Answer:
It does not have an answer as 3x != 3x + 13 or not equalivalent
Step-by-step explanation:
Answer:
no solution
Step-by-step explanation:
3x+8=9+3x-14
Combine like terms
3x+8 = 3x -5
Subtract 3x from each side
8 = -5
This is never true so there is no solution
Write as an algebraic expression and simplify if possible:
A number that is 20% greater than b
Answer:
1.2b
Step-by-step explanation:
When we say, "a number that is 20% greater than b," we're talking about a number that is ...
b + 20%×b
= b + 0.20b
= b(1 + 0.20)
= 1.2b
An open box with no lid has a square base and four sides of equal height. The height is 4 inches
greater than the length and width (which are the same). What are the dimensions of the box if the
volume is 63 cubic inches and the surface area is 93 square inches?
PLEASE SHOW YOUR WORK:) THANK YOU SO MUCH
Answer:
width = length = 3 inches
height = 7 inches
Step-by-step explanation:
If x is the width and length of the base, and y is the height, then:
y = x + 4
The volume of the box is:
63 = x²y
The surface area of the box is:
93 = x² + 4xy
Substitute the first equation into the third.
93 = x² + 4x (x + 4)
93 = x² + 4x² + 16x
0 = 5x² + 16x − 93
0 = (x − 3) (5x + 31)
x = 3
y = 7
Use the second equation to check your answer.
63 = (3)²(7)
63 = 63
Answer:
Length=Width=3
Height=7.
Step-by-step explanation:
First, let's write some equations. So, we have an open box (with no lid) that has a square base. It has a height 4 units more of its width/length.
First, let's write the equation for the volume. The volume of a rectangular prism is:
[tex]V=lwh[/tex]
Recall that we have a square base. In other words, the length and width are exactly the same. Therefore, we can do the following substitution:
[tex]V=(w)wh=w^2(h)[/tex]
Now, recall that the height is four units more than the width/length. Therefore, we can make the following substitution:
[tex]V=w^2(w+4)\\63=w^2(w+4)[/tex]
We can't really do anything with this. Let's next find the equation for the surface area.
So, we have 5 sides (not 6 because we have no lid). The bottom side is a square, so it's area is w^2. Since we have a square base, the remaining four sides will have an area w(w+4). In other words:
[tex]93=w^2+4(w(w+4))[/tex]
The left term represents the area of the square base. The right term represents the area of one of the rectangular sides, times sides meaning four sides. Simplify:
[tex]93=w^2+4w^2+16w\\5w^2+16w-93=0[/tex]
This seems solvable. Let's try it. Trying factoring by guessing and checking.
We can see that it is indeed factor-able. -15 and 31 are the numbers:
[tex]5w^2-15w+31w-93=0\\5w(w-3)+31(w-3)=0\\(5w+3)(w-3)=0\\w=3\\h=w+4=7[/tex]
We ignore the other one because width cannot be negative.
So, the width/length is 3 and the height is 7. We can check this by plugging this into the volume formula:
[tex]63\stackrel{?}{=}(3)^2(7)\\63\stackrel{\checkmark}{=}63[/tex]
Which algebraic description maps the point (x, y) 8 units to the left and 12 units up? Question 14 options: A) (x, y) → (x – 8, y + 12) B) (x, y) → (x – 12, y + 8) C) (x, y) → (x + 12, y – 8) D) (x, y) → (x + 8, y – 12)
The algebraic description maps the point (x, y) 8 units to the left and 12 units up is (x, y) -> (x - 8, y +12)
Translation of coordinatesTranslation is the way of changing the position of an object on an xy plane.
If the coordinate points (x, y) is translated 8 units to the left and 12 units up, the resulting coordinate will be:
(x, y) -> (x - 8, y +12)
Hence the algebraic description maps the point (x, y) 8 units to the left and 12 units up is (x, y) -> (x - 8, y +12)
Learn more on translation here: https://brainly.com/question/3941912
#SPJ1
The radius of a nitrogen atom is 5.6 × 10-11 meters, and the radius of a beryllium atom is 1.12 × 10-10 meters. Which atom has a larger radius, and by how many times is it larger than the other?
Answer:
Beryllium, 2 times
Step-by-step explanation:
1.12×10⁻¹⁰ has a higher exponent than 5.6×10⁻¹¹.
-10 > -11
The ratio between them is:
(1.12×10⁻¹⁰) / (5.6×10⁻¹¹)
(1.12 / 5.6) (10⁻¹⁰ / 10⁻¹¹)
0.2 × 10¹
2
The manager of a grocery store took a random sample of 100 customers. The avg. length of time it took the customers in the sample to check out was 3.1 minutes with a std. deviation of 0.5 minutes. We want to test to determine whether or not the mean waiting time of all customers is significantly > 3 min. At 95% confidence, it can be concluded that the mean of the population is
Answer:
Step-by-step explanation:
The data given are;
sample size n = 100
sample mean x = 3.1
standard deviation σ = 0.5
mean = 3
The value for Z can be determined by using the formula:
[tex]Z = \dfrac{x - \mu}{\dfrac{\sigma}{\sqrt{n}}}[/tex]
[tex]Z = \dfrac{3.1 - 3.00}{\dfrac{0.5}{\sqrt{100}}}[/tex]
[tex]Z = \dfrac{0.1}{\dfrac{0.5}{10}}}[/tex]
Z = 0.2
At 95% Confidence interval, level of significance ∝ = 0.05
From the z table ;P- value for the test statistics at ∝ = 0.05
P = 0.0228
We can see that the P-value is < ∝
Decision Rule:
Reject the null hypothesis [tex]H_o[/tex] if P-value is less than ∝
Conclusion:
At 0.05 level of significance; we conclude that the mean of the population is significantly > 3 min
A private jet can fly 1,095 miles in 3 hours with a tailwind but only 987 miles in 3 hours into a headwind find the speed of the jet in still air
Answer:
The speed of the jet is 347 mph and the speed of the wind is 18 mph.
Step-by-step explanation:
We have the following:
x = the speed of the jet in still air.
y = the speed of the wind
we know that the speed is equal to:
v = d / t
therefore the distance would be:
d = v * t
if we replace with the information of the exercise we have:
3 * (x + y) = 1095
3 * (x - y) = 987
we must solve this system of equations, add both equations and we are left:
3 * x + 3 * y = 1095
3 * x - 3 * y = 987
3 * x + 3 * y + 3 * x - 3 * y = 1095 + 987
6 * x = 2082
x = 2082/6 = 347
now to calculate y, we replace:
3 * (347 + y) = 1095
1041 + 3 * y = 1095
3 * y = 1095 - 1041
y = 54/3 = 18
The speed of the jet is 347 mph and the speed of the wind is 18 mph.
What is the length of JM in the given figure?
Answer: B. 30
Step-by-step explanation:
When given a secant and a tangent, the formula is:
exterior of secant × secant = tangent²
KM × JK = LK²
10 × (JM + 10) = 20²
10JM + 100 = 400
10JM = 300
JM = 30
The diagram shows a right triangle and three squares. The area of the largest square is 55 units.
Which could be the areas of the smaller squares?
Choose all answers that apply:
A
12 and 43
B
14 and 40
16 and 37
Answer:
It's 12 and 43
Step-by-step explanation:
A square is a plane shape with equal length of sides, while a right triangle is a triangle that has one of its angles to be [tex]90^{o}[/tex]. Thus, the areas of the smaller squares could be:
A. 12 and 43
A square has equal length of sides, so that its area is given as:
Area of a square = length x length
= [tex]l^{2}[/tex]
For the largest square its area = 55 [tex]units^{2}[/tex], so that:
Area = [tex]l^{2}[/tex]
⇒ 55 = [tex]l^{2}[/tex]
l = [tex]\sqrt{55}[/tex]
Now applying the Pythagoras theorem to the right triangle, we have:
[tex]/Hyp/^{2}[/tex] = [tex]/Adj 1/^{2}[/tex] + [tex]/Adj 2/^{2}[/tex]
where hypotenuse = [tex]\sqrt{55}[/tex]
([tex]\sqrt{55}[/tex][tex])^{2}[/tex] = [tex]/Adj 1/^{2}[/tex] + [tex]/Adj 2/^{2}[/tex]
[tex]/Adj 1/^{2}[/tex] + [tex]/Adj 2/^{2}[/tex] = 55
Therefore, the addition of the areas of the smaller squares should be equal to that of the largest square.
Thus from the theorem above, the areas of the smaller squares could be 12 and 43.
i.e 12 + 43 = 55
Visit: https://brainly.com/question/18440758
Monica’s school band held a car wash to raise money for a trip to a parade in New York City. After washing 125 cars, they made $775 from a combination of $5.00 quick washes and $8.00 premium washes. This system of equations models the situation. x + y =125 5x + 8y = 775
Answer:
[tex] x+y = 125[/tex] (1)
[tex] 5x+8y = 775[/tex] (2)
We can solve for y from equation (1) and we got:
[tex] y = 125-x[/tex] (3)
And replacing (3) into (2) we got:
[tex] 5x +8(125-x) = 775[/tex]
And solving for x we got:
[tex] 1000-3x = 775[/tex]
[tex] 3x= 225[/tex]
[tex] x=75 [/tex]
And solving for y from (3) we got:
[tex] x= 125-75 =50[/tex]
And the solution would be x = 50 and y =75
Step-by-step explanation:
For this problem we have the following system of equations:
[tex] x+y = 125[/tex] (1)
[tex] 5x+8y = 775[/tex] (2)
We can solve for y from equation (1) and we got:
[tex] y = 125-x[/tex] (3)
And replacing (3) into (2) we got:
[tex] 5x +8(125-x) = 775[/tex]
And solving for x we got:
[tex] 1000-3x = 775[/tex]
[tex] 3x= 225[/tex]
[tex] x=75 [/tex]
And solving for y from (3) we got:
[tex] x= 125-75 =50[/tex]
And the solution would be x = 50 and y =75
Find the y-intercept and x-intercept of the line.
– 3x+9y= 14
Answer:
[tex]\huge\boxed{x-intercept=-\dfrac{14}{3}=-4\dfrac{2}{3}}\\\boxed{y-intercept=\dfrac{14}{9}=1\dfrac{5}{9}}[/tex]
Step-by-step explanation:
[tex]-3x+9y=14\\\\x-intercept\ \text{for}\ y=0:\\\\-3x+9(0)=14\\-3x+0=14\\-3x=14\qquad\text{divide both sides by (-3)}\\\boxed{x=-\dfrac{14}{3}=-4\dfrac{2}{3}}}[/tex]
[tex]y-intercept\ \text{for}\ x=0:\\\\-3(0)+9y=14\\0+9y=14\\9y=14\qquad\text{divide both sides by 9}\\\boxed{y=\dfrac{14}{9}=1\dfrac{5}{9}}[/tex]
Solve the proportion below.
X =
A. 24
B. 49
c. 27
D. 6
Answer:
A. 24
Step-by-step explanation:
4/9 = x/54
x= 54*4/9 ===== multiplying both sides by 54
x= 24
Answer is 24, choice A is correct one
Explain what a directed line segment is and describe how you would find the coordinates of point P along a directed line segment AB that partitions AB so that the ratio of AP to PB is 3:1.
Answer: see below
Step-by-step explanation:
In order to partition line segment AB so that AP and PB have a ratio of 3 : 1
1) Find the x- and y-lengths of the segment AB.
2) Divide the x- and y-lengths by (3 + 1) to find the length of one section.
3) Add 3 times those lengths to point A to find point P ...or...
Subtract 1 times those lengths from point B to find point P.
For example: Consider A = (0, 0) and B = (4, 8)
1) The length from A to B is
x = 4-0 = 4
y = 8-0 = 8
2) Divide those by (3 + 1):
x = 4/4 = 1
y = 8/4 = 2
3) Add 3 times those values to A to find point P:
x = 0 + 3(1) = 3
y = 0+3(2) = 6
--> P = (3, 6)
Note: We could have also subtracted 1 from the x-value of B and 2 from the y-value of B to find that point P = (4-1, 8-2) = (3, 6)
Now we know that the distance from point A to point P is 3 times the distance from point P to point B.
The Coffee Counter charges $8 per pound for Kenyan French Roast coffee and $7 per pound for Sumatran coffee.
How much of each type should be used to make a 20 pound blend that sells for $7.30 per pound?
Answer:
Kenyan French Roast coffee x=6
Sumatran coffee y=14
Step-by-step explanation:
x+y=20 blend coffee
8x+7y=7.3(20) selling price
x+y=20 ⇒ x=20-y
substitute in the equation:
8x+7y=7.3(20)
8(20-y)+7y=7.3(20) for 20 pound blend
160-8y+7y=146
-y=146-160
y=14 pond
x+y=20
x=20-14=6
check : 14*7+6(8)=146/7.3=20 pound
The price of the Kenyan French Roast coffee is $6 and the price of Sumatran coffee is $14.
Two equations can be derived from the question:
8x + 7y = 20(7.3)
8x + 7y = 146 equation 1
x + y = 20 equation 2
Where: x
x = Kenyan French Roast coffee
y = Sumatran coffee.
To determine the value of y, multiply equation 2 by 8
8x + 8y = 160 equation 3
Subtract equation 1 from 3
y = 14
Substitute for y in equation 2
x + 14 = 20
x = 20 - 14
x = 6
To learn more about simultaneous equations, please check: brainly.com/question/23589883
The area of a circle is found using the formula A=\pi r^(2) , where r is the radius. If the area of a circle is 36π square feet, what is the radius, in feet? A. 6 B. 6π C. 18 D. 9π
Answer:
A. 6 feetStep-by-step explanation:
[tex]A=\pi r^2\\Area = 36\pi\\r = ?\\36\pi = \pi r^2\\Divide \:both \:sides \:of\: the \:equation\: by\: \pi\\\frac{36\pi}{\pi} = \frac{\pi r^2}{\pi} \\r^2 = 36\\Find\: the\: square\: root\: of\: both\: sides\: \\\sqrt{r^2} =\sqrt{36} \\\\r = 6\: feet\\[/tex]
Amy have 398.5 L of apple juice . Avery have 40098 ml of apple juice how many do they have all together
Answer: 438.5L = 438000ml
Step-by-step explanation:
Enter a range of vaules for x
A range for the values of x:
-2, -1, 0, 1, 2,
Happy to help! You can certainly extend this range
A line has a slope of $-\frac{3}{7},$ and its $y$-intercept is $(0,18)$. What is its $x$-intercept?
Answer:
(42, 0)
Step-by-step explanation:
Since we know the slope and y-intercept we can write the equation of the line in slope-intercept form which is y = mx + b; therefore, the equation is y = -3/7x + 18. To find the x-intercept, we just plug in y = 0 which becomes:
0 = -3/7x + 18
-18 = -3/7x
x = 42
[tex]\text{In order to find your x intercept, plug in 0 to y and solve:}\\\\0=-\frac{3}{7}x+18\\\\\text{Subtract 18 from both sides}\\\\-18=-\frac{3}{7}x\\\\\text{Multiply both sides by 7}\\\\-126=-3x\\\\\text{Divide both sides by 3}\\\\42 = x\\\\\text{This means that the x-intercept is (42,0)}\\\\\boxed{\text{x-intercept: (42,0)}}[/tex]
6(a+2b+3c) USE THE DISTRIBUTIVE PROPERTY TO CREATE AN EQUIVALENT EXPRESSION!!!!!!!!
Answer:
6a + 12b + 18c
Step-by-step explanation:
To solve, we distribute the 6 to all of the terms inside the parentheses.
[tex]6*a\\6*2b\\6*3c\\6a+12b+18c[/tex]
Our answer is 6a + 12b + 18c. Hope this helps!
Vocabulary:
Distribute: Give shares of something. In math: Divide / give to each term (in this case)
Answer:
6a+12b+18c
Step-by-step explanation:
To create an equivalent expression, we must distribute the 6. Multiply each term inside of the parentheses by 6.
6(a+2b+3c)
(6*a)+(6*2b)+(6*3c)
6*a=6a
6a+(6*2b)+(6*3c)
6*2b=(6*2)b=12b
6a+12b+(6*3c)
6*3c=(6*3)c=18c
6a+12b+18c
The equivalent expression using the distributive property is 6a+12b+18c
A researcher predicts that the proportion of people over 65 years of age in a certain city is 11%. To test this, a sample of 1000 people is taken. Of this sample population, 126 people are over 65 years of age.
The following is the setup for this hypothesis test:
H0:p=0.11
Ha:p≠0.11
The p-value was determined to be 0.106.
Come to a conclusion and interpret the results for this hypothesis test for a proportion (use a significance level of 5%) Select all that apply:
a. Reject the H0.
b. Fail to reject the H0.
c. There is NOT sufficient evidence to conclude the proportion of people over 65 years of age in a certain city is 11%.
d. There is sufficient evidence to conclude the proportion of people over 65 years of age in a certain city is 11%.
Answer:
Option b and d
Step-by-step explanation:
With the following data,
H0:p=0.11
Ha:p≠0.11
The p-value was determined to be 0.106 and significance level of 0.05.
Since the p value (0.106) is great than 0.05, then we will fail to reject the null hypothesis and conclude that There is sufficient evidence to conclude the proportion of people over 65 years of age in a certain city is 11%
WHY CAN'T ANYONE HELP ME: ( Two computer disks and three notebooks cost $29. However, five computer disks and four notebooks cost $48. Find the price of each.
Answer:
Disks = $4 each and Notebooks = $7 each
Step-by-step explanation:
-4(2D + 3N = 29)
3(5D + 4N = 48)
-8D - 12N = -116
15D + 12N = 144
7D = 28
D = $4
2(4) + 3N = 29
8 + 3N = 29
3N = 21
N = $7
A regular polygon is drawn in a circle so that each vertex is on the circle and is connected to the center by a radius,
Each of the central angles has a measure of 40' How many sides does the polygon have?
8
9
010
O 12
Answer:
9 sides
Step-by-step explanation:
The formula for number of sides of a polygon with a given central angle
Number of sides = 360°/ central angle
In the above question, we were told that each of the central angles in the polygon ha a measure of 40°
Hence,
Number of sides = 360°/40°
9 sides.
Therefore, the number of sides that polygon in the above question has is 9 sides.
A cylinder with a base diameter of x units has a volume
of sex cubic units.
Which statements about the cylinder are true? Select
two options.
The radius of the cylinder is 2x units.
The area of the cylinder's base is 2-ox? square units.
The area of the cylinder's base is nexsquare units.
The height of the cylinder is 2x units.
The height of the cylinder is 4x units.
Answer:
(C) The area of the cylinder's base is [tex]\dfrac{1}{4} \pi x^2[/tex] square units.
(E)The height of the cylinder is 4x units.
Step-by-step explanation:
If the Base Diameter = x
Therefore: Base radius = x/2
Area of the Base
[tex]=\pi (x/2)^2\\=\dfrac{ \pi x^2}{4} $ square units[/tex]
Next, we know that:
The volume of a cylinder = Base Area X Height
[tex]\pi x^3=\dfrac{ \pi x^2}{4} \times Height\\Height =\pi x^3 \div \dfrac{ \pi x^2}{4}\\=\pi x^3 \times \dfrac{ 4}{\pi x^2}\\\\Height=4x$ units[/tex]
Therefore, the correct options are: C and E.
Learn more: https://brainly.com/question/16856757
We wish to estimate what percent of adult residents in a certain county are parents. Out of 500 adult residents sampled, 175 had kids. Based on this, construct a 99% confidence interval for the proportion p of adult residents who are parents in this county. Express your answer in tri-inequality form. Give your answers as decimals, to three places.
Answer:
The 99% confidence interval is [tex]0.3003 < I < 0.3997[/tex]
Step-by-step explanation:
From the question we are told that
The sample size is [tex]n = 500[/tex]
The the number that are parents x = 175
The proportion of parents is mathematically represented as
[tex]\r p = \frac{x}{n}[/tex]
substituting values
[tex]\r p = \frac{175}{500}[/tex]
[tex]\r p = 0.35[/tex]
The level of confidence is given as 99% which implies that the level of significance is
[tex]\alpha = 100 - 99[/tex]
[tex]\alpha =[/tex]1%
[tex]\alpha = 0.01[/tex]
The critical value for this level of significance is obtained from the table of critical value as
[tex]t_{x, \alpha } = t_{175, 0.05} = 2.33[/tex]
Generally the margin of error is mathematically evaluated as
[tex]M =\frac{ t_{175, 0.01 } * \sqrt{\r p (1-\r p)} }{\sqrt{n} }[/tex]
substituting values
[tex]M =\frac{ 2.33 * \sqrt{\r 0.35 (1-0.35)} }{\sqrt{500} }[/tex]
[tex]M = 0.0497[/tex]
Generally the 99% confidence interval is mathematically represented as
[tex]I = \r p \pm M[/tex]
[tex]\r p -M < I < \r p + M[/tex]
substituting values
[tex]0.35 -0.0497 < I < 0.35 + 0.0497[/tex]
[tex]0.3003 < I < 0.3997[/tex]
Need help with trig questions
Answer:
-8 i + 19 j , 105.07°
Step-by-step explanation:
Solution:
- Define two unit vectors ( i and j ) along x-axis and y-axis respectively.
- To draw vectors ( v and w ). We will move along x and y axes corresponding to the magnitudes of unit vectors ( i and j ) relative to the origin.
Vector: v = 2i + 5j
Mark a dot or cross at the originMove along x-axis by 2 units to the right ( 2i )Move along y-axis by 5 units up ( 5j )Mark the point.Connect the origin with the marked point determined aboveMake an arrow-head at the determined pointLies in first quadrant
Vector: w = 4i - 3j
Mark a dot or cross at the originMove along x-axis by 4 units to the right ( 4i )Move along y-axis by 3 units down ( -3j )Mark the point.Connect the origin with the marked point determined aboveMake an arrow-head at the determined pointLies in 4th quadrant- The algebraic manipulation of complex numbers is done by performing operations on the like unit vectors.
[tex]2*v - 3*w = 2* ( 2i + 5j ) - 3*(4i - 3j )\\\\2*v - 3*w = ( 4i + 10j ) + ( -12i + 9j )\\\\2*v - 3*w = ( 4 - 12 ) i + ( 10 + 9 ) j\\\\2*v - 3*w = ( -8 ) i + ( 19 ) j\\[/tex]
- To determine the angle ( θ ) between two vectors ( v and w ). We will use the " dot product" formulation as follows:
v . w = | v | * | w | * cos ( θ )
v . w = < 2 , 5 > . < 4 , -3 > = 8 - 15 = -7
[tex]| v | = \sqrt{2^2 + 5^2} = \sqrt{29} \\\\| w | = \sqrt{4^2 + 3^2} = 5\\\\[/tex]
- Plug the respective values into the dot-product formulation:
cos ( θ ) = [tex]\frac{-7}{5\sqrt{29} }[/tex]
θ = 105.07°
hi if anyone is good with extraneous solutions pleaseeeeeee help meeee tessa solves the equation below by first squaring both sides of the equation√x^2-3x-6=x-1 what extraneous solution does tessa obtain x=
Answer:
x = -7/5
Step-by-step explanation:
If we square both sides of the equation, we get:
[tex]\sqrt{x^2-3x-6}=x-1\\ (\sqrt{x^2-3x-6})^2=(x-1)^2\\x^2-3x-6=x^2-2x+1\\[/tex]
Then, solving for x, we get:
[tex]x^2-3x-6=x^2-2x+1\\-3x-6=2x+1\\-6-1=2x+3x\\-7=5x\\\frac{-7}{5}=x[/tex]
So, x is equal to -7/5
Answer:
its -7
Step-by-step explanation:
gots it right!
Simplify the expression.
Write your answer without negative exponents. NEED AN ANSWER ASAP
Answer:
[tex]\boxed{\frac{-3b^4 }{a^6 }}[/tex]
Step-by-step explanation:
[tex]\frac{-18a^{-8}b^{-3}}{6a^{-2}b^{-7}}[/tex]
[tex]\frac{-18}{6} \times \frac{a^{-8}}{a^{-2}} \times \frac{b^{-3}}{b^{-7}}[/tex]
[tex]-3 \times \frac{a^{-8}}{a^{-2}} \times \frac{b^{-3}}{b^{-7}}[/tex]
Apply the law of exponents, when dividing exponents with same base, we subtract the exponents.
[tex]-3 \times a^{-8-(-2)} \times b^{-3- (-7)}[/tex]
[tex]-3 \times a^{-8+2} \times b^{-3+7}[/tex]
[tex]-3 \times a^{-6} \times b^{4}[/tex]
[tex]{-3a^{-6}b^{4}}[/tex]
The answer should be without negative exponents.
[tex]a^{-6}=\frac{1}{a^6 }[/tex]
[tex]\frac{-3b^4 }{a^6 }[/tex]
Answer:
[tex] - \frac{3 {b}^{4} }{ {a}^{6} } [/tex]Step-by-step explanation:
[tex] \frac{ - 18 {a}^{ - 8} {b}^{ - 3} }{6 {a}^{ - 2} {b}^{ - 7} } [/tex]
Reduce the fraction with 6
[tex] \frac{ - 3 {a}^{ - 8} {b}^{ - 3} }{ {a}^{ - 2} {b}^{ - 7} } [/tex]
Simplify the expression
[tex] \frac{ - 3 {b}^{4} }{ {a}^{6} } [/tex]
Use [tex] \frac{ - a}{b} = \frac{a}{ - b} = - \frac{a}{b \: } [/tex] to rewrite the fraction
[tex] - \frac{3 {b}^{4} }{ {a}^{6} } [/tex]
Hope this helps...
Best regards!!
Multiply (x2 + 3x + 4)(3x2 - 2x + 1).
Answer:
The answer is
3x⁴ + 7x³ + 7x² - 5x + 4Step-by-step explanation:
(x² + 3x + 4)(3x² - 2x + 1)
Expand the terms
We have
3x⁴ - 2x³ + x² + 9x³ - 6x² + 3x + 12x² - 8x + 4
Group like terms
That's
3x⁴ - 2x³ + 9x³ + x² - 6x² + 12x² + 3x - 8x + 4
Simplify
We have the final answer as
3x⁴ + 7x³ + 7x² - 5x + 4Hope this helps you
which is bigger 4 or
[tex] \frac{12}{7} [/tex]
obviously 4 is bigger coz 12/7 will yeild you 1.71
What is the output of the function f(x) = x + 21 if the input is 4?
When the input is 4, the output of f(x) = x + 21.
Work Shown:
Replace every x with 4. Use the order of operations PEMDAS to simplify
f(x) = x + 21
f(4) = 4 + 21
f(4) = 25
The input 4 leads to the output 25.
Points A,B,C and D are midpoints of the sides of the larger square. If the smaller square has area 60, what is the area of the bigger square?
Answer:
80
Step-by-step explanation: