Answer: n=2
Step-by-step explanation: 4n-2n=4
4(2)-2(2)=
8-4=4
Answer:
n=2
Step-by-step explanation:
Step by Step Solution:
More Icon
Rearrange:
Rearrange the equation by subtracting what is to the right of the equal sign from both sides of the equation :
4*n-2*n-(4)=0
Step by step solution :
STEP
1
:
Pulling out like terms
1.1 Pull out like factors :
2n - 4 = 2 • (n - 2)
Equation at the end of step
1
:
STEP
2
:
Equations which are never true
2.1 Solve : 2 = 0
This equation has no solution.
A a non-zero constant never equals zero.
Solving a Single Variable Equation:
2.2 Solve : n-2 = 0
Add 2 to both sides of the equation :
n = 2
GO DEEPER
In the last six months, Sonia's family used 456, 398,655, 508,
1,186, and 625 minutes on their cell phone plan. In an effort to spend less
time on the phone each month, Sonia's family wants to try and keep the
mean cell phone usage at 600 minutes or less. Over the last 6 months,
by how many minutes did the mean number of minutes exceed their goal?
Answer:
46
Step-by-step explanation:
Suppose you toss a coin 100 times and get 65 heads and 35 tails. Based on these results, what is the probability that the next flip results in a tail?
Answer:
[tex] P(Head) = \frac{65}{100}=0.65[/tex]
[tex] P(Tail) = \frac{35}{100}=0.35[/tex]
And for this case the probability that in the next flip we will get a tail would be:
[tex] P(Tail) = \frac{35}{100}=0.35[/tex]
Step-by-step explanation:
For this case we know that a coin is toss 100 times and we got 65 heads and 35 tails.
We can calculate the empirical probabilities for each outcome and we got:
[tex] P(Head) = \frac{65}{100}=0.65[/tex]
[tex] P(Tail) = \frac{35}{100}=0.35[/tex]
And for this case the probability that in the next flip we will get a tail would be:
[tex] P(Tail) = \frac{35}{100}=0.35[/tex]
Which equation is a function of x?
Answer:
x" means that the value of y depends upon the value of x, so: y can be written in terms of x (e.g. y = 3x ). If f(x) = 3x, and y is a function of x (i.e. y = f(x) ), then the value of y when x is 4 is f(4), which is found by replacing x"s by 4"s . this should help I asked my brother for the answer and he told me to put this happy to help :0
I paid twice as much by not waiting for a sale and not ordering on line. Which ofthe following statements is also true?
(a) I paid 200% more than I could have online and on sale.
(b) I paid 100% of what I could have online and on sale.
(c) I paid 200% of what I could have online and on sale.
(d) I paid 3 times what I could have online and on sale.
Answer:
Option (c).
Step-by-step explanation:
It is given that, I paid twice as much by not waiting for a sale and not ordering online.
Let the cost of items ordering online be x.
So, now i am paying twice of x = 2x
Now, we have find 2x is what percent of x.
[tex]Percent =\dfrac{2x}{x}\times 100=200\%[/tex]
It means, I paid 200% of what I could have online and on sale.
Therefore, the correct option is (c).
Macy is trying to construct an isosceles triangle. She assigns an angle measurement of 40° to the unique angle of the triangle. She wants the length of the opposite side (the base) to be 6 centimeters. How many isosceles triangles can Macy construct using this information?
Answer:
https://brainly.com/question/8847227
Step-by-step explanation:
Solve 3v2 – 84 = 0, where v is a real number.
Round your answer to the nearest hundredth.
If there is more than one solution, separate them with commas.
If there is no solution, click on "No solution".
Answer:
The given equation has two solutions
[tex]v = (-5.29, \: 5.29)[/tex]
Step-by-step explanation:
The given equation is
[tex]3v^2 - 84 = 0[/tex]
Let’s solve the equation
[tex]3v^2 - 84 = 0 \\\\3v^2 = 84 \\\\v^2 = \frac{84}{3} \\\\v^2 = 28 \\\\[/tex]
Take the square root on both sides
[tex]\sqrt{v^2} = \sqrt{28} \\\\v = \sqrt{28} \\\\v = \pm 5.29 \\\\[/tex]
So the equation has two solutions
[tex]v = (-5.29, \: 5.29)[/tex]
Also refer to the attached graph of the equation where you can verify that the equation has two solutions.
Note:
It is a very common mistake to consider only the positive value and not the negative value.
Consider the square root of 25
[tex]\sqrt{25} = \pm 5 \\\\Since \\\\5 \times 5 = 25 \\\\-5 \times -5 = 25 \\\\[/tex]
That is why we have two solutions for the given equation.
What is 6 1/2 subtracted by 2 2/3
Answer:
The answer to this equation is 3 5/6
Step-by-step explanation:
in order to solve this problem, we must first turn these fractions into improper fractions. We can do this by multiplying the base number with the denominator and adding the numerator to that number.
6 1/2 = 13/2
2 2/3 = 8/3
Now, set up your equation.
13/2 - 8/3
Change the denominators to the same number so it will be easier to subtract.
39/6 - 16/6
Now subtract.
23/6 = 3 5/6
Answer:
3 5/6
Step-by-step explanation:
6 1/2 - 2 2/3 = 13/2 - 8/3
(39 - 16)/6 = 23/6 = 3 5/6
Suggest changing to “On the graph of an exponential function representing growth, what happens to the slope of the graph as x increases?”
Answer:
If we have a growing exponential relation, we can write it as:
f(x) = A*r^x
Where A is the initial amount, r is the rate of growth, in this case, r > 1 (because is a growing exponential relation)
Now, the "slope" of the graph in x, is equal to the derivate of f(x) in that point, and we have:
f'(x) = A*(r^x)*ln(r)
Now, remember that r > 1, then ln(r) > 0.
then, f'(x) is a growing function as x grows, and f'(x) grows exponentially, this means that the slope of the graph also grows exponentially as x grows.
Consider the function g(x) = x^12. Describe the range of the function.
Answer:
0 ≤ g(x) < ∞
Step-by-step explanation:
The range is all non-negative numbers.
___
g(x) is an even-degree polynomial with a positive leading coefficient, so it opens upward. There is no added constant, so its minimum value is zero. The function can take on all values zero or greater.
range: [0, ∞)
A hiker starting at point P on a straight road wants to reach a forest cabin that is 2 km from a point Q, 3 km down the road from P . She can walk 8 km/hr along the road but only 3 km/hr through the forest. She wants to minimize the time required to reach the cabin. How far down the road should she walk before setting off through the forest straight for the cabin?
Answer:
2.19 km
Step-by-step explanation:
If x is the distance she walks down the road before turning, then the total time is:
t = x/8 + √((3 − x)² + 2²) / 3
t = x/8 + √(9 − 6x + x² + 4) / 3
24t = 3x + 8√(13 − 6x + x²)
24t = 3x + 8(13 − 6x + x²)^½
Take derivative of both sides with respect to x.
24 dt/dx = 3 + 4(13 − 6x + x²)^-½ (-6 + 2x)
When t is a minimum, dt/dx = 0.
0 = 3 + 4(13 − 6x + x²)^-½ (-6 + 2x)
-3 = 4(13 − 6x + x²)^-½ (-6 + 2x)
3 / (6 − 2x) = 4(13 − 6x + x²)^-½
3 / (24 − 8x) = (13 − 6x + x²)^-½
(24 − 8x) / 3 = (13 − 6x + x²)^½
(24 − 8x)² / 9 = 13 − 6x + x²
576 − 384x + 64x² = 117 − 54x + 9x²
459 − 330x + 55x² = 0
Solve with quadratic formula.
x = [ 330 ± √((-330)² − 4(55)(459)) ] / 2(55)
x = (330 ± √7920) / 110
x = 2.19 or 3.81
Since 0 < x < 3, x = 2.19.
Ujalakhan01! Please help me! ASAP ONLY UJALAKHAN01. What's (x-1)(x-1)?
Answer:
x^2-2x+1
Step-by-step explanation:
We can solve this by using FOIL
First, Outside, Inside, Last
Multiply the x with the x to get x^2
Then x times -1 for the outside numbers to get -x
Then -1 times x for the inside numbers to get -x
And finally -1 and -1 for the last numbers to get 1
Add the two -x to get -2x.
Put it all together
x^2-2x+1
Answer:
[tex]x^2-2x+1[/tex]
Step-by-step explanation:
=> (x-1)(x-1)
USING FOIL
=> [tex]x^2-x-x+1[/tex]
=> [tex]x^2-2x+1[/tex]
The kitchen is 15 feet wide and wight 18ft long. How many 12 inch Square tiles will it take to tile the kitchen floor?
Answer:
270 tiles.
Step-by-step explanation:
The kitchen is 15 x 18 feet. If we multiply we find the area is 270 square feet. one square foot is a 12 x 12 inch square, so we can fit one tile per square foot, giving us 270 tiles.
what is the solution of
[tex] \sqrt{ {x}^{2} + 49 = x + 5[/tex]
Answer:
x = 2.4
Step-by-step explanation:
We assume you intend ...
[tex]\sqrt{x^2+49}=x+5\\\\x^2+49=x^2+10x+25\qquad\text{square both sides}\\\\24=10x\qquad\text{subtract $x^2+25$}\\\\\boxed{2.4=x}\qquad\text{divide by 10}[/tex]
A bowl has 85 pieces of candy. Nineteen children empty the bowl of candy. Some children take 3 pieces, some children take 5 pieces, and 1 child takes 7 pieces of candy. How many children take 3 pieces of candy?
Answer:
6
Step-by-step explanation:
12*5=60
6*3=18
1*7=7
hope this help
Three girls of a group of eight are to be chosen. In how many ways can this be done?
Answer:
Step-by-step explanation:
8P3=8*7*6=336
S=4LW+2WH;S+=136,L6,W=4 WHAT IS H
Answer:
H=5
Step-by-step explanation:
Answer:
5
Step-by-step explanation:
S=4lw+2wh
Put S as 136, l as 6, w as 4, and solve for h.
136 = 4(6)(4)+2(4)H
136 = 8h + 96
-8h = 96 - 136
-8h = -40
h = -40/-8
h = 5
Help me with this problem, thank you<3
Answer:
1,050 workers
Step-by-step explanation:
25% = 0.25
0.25 × 1400 = 350
1400 - 350 = 1050
Hope this helps.
The length of a rectangle is 3 yd longer than its width. If the perimeter of the rectangle is 62 yd, find its width and length
Answer:
Length=17 yds, Width=14 yds
Step-by-step explanation:
62=x+x+(x+3)+(x+3)
4x+6=62
4x=56
x=14
x+3=17
Which is NOT supported by this graph?
30
25
20
15
10
Profit
5
(dollars)
0
-10
-15
Cars Washed
Answer:
D -price of car wash keeps getting higher
Answer: The price of a car wash keeps getting higher
Step-by-step explanation:
A farmer is building a fence to enclose a rectangular area consisting of two separate regions. The four walls and one additional vertical segment (to separate the regions) are made up of fencing, as shown below. A rectangular area consisting of two separated regions. If the farmer has 162 feet of fencing, what are the dimensions of the region which enclose the maximal areas?
Answer:
The maximal area will be "1093.5 square feet".
Step-by-step explanation:
Let,
Length = L feet
Breadth = b feet
Given Total fencing = 162 feet
According to the question,
[tex](2\times L)+(3\times b)=162[/tex]
[tex]2L+3B=162[/tex]
[tex]L=\frac{162-3b}{2}[/tex]
[tex]L=81-\frac{3}{2}b[/tex]
As we know,
[tex]Area=Length\times breadth[/tex]
[tex]=(81-\frac{3}{2}b)\times b[/tex]
[tex]=81b-\frac{3}{2}b^2[/tex]
Now, we required to decrease or minimize the are. So for extreme points:
[tex]\frac{dA}{db}=0[/tex]
or,
[tex]\frac{dA}{dB}=\frac{d}{db}(81-\frac{3}{2}b^2 )=0[/tex]
[tex]81-\frac{3}{2}\times 2\times b=0[/tex]
[tex]b=\frac{81}{3}[/tex]
[tex]b=27 \ feet[/tex]
Now on putting the value of b, we get
[tex]l=81-\frac{3}{2}\times 27[/tex]
[tex]=81-40.5[/tex]
[tex]=40.5 \ feet\\[/tex]
So that the dimensions will be:
⇒ 40.5 feet by 27 feet
Therefore when the dimension are above then the area will be:
= [tex]81\times 27-\frac{3}{2}\times 27\times 27[/tex]
= [tex]2187-\frac{3}{2}\times 729[/tex]
= [tex]2187-1093.5[/tex]
= [tex]1093.5 \ square \ feet[/tex]
Find the Prime factors of 1729. Arrange the factors in ascending order. Find a relation between
consecutive prime factors
Answer:
prime factors in ascending order of 1729 is 7 , 13 , 19
relation between consecutive prime factors is 6
Step-by-step explanation:
given data
number = 1729
solution
we get here factors of 1729
1729 = 7 × 13 × 19
so that required prime factors in ascending order of 1729 is 7 , 13 , 19
and
now we get relation between these prime factors is the difference between consecutive prime factors is
13 - 7 = 6
19 - 13 = 6
so relation between consecutive prime factors is 6
Step-by-step explanation:
Prime factors of the number 1729 are 7,13,19
i.e. 1729 =7×13×19
The factors in ascending order are 7,13,19.
Clearly we can see that each consecutive prime factors have difference of 6.
13-7=6
19-13=6
Please answer this correctly
Answer:
1/5
Step-by-step explanation:
The number 5 or greater than 4 is 5.
1 number out of 5 total parts.
= 1/5
P(5 or greater than 4) = 1/5
I NEED HELP PLEASE, THANKS! Use Cramer's Rule to find the solution of the system of linear equations, if a unique solution exists. –5x + 2y – 2z = 26 3x + 5y + z = –22 –3x – 5y – 2z = 21 A. (–1, –7, 2) B. (–6, –1, 1) C. (–1, 3, 1) D. no unique solution
Answer:
Option B
Step-by-step explanation:
We are given the following system of equations -
[tex]\begin{bmatrix}-5x+2y-2z=26\\ 3x+5y+z=-22\\ -3x-5y-2z=21\end{bmatrix}[/tex]
Now by Cramer's Rule, we would first write down the matrix of the coefficients , replacing each column with the answer column -
[tex]\begin{bmatrix}-5&2&-2\\ 3&5&1\\ -3&-5&-2\end{bmatrix}[/tex] ,
[tex]\begin{bmatrix}26\\ -22\\ 21\end{bmatrix}[/tex]
Replace each column of the coefficients shown at the top, with the answer column at the bottom respectively -
[tex]\begin{bmatrix}-5&2&26\\ 3&5&-22\\ -3&-5&21\end{bmatrix}[/tex]
Now solve through Cramer's Rule -
x = Dx / D = - 6,
y = Dy / D = - 1,
z = Dz / D = 1
Solution = ( - 6, - 1, 1 ) = Option B
-5 x + 2 y - 2 z = 263 x + 5 y + z = -22 - 3 x - 5 y - 2 z = 21
Answer is x=-6,\:z=1,\:y=-1
the principal p is borrowed at a simple interest rate r for a period of time t. find the simple interest owed for the use of the money
Answer:
The simple interest is Prt
The simple interest on the money will be $24300
Step-by-step explanation:
The complete question is shown below
The principal P is borrowed at simple interest rate r for a period of time t. Find the simple interest owed for the use of the money. Assume 360 days in a year. P=$18,000, r=7.5%, t=18 months
Principal = P
Interest rate = r
Time period = t
simple interest owed for the use of the money will be gotten as below
The percentage of the principal that will be owed per unit period is the rate r
The total rate that it will be involved in this time period will be the product of the rate and the time = r x t = rt
Finally, to know the amount of interest that this rate will result to, we multiply the total rate in the time period by the original principal borrowed
Total interest = Prt
For a simple interest on the principal P = $18,000,
the interest rate = 7.5% = 7.5/100 = 0.075,
time period = 18 months
we assume the interested is calculated on a monthly basis
Simple interest = Prt
==> 18000 x 0.075 x 18 = $24300
Line segment ON is perpendicular to line segment ML. What is the length of segment NP?
Answer:
2 units.
Step-by-step explanation:
In this question we use the Pythagorean theorem which is shown below:
Given that
The right triangle OMP
The hypotenuse i.e OM is the circle radius =5 units.
The segment MP = 4 units length
Therefore
[tex]OP^2 + MP^2 = OM^2[/tex]
[tex]OP^2 + 4^2 = 5^2[/tex]
[tex]OP^2 + 16 = 25[/tex]
So OP is 3
Now as we can see that ON is also circle radius so it would be 5 units
And,
ON = OP + PN
So,
PN is
= ON - OP
= 5 units - 3 units
= 2 units
Answer:
2
Step-by-step explanation:
Explain the importance of factoring.
Answer:
Factoring is a useful skill in real life. Common applications include: dividing something into equal pieces, exchanging money, comparing prices, understanding time, and making calculations during travel.
Sorry if this is a little wordy, I can get carried away with this sort of thing
anyway, hope this helped and answered your question :)
b. Parallelogram PQRS has base RS=14 m and an area of 70 m². What is the height of
the parallelogram?
Rs=14m and an area of 70m2
Answer
h = 5m
Step-by-step explanation:
area of a parallelogram is b * h
base = 14 m
h = ?
Area = 70 m²
Area = b * h
70 = 14 * h
h = 70 / 14
h = 5 m
The population of the city of Peachwood is currently 12,000 and increases every year at a rate of 5%. The function that describes the model is ƒ(x) = 12000 • 1.05x. Which of the following choices would be the number of people in the city after one year?
Answer: 12600
Step-by-step explanation:
We are given the function that f(x) = 12000 * 1.05x
the x in f(x) is the amount of years that passed in the city of Peachwood, and the f(x) is the total population of Peachwood
These are two key elements in this function,
Therefore after 1 year the equation would be f(1) = 12000*1.05(1)
or f(1) = 12600
Please answer question now in two minutes
Answer:
V lies in the exterior of <STU.
Step-by-step explanation:
V lies in the exterior of <STU.
Drag each equation to show if it could be a correct first step to solving the equation 2(x+7) =36
Answer:
(2.x) + (2.7) = 36
Step-by-step explanation:
Solving the given equation with the distributive property,
A(B + C) = (A.B) + (A.C)
So that,
2(x+7) = 36
(2.x) + (2.7) = 36
2x + 14 = 36
2x = 36 - 14
2x = 22
x = 11
From the given expressions, the option that is the correct first step to solving this equation is;
(2.x) + (2.7) = 36
Answer:
Here you go
Step-by-step explanation: