What is the average rate of change of the function over the interval x = 0 to x = 6? f(x)=2x−1 3x+5 Enter your answer, as a fraction, in the box.

Answers

Answer 1

Answer:

-11

Step-by-step explanation:

Our function is 2x-13x+5

2x-13x+5= -11x+5 F(0)= 5 and F(6)= -11*6+5 = -61 let m be the average change : m= (-61-5)/6= -11


Related Questions

The monthly profit for a company that makes decorative picture frames depends on the price per frame. The company determines that the profit is approximated by f(p)= -80p + 3440p -36,000, where p is the price per frame and f(p) is the monthly profit based on that price.

Requried:
a. Find the price that generates the maximum profit.
b. Find the maximum profit.
c. Find the price(s) that would enable the company to break even.

Answers

Answer:

a. $21.50

b. $980

c. $25 and $18

Step-by-step explanation:

a. The price that generates the maximum profit is

In this question we use the vertex formula i.e shown below:

[tex](-\frac{b}{2a}, f(-\frac{b}{2a} ))\\\\[/tex]

where a = -80

b = 3440

c = 36000

hence,

P-coordinate is

[tex](-\frac{b}{2a}, (-\frac{3440}{2\times -80} ))\\\\[/tex]

[tex]= \frac{3440}{160}[/tex]

= $21.5

b. Now The maximum profit could be determined by the following equation

[tex]f(p) = 80p^2 + 3440p - 36000\\\\f($21.5) = -80(21.5)^2 + 3440(21.5) - 36000\\\\[/tex]

= $980

c. The price that would enable the company to break even that is

f(p) = 0

[tex]f(p) = -80p^2 + 3440p - 36000\\\\-80p^2 + 3440p - 36000 = 0\\\\p^2 -43p + 450 = 0\\\\p^2 - 25p - 18p + 450p = 0\\\\p(p - 25) - 18(p-25) = 0\\\\(p - 25) (p - 18) = 0[/tex]

By applying the factoring by -50 and then divided it by -80 and after that we split middle value and at last factors could come

(p - 25) = 0 or (p - 18) = 0

so we can write in this form as well which is

p = 25 or p = 18

Therefore the correct answer is $25 and $18

You can model that you expect a 1.25% raise each year that you work for a certain company. If you currently make $40,000, how many years should go by until you are making $120,000? (Round to the closest year.)

Answers

Answer:

94 years

Step-by-step explanation:

We can approach the solution using the compound interest equation

[tex]A= P(1+r)^t[/tex]

Given data

P= $40,000

A=  $120,000

r=  1.25%= 1.25/100= 0.0125

substituting and solving for t we have

[tex]120000= 40000(1+0.0125)^t \\\120000= 40000(1.0125)^t[/tex]

dividing both sides by 40,000 we have

[tex](1.0125)^t=\frac{120000}{40000} \\\\(1.0125)^t=3\\\ t Log(1.0125)= log(3)\\\ t*0.005= 0.47[/tex]

dividing both sides by 0.005 we have

[tex]t= 0.47/0.005\\t= 94[/tex]

The foundation of a building is in the shape of a rectangle, with a length of 20 meters (m) and a width of 18 m. To the nearest meter, what is the distance from the top left corner of the foundation to the bottom right corner?

Answers

Answer:

27m

Step-by-step explanation:

It's the Pythagorean Theorem.

20^2+18^2=c^2

400+324=c^2

724=c^2

take the square root of both sides

26.9m=c

to the nearest meter = 27

please help me, i will give you brainliest

Answers

Answer:

52°i think

Step-by-step explanation:

148°-96°=52°

Answer:

The answer is below

Step-by-step explanation:

The answer is 52 degrees

The third option in the line

Hope the answer helps

plz give me correct answers ​

Answers

Answer:

Step-by-step explanation:

greatest number=8643

smallest number=3468

difference=8643-3468=5175

6.1.  DCCLVI

CDXCIV

(II) 74,746

asdasd I don't actually have a question I accidentally typed this
akjkdsk ak


asndansjawjk

Answers

Answer:

that's cool . . .

\is ok everyone makes mistakes

Kara categorized her spending for this month into four categories: Rent, Food, Fun, and Other. The amounts she spent in each category are pictured here. Rent $433 Food $320 Fun $260 Other $487 What percent of her total spending did she spend on Rent? % (Please enter your answer to the nearest whole percent.) What percent of her total spending did she spend on Food? % (Please enter your answer to the nearest whole percent.) What percent of her total spending did she spend on Fun? % (Please enter your answer to the nearest whole percent.)

Answers

Answer: Rent = 29%,  Food = 21%,    Fun = 17%

Step-by-step explanation:

Rent =     $433

Food =    $320

Fun =       $260

Other =   $487  

TOTAL = $1500

[tex]\dfrac{Rent}{Total}=\dfrac{433}{1500}\quad =0.2886\quad =\large\boxed{29\%}\\\\\\\dfrac{Food}{Total}=\dfrac{320}{1500}\quad =0.2133\quad =\large\boxed{21\%}\\\\\\\dfrac{Fun}{Total}=\dfrac{260}{1500}\quad =0.1733\quad =\large\boxed{17\%}[/tex]

Which of the following functions is graphed below

Answers

Answer:

the answer is C. y=[x-4]-2

Answer:

Step-by-step explanation:

Y=(x+4)-2

Use the data below, showing a summary of highway gas mileage for several observations, to decide if the average highway gas mileage is the same for midsize cars, SUV’s, and pickup trucks. Test the appropriate hypotheses at the α = 0.01 level.
n Mean Std. Dev.
Midsize 31 25.8 2.56
SUV’s 31 22.68 3.67
Pickups 14 21.29 2.76

Answers

Answer:

Step-by-step explanation:

Hello!

You need to test at 1% if the average highway gas mileage is the same for three types of vehicles (midsize cars, SUV's and pickup trucks) to compare the average values of the three groups altogether, you have to apply an ANOVA.

                n  |  Mean |  Std. Dev.

Midsize  | 31 |  25.8   |  2.56

SUV’s     | 31 |  22.68 |  3.67

Pickups  | 14 |  21.29  |  2.76

Be the study variables :

X₁: highway gas mileage of a midsize car

X₂: highway gas mileage of an SUV

X₃: highway gas mileage of a pickup truck.

Assuming these variables have a normal distribution and are independent.

The hypotheses are:

H₀: μ₁ = μ₂ = μ₃

H₁: At least one of the population means is different.

α: 0.01

The statistic for this test is:

[tex]F= \frac{MS_{Treatment}}{MS_{Error}}[/tex]~[tex]F_{k-1;n-k}[/tex]

Attached you'll find an ANOVA table with all its components. As you see, to manually calculate the statistic you have to determine the Sum of Squares and the degrees of freedom for the treatments and the errors, next you calculate the means square for both and finally the test statistic.

For the treatments:

The degrees of freedom between treatments are k-1 (k represents the amount of treatments): [tex]Df_{Tr}= k - 1= 3 - 1 = 2[/tex]

The sum of squares is:

SSTr: ∑ni(Ÿi - Ÿ..)²

Ÿi= sample mean of sample i ∀ i= 1,2,3

Ÿ..= grand mean, is the mean that results of all the groups together.

So the Sum of squares pf treatments SStr is the sum of the square of difference between the sample mean of each group and the grand mean.

To calculate the grand mean you can sum the means of each group and dive it by the number of groups:

Ÿ..= (Ÿ₁ + Ÿ₂ + Ÿ₃)/ 3 = (25.8+22.68+21.29)/3 = 23.256≅ 23.26

[tex]SS_{Tr}[/tex]= (Ÿ₁ - Ÿ..)² + (Ÿ₂ - Ÿ..)² + (Ÿ₃ - Ÿ..)²= (25.8-23.26)² + (22.68-23.26)² + (21.29-23.26)²= 10.6689

[tex]MS_{Tr}= \frac{SS_{Tr}}{Df_{Tr}}= \frac{10.6689}{2}= 5.33[/tex]

For the errors:

The degrees of freedom for the errors are: [tex]Df_{Errors}= N-k= (31+31+14)-3= 76-3= 73[/tex]

The Mean square are equal to the estimation of the variance of errors, you can calculate them using the following formula:

[tex]MS_{Errors}= S^2_e= \frac{(n_1-1)S^2_1+(n_2-1)S^2_2+(n_3-1)S^2_3}{n_1+n_2+n_3-k}= \frac{(30*2.56^2)+(30*3.67^2)+(13*2.76^2)}{31+31+14-3} = \frac{695.3118}{73}= 9.52[/tex]

Now you can calculate the test statistic

[tex]F_{H_0}= \frac{MS_{Tr}}{MS_{Error}} = \frac{5.33}{9.52}= 0.559= 0.56[/tex]

The rejection region for this test is always one-tailed to the right, meaning that you'll reject the null hypothesis to big values of the statistic:

[tex]F_{k-1;N-k;1-\alpha }= F_{2; 73; 0.99}= 4.07[/tex]

If [tex]F_{H_0}[/tex] ≥ 4.07, reject the null hypothesis.

If [tex]F_{H_0}[/tex] < 4.07, do not reject the null hypothesis.

Since the calculated value is less than the critical value, the decision is to not reject the null hypothesis.

Then at a 1% significance level you can conclude that the average highway mileage is the same for the three types of vehicles (mid size, SUV and pickup trucks)

I hope this helps!

Suppose we write down the smallest positive 2-digit, 3-digit, and 4-digit multiples of 9,8 and 7(separate number sum for each multiple). What is the sum of these three numbers?

Answers

Answer:

Sum of 2 digit = 48

Sum of 3 digit = 317

Sum of 4 digit = 3009

Total = 3374

Step-by-step explanation:

Given:

9, 8 and 7

Required

Sum of Multiples

The first step is to list out the multiples of each number

9:- 9,18,....,99,108,117,................,999

,1008

,1017....

8:- 8,16........,96,104,...............,992,1000,1008....

7:- 7,14,........,98,105,.............,994,1001,1008.....

Calculating the sum of smallest 2 digit multiple of 9, 8 and 7

The smallest positive 2 digit multiple of:

- 9 is 18

- 8 is 16

- 7 is 14

Sum = 18 + 16 + 14

Sum = 48

Calculating the sum of smallest 3 digit multiple of 9, 8 and 7

The smallest positive 3 digit multiple of:

- 9 is 108

- 8 is 104

- 7 is 105

Sum = 108 + 104 + 105

Sum = 317

Calculating the sum of smallest 4 digit multiple of 9, 8 and 7

The smallest positive 4 digit multiple of:

- 9 is 1008

- 8 is 1000

- 7 is 1001

Sum = 1008 + 1000 + 1001

Sum = 3009

Sum of All = Sum of 2 digit + Sum of 3 digit + Sum of 4 digit

Sum of All = 48 + 317 + 3009

Sum of All = 3374

What is the value of x in equation 1/3 (12x -24) = 16
Thank you

Answers

Answer:

The value of x is x = 6

Step-by-step explanation:

[tex]\frac{1}{3}(12x - 24) = 16\\ 12x - 24 = 48\\12x = 48+ 24\\12x = 72\\12/12 = x\\72/12 = 6\\x=6[/tex]

Hope this helped! :)

what is 9 - 4 1/12 ??? im so stupid smh

Answers

Answer:

4 11/12

Step-by-step explanation:

Well 9 - 4 1/12 is 4 11/12

When 440 junior college students were surveyed, 200 said they have a passport. Construct a 95% confidence interval for the proportion of junior college students that have a passport.

Answers

sample proportion: 190/425 = 0.45
ME = 1.96*sqrt[0.45*0.55/425] = 0.047
-----
95% CI: 0.45-0.047 < p < 0.45+0.047

The Confidence Interval is 0.403 < p < 0.497

What is Confidence Interval?

The mean of your estimate plus and minus the range of that estimate constitutes a confidence interval. Within a specific level of confidence, this is the range of values you anticipate your estimate to fall within if you repeat the test. In statistics, confidence is another word for probability.

Given:

Sample proportion =  190/425

                                = 0.45

Now, [tex]\mu[/tex] = 1.96 x √[0.45 x 0.55/425]

          [tex]\mu[/tex] = 0.047

So, 95% CI:

0.45-0.047 < p < 0.45+0.047

0.403 < p < 0.497

Learn more about Confidence Interval here:

https://brainly.com/question/24131141

#SPJ5

How do I construct bisectors, angles, & segments?

Answers

Answer:

Step-by-step explanation:

These come directly from my textbook, so I'm not sure if your teacher will accept this kind of work.

1. Angle construction:

Given an angle. construct an angle congruent to the given angle.

Given: Angle ABC

Construct: An angle congruent to angle ABC

Procedure:

1. Draw a ray. Label it ray RY.

2. Using B as center and any radius, draw an arc that intersects ray BA and ray BC. Label the points of intersection D and E, respectively.

3. Using R as center and the same radius as in Step 2, draw an arc intersecting ray RY. Label the arc XS, with S being the point where the arc intersects ray RY.

4. Using S as center and a radius equal to DE, draw an arc that intersects arc XS at a point Q.

5. Draw ray RQ.

Justification (for congruence): If you draw line segment DE and line segment QS, triangle DBE is congruent to triangle QRS (SSS postulate) Then angle QRS is congruent to angle ABC.

You can probably also Google videos if it's hard to imagine this. Sorry, construction is super hard to describe.

Prove that If A1, A2, ... , An and B1, B2,...,Bn are sets such that Aj ⊆ Bj for j = 1, 2, 3, ... , n, then ∪j=1nAj ⊆ ∪j=1nBj .

Answers

Answer:

This is proved using Proof by induction method. There are two steps in this method

Let P(n) represent the given statement  ∪ [tex]{ {{n} \atop {j=1}} \right.[/tex] [tex]A_{j}[/tex] ⊆ ∪ [tex]{ {{n} \atop {j=1}} \right.[/tex] [tex]B_{j}[/tex]

1. Basis Step: This step proves the given statement for n = 1

2. Induction step: The step proves that if the given statement holds for any given case n = k  then it should also be true for n = k + 1.

If the above two steps are true this means that given statement P(n) holds true for all positive n and the mathematical induction P(n): ∪ [tex]{ {{n} \atop {j=1}} \right.[/tex] [tex]A_{j}[/tex] ⊆ ∪ [tex]{ {{n} \atop {j=1}} \right.[/tex] [tex]B_{j}[/tex] is true.

Step-by-step explanation:

Basis Step:

For n = 1

∪[tex]{ {{n} \atop {j=1}} \right.[/tex] [tex]A_{j}[/tex] = ∪[tex]{ {{1} \atop {j=1}} \right.[/tex] [tex]A_{j}[/tex] = A₁ ⊆ B₁ = ∪[tex]{ {{1} \atop {j=1}} \right.[/tex] [tex]B_{j}[/tex] = ∪[tex]{ {{n} \atop {j=1}} \right.[/tex] [tex]B_{j}[/tex]

We show that

∪[tex]{ {{1} \atop {j=1}} \right.[/tex] [tex]A_{j}[/tex] = A₁ ⊆ B₁ = ∪[tex]{ {{1} \atop {j=1}} \right.[/tex] [tex]B_{j}[/tex]  for n = 1

Hence P(1) is true

Induction Step:

Let P(k) be true which means that we assume that:

for all k with k≥1, P(k): ∪[tex]{ {{k} \atop {j=1}} \right.[/tex] [tex]A_{j}[/tex] ⊆ ∪[tex]{ {{k} \atop {j=1}} \right.[/tex] [tex]B_{j}[/tex] is true

This is our induction hypothesis and we have to prove that P(k + 1) is also true

This means if ∪ [tex]{ {{n} \atop {j=1}} \right.[/tex] [tex]A_{j}[/tex] ⊆ ∪ [tex]{ {{n} \atop {j=1}} \right.[/tex] [tex]B_{j}[/tex] holds for n = k  then this should also hold for n = k + 1.

In simple words if P(k): ∪[tex]{ {{k} \atop {j=1}} \right.[/tex] [tex]A_{j}[/tex] ⊆ ∪[tex]{ {{k} \atop {j=1}} \right.[/tex] [tex]B_{j}[/tex] is true then ∪[tex]{ {{k+1} \atop {j=1}} \right.[/tex] [tex]A_{j}[/tex] ⊆ ∪[tex]{ {{k+1} \atop {j=1}} \right.[/tex] [tex]B_{j}[/tex] is also true

∪[tex]{ {{k+1} \atop {j=1}} \right.[/tex] [tex]A_{j}[/tex] = ∪[tex]{ {{k} \atop {j=1}} \right.[/tex] [tex]A_{j}[/tex] ∪ [tex]A_{k+1}[/tex]

           ⊆ ∪[tex]{ {{k} \atop {j=1}} \right.[/tex] [tex]B_{j}[/tex] ∪ [tex]A_{k+1}[/tex]                 As ∪[tex]{ {{k} \atop {j=1}} \right.[/tex] [tex]A_{j}[/tex] ⊆ ∪[tex]{ {{k} \atop {j=1}} \right.[/tex] [tex]B_{j}[/tex]

           ⊆ ∪[tex]{ {{k} \atop {j=1}} \right.[/tex] [tex]B_{j}[/tex] ∪ [tex]B_{k+1}[/tex]                 As  [tex]A_{k+1}[/tex] ⊆ [tex]B_{k+1}[/tex]

           =  ∪[tex]{ {{k+1} \atop {j=1}} \right.[/tex] [tex]B_{j}[/tex]

The whole step:

∪[tex]{ {{k+1} \atop {j=1}} \right.[/tex] [tex]A_{j}[/tex] = ∪[tex]{ {{k} \atop {j=1}} \right.[/tex] [tex]A_{j}[/tex] ∪ [tex]A_{k+1}[/tex] ⊆ ∪[tex]{ {{k} \atop {j=1}} \right.[/tex] [tex]B_{j}[/tex] ∪ [tex]A_{k+1}[/tex] ⊆ ∪[tex]{ {{k} \atop {j=1}} \right.[/tex] [tex]B_{j}[/tex] ∪ [tex]B_{k+1}[/tex] =  ∪[tex]{ {{k+1} \atop {j=1}} \right.[/tex] [tex]B_{j}[/tex]

shows that the P(k+1) also holds for ∪ [tex]{ {{n} \atop {j=1}} \right.[/tex] [tex]A_{j}[/tex] ⊆ ∪ [tex]{ {{n} \atop {j=1}} \right.[/tex] [tex]B_{j}[/tex]

hence P(k+1) is true

So proof by induction method proves that P(n) is true. This means

P(n): ∪ [tex]{ {{n} \atop {j=1}} \right.[/tex] [tex]A_{j}[/tex] ⊆ ∪ [tex]{ {{n} \atop {j=1}} \right.[/tex] [tex]B_{j}[/tex] is true

If Aequals[Start 2 By 2 Matrix 1st Row 1st Column 1 2nd Column negative 4 2nd Row 1st Column negative 4 2nd Column 5 EndMatrix ] and ABequals[Start 2 By 3 Matrix 1st Row 1st Column negative 10 2nd Column 1 3rd Column 9 2nd Row 1st Column 7 2nd Column negative 15 3rd Column 8 EndMatrix ]​, determine the first and second columns of B. Let Bold b 1 be column 1 of B and Bold b 2 be colum

Answers

Answer:

[tex]b_1=\left(\begin{array}{ccc}-3\\3\end{array}\right),b_2=\left(\begin{array}{ccc}-\dfrac{65}{11}\\\\-\dfrac{19}{11}\end{array}\right)[/tex]

Step-by-step explanation:

Given matrix A and AB below:

[tex]A=\left(\begin{array}{ccc}1&-4\\-4&5\end{array}\right)\\\\\\ AB=\left(\begin{array}{ccc}-10&1&9\\7&-15&8\end{array}\right)[/tex]

For the product AB to be a 2 X 3 matrix, B must be a 2 X 3 matrix.

Let matrix B be defined as follows

[tex]B=\left[\begin{array}{ccc}a&c&e\\b&d&f\end{array}\right][/tex]

Therefore:

[tex]\left(\begin{array}{ccc}1&-4\\-4&5\end{array}\right)\left(\begin{array}{ccc}a&c&e\\b&d&f\end{array}\right)=\left(\begin{array}{ccc}-10&1&9\\7&-15&8\end{array}\right)[/tex]

This results in the equations

a-4b=-10-4a+5b=7c-4d=1-4c+5d=-15

Solving the first two equations simultaneously

a-4b=-10  (a=-10+4b)

-4a+5b=7

Substitution of [tex]a=-10+4b[/tex] into the second equation

[tex]-4(-10+4b)+5b=7\\40-16b+5b=7\\-11b=-33\\b=3[/tex]

Recall that  [tex]a=-10+4b[/tex]

[tex]a=-10+4(3)=-10+7\\a=-3[/tex]

Solving the other two equations

c-4d=1 (c=1+4d)

-4c+5d=-15

Substitution of c=1+4d into the second equation

[tex]-4(1+4d)+5d=-15\\-4-16d+5d=15\\-11d=19\\d=-\dfrac{19}{11}\\ Recall: c=1+4d\\c=1+4(-\frac{19}{11})\\c=-\dfrac{65}{11}[/tex]

Therefore, we have:

[tex]a=-3, b=3, c=-\dfrac{65}{11}, d=-\dfrac{19}{11}[/tex]

Thus:

[tex]b_1=\left(\begin{array}{ccc}-3\\3\end{array}\right)\\\\\\b_2=\left(\begin{array}{ccc}-\dfrac{65}{11}\\\\-\dfrac{19}{11}\end{array}\right)[/tex]

Answer:

option c

Step-by-step explanation:

it is said that a computer repairman makes 25 dollars per hour

this column shows the right amount of money he earns per hour

Susan decides to take a job as a transcriptionist so that she can work part time from home. To get started, she has to buy a computer, headphones, and some special software. The equipment and software together cost her $1000. The company pays her $0.004 per word, and Susan can type 90 words per minute. How many hours must Susan work to break even, that is, to make enough to cover her $1000 start-up cost? If Susan works 4 hours a day, 3days a week, how much will she earn in a month.

Answers

Answer:

46.3 hours of work to break even.

$1036.8 per month (4 weeks)

Step-by-step explanation:

First let's find how much Susan earns per hour.

She earns $0.004 per word, and she does 90 words per minute, so she will earn per minute:

0.004 * 90 = $0.36

Then, per hour, she will earn:

0.36 * 60 = $21.6

Now, to find how many hours she needs to work to earn $1000, we just need to divide this value by the amount she earns per hour:

1000 / 21.6 = 46.3 hours.

She works 4 hours a day and 3 days a week, so she works 4*3 = 12 hours a week.

If a month has 4 weeks, she will work 12*4 = 48 hours a month, so she will earn:

48 * 21.6 = $1036.8

Answer:

46.3 hours of work to break even.

$1036.8 per month (4 weeks)

Step-by-step explanation:

ASAP NEED HELP PRETTY PLEASEAssuming that the petals of the flower are congruent, how many lines of symmetry does the figure have? A. 0 B. 4 C. 6 D. 8

Answers

Answer:

Hey there!

This flower has 8 lines of symmetry.

Hope this helps :)

For the binomial distribution with the given values for n and p, state whether or not it is suitable to use the normal distribution as an approximation. n = 24 and p = 0.6.

Answers

Answer:

Since both np > 5 and np(1-p)>5, it is  suitable to use the normal distribution as an approximation.

Step-by-step explanation:

When the normal approximation is suitable?

If np > 5 and np(1-p)>5

In this question:

[tex]n = 24, p = 0.6[/tex]

So

[tex]np = 24*0.6 = 14.4[/tex]

And

[tex]np(1-p) = 24*0.6*0.4 = 5.76[/tex]

Since both np > 5 and np(1-p)>5, it is  suitable to use the normal distribution as an approximation.

Find the point, Q, along the directed line segment AB that
divides AB into the ratio 2:3. The 2:3 ratio means that the line
should be broken up in to 5 equal sections (2 + 3 = 5). This
means that each of the 5 sections can be represented by the
expression AB/5. Therefore, the point that divides AB into the
ratio 2:3 is the distance (AB/5)(2) from A.

Answers

Answer:

Point Q is at a distance of 4.7 units from A.

Step-by-step explanation:

From the graph, AC = 10 units and BC = 6 units. Applying the Pythagoras theorem,

[tex]AB^{2}[/tex] = [tex]AC^{2}[/tex] + [tex]BC^{2}[/tex]

      = [tex]10^{2}[/tex] + [tex]6^{2}[/tex]

      = 100 + 36

     = 136

AB = [tex]\sqrt{136}[/tex]

AB = 11.6619

AB = 11.66

     ≅ 11.7 units

But point Q divides AB into ratio 2:3. Therefore:

AQ = [tex]\frac{2}{5}[/tex] × AB

     =  [tex]\frac{2}{5}[/tex] × 11.66

     = 4.664

AQ = 4.664

AQ ≅ 4.7 units

QB = [tex]\frac{3}{5}[/tex] × AB

     =  [tex]\frac{3}{5}[/tex] × 11.66

     = 6.996

QB  ≅ 7.0 units

So that point Q is at a distance of 4.7 units from A.

a bank teller has 340 one hundred dollar bills. how much money does the bank teller have?

Answers

Answer:

$34,000

Step-by-step explanation:

Since a one hundred dollar bill is equal to 100, we simply multiply 340 and 100 together:

340(100) = 34000

Which statement is true about the steps that Pablo used to simplify the expression?

Answers

can you provide the statements?

The solutions to the inequality y < to -x+1 sre shaded on the graph. Which point is a solution

Answers

Answer:  B.  (3,-2)

There are two ways to confirm this is the answer. The first is to note that (3,-2) is on the boundary, so it is part of the solution set. This only works if the boundary line is a solid line (as opposed to a dashed or dotted line).

The second way is to plug (x,y) = (3,-2) into the given inequality to find that

[tex]y \le -x+1\\\\-2 \le -3+1\\\\-2 \le -2[/tex]

which is a true statement. So this confirms that (3,-2) is in the solution set of the inequality.

Over the past several years, the proportion of one-person households has been increasing. The Census Bureau would like to test the hypothesis that the proportion of one-person households exceeds 0.27. A random sample of 125 households found that 43 consisted of one person. The Census Bureau would like to set α = 0.05. Use the critical value approach to test this hypothesis. Explain.

Answers

Answer:

For this case we can find the critical value with the significance level [tex]\alpha=0.05[/tex] and if we find in the right tail of the z distribution we got:

[tex] z_{\alpha}= 1.64[/tex]

The statistic is given by:

[tex]z=\frac{\hat p -p_o}{\sqrt{\frac{p_o (1-p_o)}{n}}}[/tex] (1)  

Replacing we got:  

[tex]z=\frac{0.344 -0.27}{\sqrt{\frac{0.27(1-0.27)}{125}}}=1.86[/tex]  

Since the calculated value is higher than the critical value we have enough evidence to reject the null hypothesis and we can conclude that the true proportion of households with one person is significantly higher than 0.27

Step-by-step explanation:

We have the following dataset given:

[tex] X= 43[/tex] represent the households consisted of one person

[tex]n= 125[/tex] represent the sample size

[tex] \hat p= \frac{43}{125}= 0.344[/tex] estimated proportion of  households consisted of one person

We want to test the following hypothesis:

Null hypothesis: [tex]p \leq 0.27[/tex]

Alternative hypothesis: [tex]p>0.27[/tex]

And for this case we can find the critical value with the significance level [tex]\alpha=0.05[/tex] and if we find in the right tail of the z distribution we got:

[tex] z_{\alpha}= 1.64[/tex]

The statistic is given by:

[tex]z=\frac{\hat p -p_o}{\sqrt{\frac{p_o (1-p_o)}{n}}}[/tex] (1)  

Replacing we got:  

[tex]z=\frac{0.344 -0.27}{\sqrt{\frac{0.27(1-0.27)}{125}}}=1.86[/tex]  

Since the calculated value is higher than the critical value we have enough evidence to reject the null hypothesis and we can conclude that the true proportion of households with one person is significantly higher than 0.27

Unit sales for new product ABC has varied in the first seven months of this year as follows: Month Jan Feb Mar Apr May Jun Jul Unit Sales 330 274 492 371 160 283 164 What is the (population) standard deviation of the data

Answers

Answer:

Approximately standard deviation= 108

Step-by-step explanation:

Let's calculate the mean of the data first.

Mean =( 330+ 274+ 492 +371 +160+ 283+ 164)/7

Mean= 2074/7

Mean= 296.3

Calculating the variance.

Variance = ((330-296.3)²+( 274-296.3)²+ (492-296.3)²+( 371-296.3)²+ (160-296.3)² (283-296.3)²+(164-296.3)²)/7

Variance= (1135.69+497.29+38298.49+5580.09+18577.69+176.89+17503.29)/7

Variance= 81769.43/7

Variance= 11681.347

Standard deviation= √variance

Standard deviation= √11681.347

Standard deviation= 108.080

Approximately 108

The line x + y - 6= 0 is the right bisector
of the segment PQ. If P is the point (4,3),
then the point Q is

Answers

Answer:

Therefore, the coordinates of point Q is (2,3)

Step-by-step explanation:

Let the coordinates of Q be(a,b)

Let R be the midpoint of PQ

Coordinates of R [tex]=(\frac{4+a}{2}, \frac{3+b}{2})[/tex]

R lies on the line x + y - 6= 0, therefore:

[tex]\implies \dfrac{4+a}{2}+ \dfrac{3+b}{2}-6=0\\\implies 4+a+3+b-12=0\\\implies a+b-5=0\\\implies a+b=5[/tex]

Slope of AR X Slope of PQ = -1

[tex]-1 \times \dfrac{b-3}{a-4}=-1\\b-3=a-4\\a-b=-3+4\\a-b=-1[/tex]

Solving simultaneously

a+b=5

a-b=-1

2a=4

a=2

b=3

Therefore, the coordinates of point Q is (2,3)

what is the product?
(x-3)(2x²-5x+1)
C) 2x³-11x²+16x-3 ​

Answers

Answer:

2x^3-11x^2+16x-3

Step-by-step explanation:

1) multiply each term inside the parentheses with all other terms:

(x*2x^2)=2x^3

x*-5x=-5x^2

x*1=x

-3*2x^2=-6x^2

-3*-5x=15x

and

-3*1=-3

so

2x^3-5x^2+x-6x^2+15x-3

is our equation

to simplify:

2x^3-11x^2+16x-3 is the answer

What is the simplified form of this expression?
(-3x^2+ 2x - 4) + (4x^2 + 5x+9)

OPTIONS
7x^2 + 7x + 5
x^2 + 7x + 13
x^2 + 11x + 1
x^² + 7x+5

Answers

Answer:

Option 4

Step-by-step explanation:

=> [tex]-3x^2+2x-4 + 4x^2+5x+9[/tex]

Combining like terms

=> [tex]-3x^2+4x^2+2x+5x-4+9[/tex]

=> [tex]x^2+7x+5[/tex]

what's the equivalent expression ​

Answers

Answer:

2^52

Step-by-step explanation:

(8^-5/2^-2)^-4 = (2^-15/2^-2)^-4= (2^-13)^-4= 2^((-13*(-4))= 2^52

consider the difference of squares identity a^2-2b^2=(a+b)(a-b)

Answers

Answer: a= 3x and b= 7

Step-by-step explanation:

^^

Other Questions
What was the experience of minority groups during the Great Depression? A. They experienced increased discrimination because of the competition for jobs. B. They received government assistance in starting their own businesses. C.They migrated to the Midwest and found success in farming. 1. Which of the following is NOT a result of convection current? a) The air in a room is cooled by an air conditioner b) Wind blows towards the beach from the sea. c) The water in a kettle is heated and boils d) The wax covering an iron rod melts when the rod is heated. An association of workers created to improve the working conditions and wages of its members is a Find the area of the shape shown below. In art, what is shade?A. The combination of a color with white to make it lighterB. The combination of a color with black to make it darkerC. The difference between one extreme and another, such as lightand dark or smooth and texturedD. A color's brightness or dullness, as well as shadows and contrastscreated with color Prepare the journal entries on December 31, 2019, for the 40 extended contracts (the first year of the revised 3-year contract). Which of these does not determine an ecosystem carrying capacity for a population? A. FoodB. Space C. Migration D. Water Please answer its urgent would be very helpful . Thank you so much ! If you start with 512 grams of aluminum and 1147 grams of copper chloride to make aluminum chloride and copper, what is the limiting reagent? 2Al + 3CuCl -> 2AlCl3 + 3Cu Can you solve this????? Super hard! the variables x and y are directly proportional , and y=4 when x=3 What is the name of the map maker who, according to some, gave Venezuela its name? Salvador Dali Christopher Colombus Amerigo Vespucci Leonardo Da Vinci What is 1/2 + 1/3 + 1/4 - (.2 +.3 +.4)? Express your solution as a simplified fraction. How was FDRs plan fitting in to the established condition (control by the wealthy) rather than giving the power back to the people (according to Zinn)? " A 10.0 mL sample of calcium hydroxide solution required 26.85 mL of 0.225 M hydrochloric acid for neutralization. The balanced equation is: Many thrust stages have passageways or tunnels that run into and under the audience to allow actors quick access to the stage. These are called procedure to find out if the penny is real copper with copper wire El numeral 32012(4) representado en el sistema decimal, porfavor **BRAINLIEST IF ANSWERED**Which equation represents a circle that has a diameter of 10 units and acenter at (4,-1)?(x+4)^2+(y+1)^2=5(x-4)^2+(y+1)^2=5(x-4)^2+(y+1)^2=25(x+4)^2+(y-1)^2=10 A box plot is shown below: *check file attached* What is the median and Q1 of the data set represented on the plot? A. Median = 30; Q1 = 20 B. Median = 33; Q1 = 20 C. Median = 30; Q1 = 25 D. Median = 33; Q1 = 25 what has amazing mountain landscapes with rapidly melting glaciers, tropical savannas for world-class safaris, beaches, and even deserts.