of interest.
[tex]\dfrac{\left(\dfrac{1}{\sqrt{x}}-1\right)}{\sqrt{x}-1}=\dfrac{\left(\dfrac{1-\sqrt{x}}{\sqrt{x}}\right)}{\sqrt{x}-1}=\dfrac{-1}{\sqrt{x}}[/tex]
This can be evaluated at x=1:
-1/√1 = -1
Then, the limit is ...
[tex]\boxed{\lim\limits_{x\to 1}\dfrac{\left(\dfrac{1}{\sqrt{x}}-1\right)}{\sqrt{x}-1}=-1}[/tex]
__
A graph confirms this conclusion.
Susan decides to take a job as a transcriptionist so that she can work part time from home. To get started, she has to buy a computer, headphones, and some special software. The equipment and software together cost her $1000. The company pays her $0.004 per word, and Susan can type 90 words per minute. How many hours must Susan work to break even, that is, to make enough to cover her $1000 start-up cost? If Susan works 4 hours a day, 3days a week, how much will she earn in a month.
Answer:
46.3 hours of work to break even.
$1036.8 per month (4 weeks)
Step-by-step explanation:
First let's find how much Susan earns per hour.
She earns $0.004 per word, and she does 90 words per minute, so she will earn per minute:
0.004 * 90 = $0.36
Then, per hour, she will earn:
0.36 * 60 = $21.6
Now, to find how many hours she needs to work to earn $1000, we just need to divide this value by the amount she earns per hour:
1000 / 21.6 = 46.3 hours.
She works 4 hours a day and 3 days a week, so she works 4*3 = 12 hours a week.
If a month has 4 weeks, she will work 12*4 = 48 hours a month, so she will earn:
48 * 21.6 = $1036.8
Answer:
46.3 hours of work to break even.
$1036.8 per month (4 weeks)
Step-by-step explanation:
Convert.
5 days =
lao
hours
Answer:
120 Hours
Step-by-step explanation:
24 hours in a day
5 days
24 x 5 = 120