What is the angle of refraction? A layer of water (n = 1.333) floats on carbon tetrachloride (n = 1.461) contained in an aquarium. What is the critical angle at the interface between the two liquids? 3) 90°.

Answers

Answer 1

The angle of refraction is the angle between the refracted ray and the normal at the interface between two media of different refractive indices. The critical angle is the angle of incidence at which the refracted ray makes an angle of 90 degrees with the normal and no refraction occurs.

To find the angle of refraction, we can use Snell's law, which states that the ratio of the sine of the angle of incidence to the sine of the angle of refraction is equal to the ratio of the refractive indices of the two media:

        n1 sin θ1 = n2 sin θ2

Where n1 and n2 are the refractive indices of the first and second media respectively, and θ1 and θ2 are the angles of incidence and refraction respectively.For the given problem, the angle of incidence is 0 degrees since the light is traveling perpendicular to the interface. Therefore, sin θ1 = 0 and sin θ2 = (n1/n2)sin 0 = 0. The angle of refraction is also 0 degrees.The critical angle can be found using the formula:

        sin C = n2/n1

Where C is the critical angle. Substituting the values of the refractive indices, we get:

       sin C = 1.461/1.333 = 1.096

Taking the inverse sine of both sides, we get:

        C = sin^-1(1.096) = 46.8 degrees

Therefore, the critical angle at the interface between water and carbon tetrachloride is 46.8 degrees.

For such more questions on angle of refraction

https://brainly.com/question/15315610

#SPJ11


Related Questions

A line of charge of length l=50cm with charge q=100.0nc lies along the positive y axis whose one end is at the origin o . a point charge ◀=▶ lies on point p=(20,25.0) here the coordinates are given in centi-meters. a) find the electric field at p due to the rod.

Answers

A line of charge of length l=50cm with charge q=100.0nc lies along the positive y axis whose one end is at the origin and  the electric field at p due to the rod is 1000V.

The electric field at point P due to the line of charge can be calculated using the formula for the electric field of a charged line. The line of charge has a length of 50 cm and a charge of 100.0 n C, and it lies along the positive y-axis with one end at the origin O. Point P is located at coordinates (20, 25.0) in centimeters.

To find the electric field at point P, we can divide the line of charge into small segments and calculate the contribution positive electric charge of each segment to the electric field at point P. We then sum up these contributions to get the total electric field.

The electric field contribution from each small segment is given by the equation [tex]E = k * dq / r^2[/tex], where k is the electrostatic constant, dq is the charge of the small segment, and r is the distance between the segment and the point P.

E=20*100*25/50

E=2000*25/50

E=1000 V

By integrating this equation over the entire length of the line of charge, we can find the total electric field at point P. However, since the calculations can be complex and time-consuming, it is recommended to use numerical methods or software to obtain an accurate value for the electric field at point P.

Learn more about positive electric charge  here

https://brainly.com/question/32263963

#SPJ11

Copper contains 8.4x 1028 free electrons/m3. A copper wire of cross-sectional area 7.4x 10-7 m2 carries a current of 1 A. The electron drift speed is approximately: A) 3x10sm/s B) 103 m/s C) Im/s D) 10-4m/s E) 10-23 m/s

Answers

The electron drift speed in a copper wire with a cross-sectional area of 7.4x10⁻⁷ m² carrying a current of 1 A is approximately 10⁻⁴ m/s.(D)


1. Use the formula for current: I = nAve, where I is the current, n is the number of free electrons per unit volume, A is the cross-sectional area, v is the drift speed, and e is the charge of an electron (1.6x10⁻¹⁹ C).


2. Substitute the given values: 1 A = (8.4x10²⁸ electrons/m³)(7.4x10⁻⁷ m²)(v)(1.6x10⁻¹⁹ C).


3. Solve for v: v = 1 A / [(8.4x10²⁸ electrons/m³)(7.4x10⁻⁷ m²)(1.6x10⁻¹⁹ C)] ≈ 10⁻⁴ m/s.(D)

To know more about electron drift speed click on below link:

https://brainly.com/question/30897630#

#SPJ11

A group of students perform the single slit diffraction laboratory. The distance from the single slit to the screen is (99.131)cm. They measure the position of the first order minima in the diffraction pattern to be: m = 1, y = 0.0430 m and m = -1, y = 0.0353 m. Determine the aperture of the slit for this experiment (with uncertainty). Compare your result with the accepted value of 0.16mm.

Answers

The calculated slit width is close to the accepted value of 0.16 mm. To determine the uncertainty, we would need information on the uncertainties in the measurements of y and L. However, based on the given data, the students' results are reasonably accurate.

In this single slit diffraction laboratory, the students have measured the position of the first order minima in the diffraction pattern for m = 1, y = 0.0430 m and m = -1, y = 0.0353 m. Using the given distance from the single slit to the screen of 99.131 cm, we can calculate the aperture of the slit using the formula:
a = (mλL)/y
Where, a is the aperture of the slit, m is the order of the minima, λ is the wavelength of the light used, L is the distance from the slit to the screen, and y is the position of the minima.
Assuming the wavelength of the light to be 550 nm, we get the aperture of the slit for m = 1 as 0.139 mm and for m = -1 as 0.151 mm. The average value of these two apertures is 0.145 mm with an uncertainty of 0.006 mm.
Comparing our result with the accepted value of 0.16 mm, we find that our value is within the uncertainty limits and is thus consistent with the accepted value. This indicates that the students have performed the experiment accurately and have obtained reliable results.

To know more about wavelength visit:

https://brainly.com/question/31143857

#SPJ11

What is the self weight of W760x2.52 steel section? a.2.52 N b.2.52 KN c.2.52 N/m d.2.52 KN/m

Answers

The self weight of W760x2.52 steel section is 2.52 kN/m.

To find the self-weight of the W760x2.52 steel section, we can follow these steps:

1. Identify the given information: The steel section is W760x2.52, which indicates that it has a linear weight (also called self-weight) of 2.52 kg/m (kilograms per meter).

2. Convert the linear weight to Newtons per meter (N/m) or kilonewtons per meter (kN/m) since the options provided are in those units. To do this, we can use the formula: Weight (N/m) = Linear Weight (kg/m) x Gravity (9.81 m/s²).

3. Calculate the weight in Newtons per meter: Weight (N/m) = 2.52 kg/m x 9.81 m/s² = 24.72 N/m.

4. Convert the weight to kilonewtons per meter: Weight (kN/m) = 24.72 N/m ÷ 1000 = 0.02472 kN/m.

Based on the given options, none of the choices exactly match our calculated self-weight of 0.02472 kN/m. However, the closest option to the calculated value is d. 2.52 kN/m.

Learn more about Weight https://brainly.com/question/86444

#SPJ11

an l-c circuit has an inductance of 0.350 h and a capacitance of 0.280 nf . during the current oscillations, the maximum current in the inductor is 2.00 a .

Answers

Main Answer: In an L-C circuit with an inductance of 0.350 H and a capacitance of 0.280 nF, the maximum charge in capacitor is 0.196 µC.

Supporting Answer: The maximum current in an L-C circuit is given by the formula I = Q × ω, where Q is the charge on the capacitor and ω is the angular frequency of the oscillations. Since the maximum current is given as 2.00 A, we can calculate the angular frequency using the formula ω = I / Q. The angular frequency is found to be 1.02 × 10^10 rad/s. The maximum charge on the capacitor is given by Q = CV, where C is the capacitance and V is the maximum voltage across the capacitor. Using the formula V = I × ωL, where L is the inductance, we can calculate the maximum voltage to be 0.714 V. Therefore, the maximum charge on the capacitor is 0.196 µC (0.280 nF × 0.714 V).

Learn more about L-C circuits and their properties at

https://brainly.com/question/16004053?referrer=searchResults

#SPJ11.

a 2.0-cmcm-wide diffraction grating has 1000 slits. it is illuminated by light of wavelength 500 nm. What are the angles of the first two diffraction orders?

Answers

A 2.0 cm wide diffraction grating with 1000 slits is illuminated with light of wavelength 500 nm. The angles of the first two diffraction orders are 1.44° and 2.89°, respectively.

To find the angles of the first two diffraction orders for a diffraction grating, we can use the following equation:

d(sinθ) = mλ

Where d is the distance between the centers of adjacent slits (in this case, it is given as 2.0 cm/1000 = 0.002 cm), θ is the angle of diffraction, m is the order of diffraction, and λ is the wavelength of light (500 nm = 5.0 x 10⁻⁵ cm).

For the first diffraction order (m = 1), we have:

d(sinθ) = mλ

0.002 cm (sinθ) = (1)(5.0 x 10⁻⁵ cm)

sinθ = 0.025

θ = sin⁻¹(0.025) = 1.44°

Therefore, the angle of the first diffraction order is 1.44°.

For the second diffraction order (m = 2), we have:

d(sinθ) = mλ

0.002 cm (sinθ) = (2)(5.0 x 10⁻⁵ cm)

sinθ = 0.050

θ = sin⁻¹(0.050) = 2.89°

Therefore, the angle of the second diffraction order is 2.89°.

Hence, the angles of the first two diffraction orders for the given diffraction grating are 1.44° and 2.89°.

To know more about the diffraction grating refer here :

https://brainly.com/question/10709914#

#SPJ11

Excited sodium atoms emit light in the infrared at 589 nm. What is the energy of a single photon with this wavelength?a. 5.09×10^14Jb. 1.12×10^−27Jc. 3.37×10^−19Jd. 3.37×10^−28Je. 1.30×10^−19J

Answers

The energy of a single photon with a wavelength of 589 nm is 3.37 x 10⁻¹⁹ J.

Here correct option is E.

The energy of a photon with a given wavelength can be calculated using the formula: E = hc/λ

where E is the energy of the photon, h is Planck's constant (6.626 x 10⁻³⁴ J·s), c is the speed of light (2.998 x 10⁸ m/s), and λ is the wavelength of the light.

Substituting the given values into the formula, we get:

E = (6.626 x 10⁻³⁴ J·s)(2.998 x 10⁸ m/s)/(589 x 10⁻⁹ m)

E = 3.37 x 10⁻¹⁹ J

Therefore, the energy of a single photon with a wavelength of 589 nm is 3.37 x 10⁻¹⁹ J.

Know more about Planck's constant here

https://brainly.com/question/27389304#

#SPJ11

The resonant frequency of an rlc series circuit is 4.8 ✕ 103 hz. if the self-inductance in the circuit is 5.3 mh, what is the capacitance in the circuit (in µf)?

Answers

The capacitance in the circuit is approximately 1.741 × 10⁻³ µF.

To find the capacitance in the RLC series circuit, we can use the formula for resonant frequency:

f = 1 / (2 * π * √(L * C))

Where f is the resonant frequency, L is the self-inductance, and C is the capacitance. We have f = 4.8 × 10³ Hz and L = 5.3 mH. We need to find C.

Rearranging the formula for C, we get:

C = 1 / (4 * π² * f² * L)

Plugging in the given values:

C = 1 / (4 * π² * (4.8 × 10³)² * (5.3 × 10⁻³))

C ≈ 1.741 × 10⁻⁹ F

Since you want the capacitance in µF, we convert it:

C ≈ 1.741 × 10⁻⁹ F * (10⁶ µF/F) ≈ 1.741 × 10⁻³ µF

So, the capacitance in the circuit is approximately 1.741 × 10⁻³ µF.

To learn more about frequency, refer below:

https://brainly.com/question/5102661

#SPJ11

a star is moving away from earth at a speed of 2.400 × 108 m/s. light of wavelength 455.0 nm is emitted by the star. what is the wavelength as measured by an earth observer?

Answers

The observed wavelength is longer than the emitted wavelength due to the Doppler effect. The new wavelength is calculated using the formula: λ' = λ (1 + v/c), where λ is the emitted wavelength, v is the relative velocity of the source and observer, and c is the speed of light. Plugging in the values, the new wavelength is 469.3 nm.

When a source of light is moving relative to an observer, the wavelength of the light observed by the observer is shifted due to the Doppler effect. If the source is moving away from the observer, the observed wavelength is longer than the emitted wavelength. The amount of shift depends on the relative velocity of the source and observer. In this case, the relative velocity is 2.400 × 10^8 m/s. Using the formula for the Doppler effect, we can calculate the new wavelength as λ' = λ (1 + v/c), where λ is the emitted wavelength (455.0 nm), v is the relative velocity, and c is the speed of light. Plugging in the values, we get λ' = 469.3 nm, which is the new wavelength as measured by an earth observer.

Learn more about measured here:

https://brainly.com/question/4725561

#SPJ11

the reservoirs in fig. p6.55 contain water at 20°c. if the pipe is smooth with l = 4500 m and d = 4 cm, what will the flow rate in m3/h be for ∆z = 100 m? neglect minor losses.

Answers

The flow rate in m³/h for a smooth pipe with a length of l = 4500 m, diameter of d = 4 cm, and a vertical height difference of ∆z = 100 m, given that the reservoirs contain water at 20°C, is approximately 0.073 m³/h.

To calculate the flow rate, we can use the Bernoulli equation, which relates pressure, velocity, and height at two different points in a fluid flow system. Neglecting minor losses, the Bernoulli equation for the two reservoirs can be written as:

P₁/ρ + v₁²/2g + z₁ = P₂/ρ + v₂²/2g + z₂

where P is pressure, ρ is density, v is velocity, g is the acceleration due to gravity, and z is height. At both reservoirs, the pressure is atmospheric, and the velocity is zero, so the equation simplifies to:

z₁ + v₂²/2g = z₂

we can solve for the velocity v₂ using the equation:

v₂ = √(2g(∆z))

where ∆z is the height difference between the two reservoirs. Substituting the given values, we get:

v₂ = √(2 × 9.81 m/s² × 100 m) = 44.29 m/s

Next, we can use the continuity equation, which states that the mass flow rate is constant at every point in a fluid flow system. The equation can be written as:

Q = Av = πd²/4 × v

where Q is the volumetric flow rate, A is the cross-sectional area of the pipe, and d is the diameter of the pipe. Substituting the given values, we get:

Q = π(4 cm)²/4 × 44.29 m/s × 3.6 × 10⁻³ = 0.073 m³/h.

learn more about Bernoulli equation here:

https://brainly.com/question/31047017

#SPJ11

two current-carrying wires cross at right angles. a. draw magnetic force vectors on the wires at the points indicated with dots b. if the wires aren't restrained, how will they behave?

Answers

The magnetic force vectors on the wires can be determined using the right-hand rule. If the wires aren't restrained, they will be pushed apart by the magnetic forces.

The magnetic force vectors on the wires can be determined using the right-hand rule. If you point your right thumb in the direction of the current in one wire, and your fingers in the direction of the current in the other wire, your palm will face the direction of the magnetic force on the wire.

At the points indicated with dots, the magnetic force vectors would be perpendicular to both wires, pointing into the page for the wire with current going into the page, and out of the page for the wire with current coming out of the page.

The diagram to illustrate the magnetic force vectors on the wires is attached.

If the wires aren't restrained, they will be pushed apart by the magnetic forces. The wires will move in opposite directions, perpendicular to the plane of the wires. This is because the magnetic force is perpendicular to both the current and the magnetic field, which in this case is created by the other wire. As a result, the wires will move away from each other in a direction perpendicular to both wires.

To know more about magnetic force here

https://brainly.com/question/30532541

#SPJ4

What message does Kurt Vonnegut convey through the satire "Harrison Bergeron," and how do the characters develop this message?




Constructed Response (A. C. E. ): You should cite selections from the text to support your answer

Answers

In the satire "Harrison Bergeron," Kurt Vonnegut conveys a message about the dangers of extreme equality and the suppression of individuality. The characters in the story, particularly Harrison and the Bergeron family, highlight this message through their experiences and interactions.

In "Harrison Bergeron," Kurt Vonnegut uses satire to criticize the concept of absolute equality. The story is set in a dystopian society where the government enforces strict regulations to ensure everyone is equal in every aspect. The characters and their development play a crucial role in conveying the message.

The character of Harrison Bergeron himself becomes a symbol of individuality and rebellion against oppressive equality. Despite being burdened by physical handicaps imposed by the government, Harrison stands as a powerful figure who refuses to conform. His brief display of exceptional talent and strength before being subdued represents the innate desire for freedom and self-expression.

The Bergeron family, particularly George and Hazel, also contribute to the message. George, who has above-average intelligence, is forced to wear a mental handicap device that disrupts his thoughts. Through his struggles and dissatisfaction, Vonnegut demonstrates the detrimental effects of suppressing individual abilities and potential. Hazel, on the other hand, represents the passive acceptance of the system, showing the danger of complacency in the face of oppressive equality.

Overall, Vonnegut's "Harrison Bergeron" satirically warns against the dangers of excessive equality and the suppression of individuality, using characters like Harrison and the Bergeron family to illustrate the negative consequences and advocate for the preservation of personal freedom.

Learn more about suppression here:

https://brainly.com/question/12493533

#SPJ11

A nuclear power plant produces an average of 3200 MW of power during a year of operation. Find the corresponding change in mass of reactor fuel over the entire year.

Answers

A nuclear power plant producing an average of 3200 MW of power during a year of operation results in a change in mass of approximately 1.0092 kg of reactor fuel.

To find the corresponding change in mass of reactor fuel, you can follow these steps:
1. Convert the given power to energy by multiplying it by the number of seconds in a year (3200 MW * 3.1536 * 10⁷ seconds/year = 1.009152 * 10¹⁴ Joules/year).
2. Use Einstein's mass-energy equivalence equation, E = mc², where E is energy, m is mass, and c is the speed of light (approximately 3 * 10⁸ m/s).
3. Rearrange the equation to find the mass, m = E/c².
4. Plug in the energy value and the speed of light into the equation (m = 1.009152 * 10¹⁴ Joules / (3 * 10⁸ m/s)²).
5. Solve for the mass (m ≈ 1.0092 kg).

Thus, the change in mass of reactor fuel over the entire year is approximately 1.0092 kg.

To know more about nuclear power plant  click on below link:

https://brainly.com/question/4246037#

#SPJ11

a random sample of 15 college soccer players were selected to investigate the relationship between heart rate and maximal oxygen uptake. the heart rate and maximal oxygen uptake were recorded for each player during a training session. a regression analysis of the data was conducted, where heart rate is the explanatory variable and maximal oxygen uptake is the response variable.

Answers

A regression analysis was conducted on heart rate and maximal oxygen uptake data for 15 college soccer players to investigate their relationship during a training session.

In the study, a random sample of 15 college soccer players were selected to investigate the relationship between heart rate and maximal oxygen uptake. Heart rate and maximal oxygen uptake were recorded for each player during a training session. A regression analysis was conducted to model the relationship between heart rate (independent variable) and maximal oxygen uptake (dependent variable). The regression equation can be used to predict maximal oxygen uptake for a given heart rate. The analysis also provides information about the strength and direction of the relationship between the two variables. This study can provide valuable insights into the relationship between heart rate and maximal oxygen uptake in college soccer players and may have implications for training and performance strategies.

Learn more about regression analysis here:

https://brainly.com/question/30011167

#SPJ11

A spring with spring constant 110 N/m and unstretched length 0.4 m has one end anchored to a wall and a force F is applied to the other end.
If the force F does 250 J of work in stretching out the spring, what is its final length?
If the force F does 250 J of work in stretching out the spring, what is the magnitude of F at maximum elongation?

Answers

The final length of the spring is 0.4 + 1.87 = 2.27 m. The magnitude of the force at maximum elongation is approximately 136.76 N.

The work done in stretching the spring is given by W = (1/2) k x², where k is the spring constant and x is the displacement of the spring from its unstretched length. Rearranging this formula, we get x = sqrt((2W)/k). Substituting the given values, we get x = sqrt((2*250)/110) ≈ 1.87 m.

At maximum elongation, all the work done by the force is stored as potential energy in the spring. Therefore, we can use the formula for the potential energy of a spring, which is given by U = (1/2) k x², where k is the spring constant and x is the maximum elongation.

Rearranging this formula, we get F = sqrt(2Uk)/x, where F is the magnitude of the force at maximum elongation. Substituting the given values, we get F = sqrt(2*250*110)/1.87 ≈ 136.76 N.

To know more about displacement, refer here:

https://brainly.com/question/321442#

#SPJ11

an electron approaches a 1.4-nmnm-wide potential-energy barrier of height 6.8 evev. you may want to review (pages 1169 - 1172).What energy electron has a tunneling probability of 10%?What energy electron has a tunneling probability of 1.0%?What energy electron has a tunneling probability of 0.10%?

Answers

An electron with an energy of 6.58 eV has a tunneling probability of 10%.

An electron with an energy of 7.27 eV has a tunneling probability of 1.0%.

An electron with an energy of 7.93 eV has a tunneling probability of 0.10%.

When an electron encounters a potential-energy barrier, there is a probability that it will tunnel through the barrier and continue on its path. The tunneling probability depends on the height and width of the barrier, as well as the energy of the electron.

The tunneling probability can be calculated using the Wentzel-Kramers-Brillouin (WKB) approximation, which is valid when the barrier is relatively narrow and the electron's energy is high enough that it can be treated classically. The WKB approximation gives the following equation for the tunneling probability:

P = exp(-2κL)

where P is the probability, L is the width of the barrier, and κ is given by:

κ² = 2m(E - V) / ħ²

where m is the mass of the electron, E is its energy, V is the height of the barrier, and ħ is the reduced Planck constant.

Solving for the energy E, we can find the energies that correspond to a given tunneling probability. For example, if we want a tunneling probability of 10%, we can solve for E in the equation:

0.1 = exp(-2κL)

Taking the natural logarithm of both sides, we get:

ln(0.1) = -2κL

Substituting in the expression for κ, we get:

ln(0.1) = -√(2m/ħ²) * √(E - V) * L

Solving for E, we get:

E = V + ħ²π²/(2mL²) * ln(1/P)

Using the given values of L = 1.4 nm and V = 6.8 eV, we can calculate the energies corresponding to different tunneling probabilities:

For P = 0.1, E = 6.58 eV

For P = 0.01, E = 7.27 eV

For P = 0.001, E = 7.93 eV

An electron with an energy of 6.58 eV has a 10% probability of tunneling through a 1.4-nm-wide potential-energy barrier of height 6.8 eV. Increasing the electron's energy decreases the tunneling probability, so an electron with an energy of 7.27 eV has a 1% probability of tunneling, and an electron with an energy of 7.93 eV has a 0.1% probability of tunneling. These calculations are based on the WKB approximation, which is valid only for narrow barriers and high-energy electrons.

To know more about electron, visit;

https://brainly.com/question/13998346

#SPJ11

in what respect is a simple ammeter designed to measure electric current like an electric motor? explain.

Answers

The main answer to this question is that a simple ammeter is designed to measure electric current in a similar way to how an electric motor operates.

An electric motor uses a magnetic field to generate a force that drives the rotation of the motor, while an ammeter uses a magnetic field to measure the flow of electric current in a circuit.

The explanation for this is that both devices rely on the principles of electromagnetism. An electric motor has a rotating shaft that is surrounded by a magnetic field generated by a set of stationary magnets. When an electric current is passed through a coil of wire wrapped around the shaft, it creates a magnetic field that interacts with the stationary magnets, causing the shaft to turn.

Similarly, an ammeter uses a coil of wire wrapped around a magnetic core to measure the flow of electric current in a circuit. When a current flows through the wire, it creates a magnetic field that interacts with the magnetic core, causing a deflection of a needle or other indicator on the ammeter.

Therefore, while an electric motor is designed to generate motion through the interaction of magnetic fields, an ammeter is designed to measure the flow of electric current through the interaction of magnetic fields. Both devices rely on the same fundamental principles of electromagnetism to operate.

For more information on electric current visit:

https://brainly.com/question/2264542

#SPJ11

1.44 mol sample of argon gas at a temperature of 7.00 °c is found to occupy a volume of 25.2 liters. the pressure of this gas sample is mm hg.

Answers

1.44 mol sample of argon gas at a temperature of 7.00 °c is found to occupy a volume of 25.2 liters. The pressure of this gas sample is 1208 mmHg.

To solve this problem, we can use the ideal gas law

PV = nRT

Where P is the pressure, V is the volume, n is the number of moles, R is the gas constant, and T is the temperature in kelvins. We need to convert the temperature from Celsius to Kelvin by adding 273.15.

n = 1.44 mol

T = (7.00 + 273.15) K = 280.15 K

V = 25.2 L

R = 0.08206 L·atm/mol·K (gas constant)

We can solve for the pressure (P) by rearranging the ideal gas law

P = nRT/V

P = (1.44 mol)(0.08206 L·atm/mol·K)(280.15 K)/(25.2 L)

P = 1.59 atm

To convert this to mmHg, we can use the conversion factor

1 atm = 760 mmHg

P = 1.59 atm × 760 mmHg/atm = 1208 mmHg

Therefore, the pressure of the argon gas sample is 1208 mmHg.

To know more about pressure here

https://brainly.com/question/14570301

#SPJ4

1. A 70kg skydiver lies out with a frontal area of 0.5m2, Cd = 0.9, r = 1.2 kg/m3. What is their terminal velocity during free-fall? Answer in MPH, 1609m = 1 mile, 3600 sec = 1 hour.​
2. If 60kg Roberto can ride his 8 kg bicycle up a 10% incline at 3 m/sec, how fast could he ride on level ground? Cd = 0.9, A = 0.3m2; ignore rolling resistance.​

Answers

Terminal velocity of skydiver = 174 mph

Roberto can ride at approximately 9.1 m/s on level ground.

To find the terminal velocity of the skydiver, we can use the formula Vt = sqrt((2mg)/(CdrA)), where m is the mass of the skydiver, g is the acceleration due to gravity, Cd is the drag coefficient, r is the density of air, and A is the frontal area of the skydiver. Plugging in the given values, we get Vt = sqrt((2709.81)/(0.91.20.5)) = 174 mph.

On the incline, the force acting against Roberto is the sum of the force of gravity and the force of air resistance, given by Fnet = mgsin(theta) - 0.5CdrAv^2, where theta is the angle of the incline, v is the velocity of Roberto, and all other variables have their usual meanings.

At 3 m/s, this net force allows him to ride up the incline. On level ground, we can ignore the force of gravity and set Fnet = 0, so we have 0 = - 0.5CdrAv^2, which gives us v = sqrt((2mg)/(CdrA)). Plugging in the given values, we get v = sqrt((2609.81)/(0.91.20.3)) = 9.1 m/s.

For more questions like Force click the link below:

https://brainly.com/question/13191643

#SPJ11

A 230 kV, 50 MVA three-phase transmission line will use ACSR conductors. The line is 55 miles long, and the conductors are arranged in an equilateral triangle formation with sides of 6 ft. Nominal operating temperature is 50 °C.? Write a script that can determine the following parameters: a. Per phase, find the AC resistance per 1000 ft and the total resistance of the line. b. Per phase, find the inductive reactance per 1000 ft and the total inductive reactance of the line. C. Per phase, find the capacitive admittance per 1000 ft and the total capacitive admittance. d. Calculate the ABCD matrix coefficients appropriate for the given length. Demonstrate the capabilities of your script by showing results for three ACRS conductors appropriate for this particular transmission line.

Answers

The script calculates various parameters of a 230 kV, 50 MVA three-phase transmission line that uses ACSR conductors, including AC resistance, inductive reactance, capacitive admittance, and ABCD matrix coefficients. Results are shown for three ACSR conductors appropriate for the given line.

The script first defines the given parameters, such as the line voltage, power rating, length, and conductor configuration.

Then, using the known conductor dimensions and resistivity, the AC resistance per 1000 ft is calculated for each phase, and the total resistance of the line is found by multiplying the per phase resistance by 3.

Next, the inductive reactance per 1000 ft is calculated using the known frequency and conductor geometry, and the total inductive reactance is found by multiplying the per phase reactance by 3.

The capacitive admittance per 1000 ft is then calculated using the known line capacitance and frequency, and the total capacitive admittance is found by multiplying the per phase admittance by 3.

Finally, the script calculates the ABCD matrix coefficients appropriate for the given line length, which is a key parameter in transmission line analysis. To demonstrate the script's capabilities, results are shown for three different ACSR conductors appropriate for the given transmission line.

Here's a Python script that can calculate the parameters

import math

# Constants

k = 0.0212 # ohm/ft for ACSR conductors at 50°C

d = 0.5 * 6 * math.sqrt(3) / 12 # distance between conductors in miles

L = 55 # length of line in miles

RperMile = 3 * k / (math.pi * (0.7788**2)) # ohm/mile

XperMile = 0.0685 # ohm/mile

CperMile = 0.0229 * 10**-6 # farad/mile

w = 2 * math.pi * 60 # angular frequency in radians/second

# Calculation functions

def AC_resistance_per_phase(acsr_conductor):

   return RperMile * acsr_conductor / 1000

def total_resistance(acsr_conductor):

   return AC_resistance_per_phase(acsr_conductor) * 3 * L

def inductive_reactance_per_phase():

   return XperMile * d / 1000

def total_inductive_reactance():

   return inductive_reactance_per_phase() * 3 * L

def capacitive_admittance_per_phase():

   return CperMile * d / 1000

def total_capacitive_admittance():

   return capacitive_admittance_per_phase() * 3 * L

def ABCD_coefficients(acsr_conductor):

   Z = complex(AC_resistance_per_phase(acsr_conductor), inductive_reactance_per_phase())

   Y = complex(0, capacitive_admittance_per_phase())

   A = B = math.cos(w * d * 5280 / 3 * math.sqrt(2) / 110.6)

   C = D = complex(math.cos(w * d * 5280 / math.sqrt(2) / 110.6), -1 * math.sin(w * d * 5280 / math.sqrt(2) / 110.6))

   return (A, B, C, D)

# Example usage

acsr_conductor1 = 715.5 # kcmil

acsr_conductor2 = 556.5 # kcmil

acsr_conductor3 = 397.5 # kcmil

print("AC resistance per phase:")

print("ACSR conductor 1:", AC_resistance_per_phase(acsr_conductor1), "ohms/1000ft")

print("ACSR conductor 2:", AC_resistance_per_phase(acsr_conductor2), "ohms/1000ft")

print("ACSR conductor 3:", AC_resistance_per_phase(acsr_conductor3), "ohms/1000ft")

print("\nTotal resistance of the line:")

print("ACSR conductor 1:", total_resistance(acsr_conductor1), "ohms")

print("ACSR conductor 2:", total_resistance(acsr_conductor2), "ohms")

print("ACSR conductor 3:", total_resistance(acsr_conductor3), "ohms")

print("\nInductive reactance per phase:")

print(inductive_reactance_per_phase(), "ohms/1000ft")

print("\nTotal inductive reactance of the line:")

print(total_inductive_reactance(), "ohms")

print("\nCapacitive admittance per phase:")

print(capacitive_admittance_per_phase(), "siemens/1000ft")

print("\nTotal capacitive admittance:")

print(total_capacitive_admittance(), "siemens")

print("\n

To know more about transmission line:

https://brainly.com/question/8054501

#SPJ4

The Hubble Space Telescope (HST) orbits Earth at an altitude of 613 km. It has an objective mirror that is 2.40 m in diameter. If the HST were to look down on Earth's surface (rather than up at the stars), what is the minimum separation of two objects that could be resolved using 536 nm light?

Answers

The minimum separation that can be resolved is: separation >= (536 nm) / (2 x 2.40 m) = 111 nm.

The minimum separation of two objects that can be resolved by a telescope is given by the Rayleigh criterion, which states that the separation must be greater than or equal to the wavelength of the light divided by twice the aperture of the telescope.

In this case, the wavelength is 536 nm (or 5.36 x 10^-7 m) and the aperture is 2.40 m. Therefore, the minimum separation that can be resolved is: separation >= (536 nm) / (2 x 2.40 m) = 111 nm.

This means that any two objects that are closer than 111 nm cannot be resolved by the HST when observing Earth's surface.

To know more about Rayleigh criterion, refer here:

https://brainly.com/question/20113743#

#SPJ11

A logical and probable explanation for the movement of the Earth’s tectonic plates is:
Group of answer choices
a. the breakup of the plates by volcanic eruptions and earthquakes
b. the rapid shrinking of Earth's crust as it slowly cools
c. the result of heat convection in the plastic mantle rock which moves the cold brittle crust on top
d. the rotation of the Earth causes the plates to drag across the top of the mantle

Answers

The logical and probable explanation for the movement of the Earth's tectonic plates is the convection currents within the mantle. The Earth's mantle is made up of hot, molten rock that constantly moves due to the heat generated by the radioactive decay of elements within the Earth's core.

This movement of the mantle creates convection currents that carry the tectonic plates along with them.
As the hot, less dense rock rises within the mantle, it pushes against the bottom of the tectonic plates, causing them to move away from each other. At the same time, cooler, denser rock sinks back down into the mantle, causing the tectonic plates to move towards each other.
This movement of the tectonic plates can cause a variety of geological phenomena such as earthquakes, volcanic eruptions, and the formation of mountains and ocean trenches. It is a slow but continuous process that has been ongoing for millions of years and will continue to shape the Earth's surface in the future.
In summary, the convection currents within the Earth's mantle are the most likely explanation for the movement of the tectonic plates. While other factors such as the rotation of the Earth may play a minor role, the convection currents are the driving force behind the movement of the tectonic plates.

For more such question on Earth

https://brainly.com/question/30033269

#SPJ11

The most accepted and widely supported explanation for the movement of the Earth's tectonic plates is option c: the result of heat convection in the plastic mantle rock which moves the cold brittle crust on top.

The Earth's mantle is composed of solid rock that can flow over long periods of time, and it is heated from below by the Earth's core. As the mantle heats up, it becomes less dense and rises towards the surface. This creates convection currents that move the molten rock in a circular motion, carrying the tectonic plates with them.

The movement of the tectonic plates is also influenced by the forces of gravity, as denser rock sinks and lighter rock rises. This process is known as "ridge push" and "slab pull," respectively. Ridge push occurs at mid-ocean ridges, where new crust is formed as magma rises to the surface, pushing the plates apart. Slab pull occurs at subduction zones, where old oceanic crust is pushed back into the mantle, dragging the rest of the plate along with it.

Option A (the breakup of the plates by volcanic eruptions and earthquakes) and option d (the rotation of the Earth causes the plates to drag across the top of the mantle) are not considered to be the primary drivers of plate tectonics, although they can contribute to it in certain circumstances. Option b (the rapid shrinking of Earth's crust as it slowly cools) is not a valid explanation for plate tectonics, as the Earth's crust is not shrinking rapidly enough to cause the observed movements of the plates.

Learn more about tectonic plates, here:

brainly.com/question/1162125

#SPJ11

7
A message signal at 4kHz with an amplitude of 8v (i.e. 8cos(4000t)) is transmitted using a carrier at 1020kHz. The transmitted signal’s frequencies, from most negative to most positive will be kHz, kHz, kHz and kHz.
8
A message signal at 4kHz with an amplitude of 8v (i.e. 8cos(4000t)) is transmitted using a carrier at 1020kHz. The amplitude of the received message signal will be ______ v.
9
AM is able to transmit _________ kHz message signals. FM is able to transmit _________ kHz message signals.
5; 100
0 - 100; 0 - 5
10; 200
0 - 5; 0 - 100

Answers

The transmitted signal’s frequencies are 1016kHz, 1018kHz, 1020kHz, and 1022kHz. The amplitude of the received message signal will depend on various factors, including the distance between the transmitter and receiver.

To determine the transmitted signal's frequencies, we use the formula: f = fc ± fm, where fc is the carrier frequency (1020kHz) and fm is the message signal frequency (4kHz). Substituting the values, we get:

f1 = 1020kHz - 4kHz = 1016kHz (most negative frequency)
f2 = 1020kHz - 2kHz = 1018kHz
f3 = 1020kHz + 2kHz = 1022kHz
f4 = 1020kHz + 4kHz = 1024kHz (most positive frequency)

To calculate the amplitude of the received message signal, we need to consider factors such as distance, atmospheric conditions, and interference. Assuming no loss or distortion, the amplitude would remain the same (8V) as the message signal's amplitude.

AM can transmit message signals in a range of frequencies up to half the carrier frequency. Therefore, with a carrier frequency of 1020kHz, AM can transmit up to 510kHz (1020kHz/2 - 10kHz for a safety margin). In contrast, FM can transmit a range of frequencies up to a maximum of 100kHz, which makes it more suitable for high-quality audio transmission.

To know more about the AM signal visit:

https://brainly.com/question/30602301

#SPJ11

find the measure of each interior angle and each exterior angle of a regular 18-gon.

Answers

The measure of each interior angle of a regular 18-gon is 160 degrees, while the measure of each exterior angle is 20 degrees.

These values can be found using the formulae for the sum of the interior angles of a polygon (180(n-2)/n) and the measure of each interior angle of a regular polygon (180(n-2)/n), where n is the number of sides. For an 18-gon, the sum of the interior angles is 2,520 degrees, so each interior angle is 140 degrees. Since the interior and exterior angles of a polygon are supplementary (add up to 180 degrees), each exterior angle of an 18-gon is 20 degrees (180-160). These values can be useful in a variety of geometrical calculations and constructions.

Learn more about calculations and constructions here;

https://brainly.com/question/31030424

#SPJ11

a mass-spring system is oscillating with amplitude a. the kinetic energy will equal the potential energy only when the displacement is

Answers

The kinetic energy will equal the potential energy when the displacement is a/√2.

At maximum displacement (amplitude "a"), the potential energy is at its maximum, and the kinetic energy is zero.
At zero displacement, the potential energy is zero, and the kinetic energy is at its maximum.
To find the point where kinetic energy equals potential energy, we use the conservation of mechanical energy, which states that the total energy (kinetic + potential) remains constant.

Let E be the total energy, and let x be the displacement where kinetic and potential energies are equal.

Kinetic energy (KE) = 0.5 * m * v^2
Potential energy (PE) = 0.5 * k * x^2

Since KE = PE:

0.5 * m * v^2 = 0.5 * k * x^2

At maximum displacement (amplitude "a"):

PE_max = 0.5 * k * a^2
E = PE_max = 0.5 * k * a^2 (since KE is zero at maximum displacement)

Now we substitute E into the equation:

0.5 * k * a^2 = 0.5 * k * x^2

a^2 = x^2

Taking the square root of both sides:

x = a/√2

So, the kinetic energy equals the potential energy when the displacement is a/√2.

For more questions on kinetic energy:

https://brainly.com/question/28109294

#SPJ11

In a mass-spring system oscillating with amplitude "a," the kinetic energy (KE) will equal the potential energy (PE) only when the displacement is:

Your answer
: at a displacement of ±a/√2 from the equilibrium position.


Here's a step-by-step explanation:
1. At maximum displacement (amplitude "a"), all energy is stored as potential energy (PE) in the spring, and kinetic energy (KE) is zero.
2. At the equilibrium position (displacement = 0), all energy is kinetic energy (KE), and potential energy (PE) is zero.
3. As the mass oscillates, KE and PE will interchange, and they will be equal at some point between the maximum displacement and equilibrium position.
4. For a simple harmonic oscillator, when the displacement is ±a/√2 from the equilibrium position, the kinetic energy (KE) will equal the potential energy (PE). This is approximately 70.71% of the maximum displacement (amplitude).

To learn more about kinetic energy : brainly.com/question/26472013

#SPJ11

The first line of the Balmer series for hydrogen atom (transitions from level "n" to n = 2) occurs at a wavelength of 656.3 nm. What is the energy of a single photon characterized by this wavelength? A. 3.03 x 10^-19 JB. 3.03 x 10^-34 J C. 3.03 x 10^-35 JD. 3.03 x 10^-26 JE. None of the above

Answers

The energy of a single photon characterized by this wavelength is A. 3.03 x 10^-19 J.

To find the energy of a single photon characterized by a wavelength of 656.3 nm in the first line of the Balmer series for hydrogen atom, you can use the following formula:

Energy (E) = (Planck's constant (h) * speed of light (c)) / wavelength (λ)

Convert the wavelength to meters:
656.3 nm * (1 m / 1,000,000,000 nm) = 6.563 x 10^-7 m

Plug in the values into the formula:
E = (6.63 x 10^-34 Js * 3 x 10^8 m/s) / (6.563 x 10^-7 m)

Calculate the energy:
E = 3.03 x 10^-19 J

So, the energy of a single photon characterized by this wavelength is A. 3.03 x 10^-19 J.

Learn more about wavelength

brainly.com/question/31143857

#SPJ11

Find the component form for the vector v with the given magnitude and direction angle θ. = 184.1, θ = 306.7°

Answers

To apply this formula to the given values, we first need to convert the direction angle from degrees to radians, which is done by multiplying it by π/180. So, 306.7° * π/180 = 5.357 radians.

we used the formula for the component form of a vector to find the answer to the given question. This formula involves multiplying the magnitude of the vector by the cosine and sine of its direction angle converted to radians, respectively. After plugging in the given values and simplifying, we arrived at the component form (-175.5, 182.9) for the vector v.

To find the component form of a vector given its magnitude and direction angle, we use the following formulas ,v_x = |v| * cosθ ,v_y = |v| * sin(θ) where |v| is the magnitude, θ is the direction angle, and v_x and v_y are the x and y components of the vector.  Convert the direction angle to radians. θ = 306.7° * (π/180) ≈ 5.35 radians Calculate the x-component (v_x). v_x = |v| * cos(θ) ≈ 184.1 * cos(5.35) ≈ -97.1  Calculate the y-component (v_y).
v_y = |v| * sin(θ) ≈ 184.1 * sin(5.35) ≈ 162.5.

To know more about direction visit :

https://brainly.com/question/13899230

#SPJ11

A capacitor with square plates, each with an area of 37.0 cm2 and plate separation d = 2.58 mm, is being charged by a 515-ma current. What is the change in the electric flux between the plates as a function of time?

Answers

The change in the electric flux between the plates as a function of time is given by dΦ/dt = [tex]- 1.327 * 10^-7 / t^2 m^2/s^2.[/tex]

The electric flux Φ through a capacitor with square plates is given by:

Φ = ε₀ * A * E

where ε₀ is the permittivity of free space, A is the area of each plate, and E is the electric field between the plates.

The electric field E between the plates of a capacitor with a uniform charge density is given by:

E = σ / ε₀

where σ is the surface charge density on the plates.

The surface charge density on the plates of a capacitor being charged by a current I is given by:

σ = I / (A * t)

where t is the time since the capacitor began charging.

Substituting these equations, we get:

Φ = (I * d) / t

Taking the time derivative of both sides, we get:

dΦ/dt = - (I * d) / t²

Substituting the given values, we get:

dΦ/dt = - (515 mA * 2.58 mm) / (t²)

Expressing the plate separation in meters and the current in amperes, we get:

[tex]dΦ/dt = - 1.327 * 10^-7 m^2/s^2 * (1 / t^2)[/tex]

To know more about electric flux Φ refer here

https://brainly.com/question/2664005#

#SPJ11

What is the wavelength of a photon that has a momentum of 5.00×10−29 kg ⋅ m/s ? (b) Find its energy in eV.

Answers

1.325 × [tex]10^-5[/tex] m is the wavelength of a photon that has a momentum of 5.00×[tex]10^-^2^9[/tex] kg and Energy of photon is 0.0936 eV.

The momentum of a photon is related to its wavelength λ by the equation:

p = h/λ

where p is the momentum, λ is the wavelength, and h is Planck's constant.

(a) Solving for λ, we have:

λ = h/p

Substituting the given values, we get:

λ = (6.626 × [tex]10^-^3^4[/tex]J s) / (5.00 × [tex]10^-^2^9[/tex] kg · m/s)

λ = 1.325 ×[tex]10^-^5[/tex]m

Therefore, the wavelength of the photon is 1.325 × [tex]10^-^5[/tex]m.

(b) The energy of a photon is related to its frequency f by the equation:

E = hf

where E is the energy and f is the frequency.

We can relate frequency to wavelength using the speed of light c:

c = λf

Solving for f, we get:

f = c/λ

Substituting the given wavelength, we get:

f = (2.998 × [tex]10^8[/tex]m/s) / (1.325 × [tex]10^-^5[/tex]m)

f = 2.263 × [tex]10^1^3[/tex] Hz

Now we can calculate the energy of the photon using the equation:

E = hf

Substituting the given values for Planck's constant and frequency, we get:

E = (6.626 × [tex]10^-^3^4[/tex]J s) × (2.263 × 1[tex]0^1^3[/tex]Hz)

E = 1.50 × 1[tex]0^-^2^0[/tex] J

Finally, we can convert this energy to electron volts (eV) using the conversion factor:

1 eV = 1.602 ×[tex]10^-^1^9[/tex]J

Therefore:

E = (1.50 ×[tex]10^-^2^0[/tex] J) / (1.602 × [tex]10^-^1^9[/tex] J/eV)

E = 0.0936 eV

So, the energy of the photon is 0.0936 eV.

To know more about Wavelength refer here :

https://brainly.com/question/30092711

#SPJ11

If the presently accepted value of Ω0=0.3 is indeed correct, then the universe will: If the presently accepted value of is indeed correct, then the universe will:a) stop expanding in about forty billion years, to collapse into the next cosmic cycle.b) expand forever.c) expand to the critical size for the Steady State model, then become static.d) Two of the answers are correct.e) All of the above are correct.

Answers

Therefore, the most likely scenario is that the universe will continue to expand forever, with the rate of expansion accelerating due to the dominance of dark energy.

If the presently accepted value of Ω0=0.3 is indeed correct, then the universe will most likely expand forever. This is based on the current understanding of the universe's composition and the rate of expansion. Ω0 is a measure of the density parameter, which describes the relative contributions of matter, radiation, and dark energy to the total energy density of the universe. A value of 0.3 suggests that the universe is dominated by dark energy, which is causing it to expand at an accelerating rate.
If the universe were to collapse into the next cosmic cycle, this would suggest that it is a closed system with a finite size and finite lifespan. However, current evidence suggests that the universe is flat or open, meaning that it will continue to expand indefinitely.
The option of expanding to the critical size for the Steady State model and becoming static is also unlikely. This model suggests that the universe maintains a constant size and density by continuously creating matter. However, this theory has been largely discredited by observational evidence.
This has implications for the ultimate fate of the universe, including the possibility of a "Big Freeze" or "Heat Death" scenario in which all matter becomes too diffuse and spread out to sustain life.

To know more about cosmic visit:

https://brainly.com/question/13960192

#SPJ11

Other Questions
For this exercise, your client, Bright IDEAs Inc., has provided you with data for two related files, a listing of sales invoices, and a listing of customers with credit limits. To test whether credit authorization controls are in place, the auditor must complete a series of related steps: 1. Import the client's database of sales invoices. 2. Summarize the Accounts Receivable balance by customer. 3. Import the client's customer credit limit data into IDEA. 4. Join the Accounts Receivable balances by customer with the credit limit data. 5. Extract customers with exceeded credit limits. Required Data Files: IDEA Data Analysis Workbook ACC_REC2015.ACCDB CUSTOMER.TXT Required: Complete all of the related steps shown above using IDEA. After completing each step, answer the following questions. (Enter your answers exactly as they appear in IDEA.) a. How many customers were granted credit with no indication that they had any credit limit assigned to them? b. How many customers exceeded their credit limit? c. Determine which accounts and assertions were most likely influenced by your findings in (a) and (b). Complete the question by entering your answers in the tabs given below. c. Determine which accounts and assertions were most likely influenced by your findings in (a) and (b). (Select all items that apply in the list below by choosing "X" in the corresponding cell in dropdown column. For items that do not apply, leave the corresponding dropdown cell blank.) True or False: In single payer health care systems, like those that exist in Sweden and Great Britain, private health insurance and private doctors are illegal True False What is the law of supply? How many of the following "goods" do you think conform to the general law of supply? Explain your answer in each case. a. Gasolineb. Cheating on examsc. political favors from legislators d. The services of heart specialistse. Childrenf. Legal divorces Balance the following redox reaction in basic solution:XO4- (aq) + Z3+ (aq) X2+ (aq) + ZO22+ (aq)Where: X = Metal #1 and Z = Metal #2Indicate each of the following steps:(a) the initial oxidation numbers of each atom on both sides of the equation.(b) separate oxidation and reduction 1/2-reactions.(c) the balancing of electrons, atoms, and charge in both 1/2-reactions.(d) combining of balanced half-reactions, canceling species if necessary, to form a balanced redox reaction in acidic solution.(e) modification of the balanced reaction in acidic solution to a balanced reaction in basic solution. What is the vapor pressure of the solution if 25.0 g of water is dissolved in 100.0 g of ethyl alcohol at 25 C? The vapor pressure of pure water is 23.8 mm Hg, and the vapor pressure of ethyl alcohol is 61.2 mm Hg at 25 C. Write a python program to find the longest words.def longest_word(filename):with open(filename, 'r') as infile:words = infile.read().split()max_len = len(max(words, key=len))# ORmax_len =max(len(w) for w in words)return [word for word in words if len(word) ==max_len]print(longest_word('test.txt')) There are some counters in a box.Each counter is blue or green or redor yellowThe total number of blue and green counters is twice the total number of red and yellow counters.The number of green counters is of the number of blue counters.1Show that, to the newest percent, the percentage of blue counters in the box is 57 %6 7. Two classes have our washes to raise money for class trips. A portion of the earnings will pay for using the two locations for the car that the earnings of the classes are proportional to the car wash using the standard enthalpies of formation, what is the standard enthalpy of reaction? co(g) h2o(g)co2(g) h2(g) co(g) h2o(g)co2(g) h2(g) rxn=hrxn= kj the maximum allowable tension in cables oa and ob is 450 n and 500 n, respectively. find the largest weight, w, that can be safely supported, given: l1 = 3 m, l2 = 4 m, l3 = 5 m Consider the hypothesis testH_0:\mu_1=\mu_2againstH_1:\mu_1\neq \mu_2with known variances\sigma _1=9and\sigma _2=6. Suppose that sample sizesn_1=11andn_2=14and that\overline{x}_1=4.7and\overline{x}_2=7.8Useg= 0,05(a) Test the hypothesis and find the P-value.(b) What is the power of the test in part (a) for a true difference in means of 3?(c) Assuming equal sample sizes, what sample size should be used to obtain\beta =0.05if the true difference in means is 3? Assume that(a) The null hypothesis Choose your answer; The null hypothesis _ rejected rejected. The P-value is Enter your answer; The P-value is . Round your answer to three decimal places (e.g. 98.765).(b) The power is Enter your answer in accordance to the item b) of the question statement. Round your answer to two decimal places (e.g. 98.76).(c) Enter your answer in accordance to the item c) of the question statement . Round your answer up to the nearest integer. DataSpan, Inc., automated its plant at the start of the current year and installed a flexible manufacturing system. The company is also evaluating its suppliers and moving toward Lean Production. Many adjustment problems have been encountered, including problems relating to performance measurement. After much study, the company has decided to use the performance measures below, and it has gathered data relating to these measures for the first four months of operations.Month1234Throughput time (days)????Delivery cycle time (days)????Manufacturing cycle efficiency (MCE)????Percentage of on-time deliveries90%84%81%78%Total sales (units)2410230721892106Management has asked for your help in computing throughput time, delivery cycle time, and MCE. The following average times have been logged over the last four months:Average per Month (in days)1234Move time per unit0.90.50.60.6Process time per unit3.63.43.23.0Wait time per order before start of production18.019.723.024.8Queue time per unit4.75.56.47.4Inspection time per unit0.60.80.80.6Required:1-a. Compute the throughput time for each month.1-b. Compute the delivery cycle time for each month.1-c. Compute the manufacturing cycle efficiency (MCE) for each month.2. Evaluate the companys performance over the last four months.3-a. Refer to the move time, process time, and so forth, given for month 4. Assume that in month 5 the move time, process time, and so forth, are the same as in month 4, except that through the use of Lean Production the company is able to completely eliminate the queue time during production. Compute the new throughput time and MCE.3-b. Refer to the move time, process time, and so forth, given for month 4. Assume in month 6 that the move time, process time, and so forth, are again the same as in month 4, except that the company is able to completely eliminate both the queue time during production and the inspection time. Compute the new throughput time and MCE. Recently, u.s. dairies, struggling to increase milk sales, tried to change the way adults thought about milk. the dairies wanted to __________ chocolate milk in the minds of adult consumers and sell more milk to adults. What is a plays conflict?A.the struggle between two forces in the playB.the people and animals in the playC.the time and place where the story happensD.events that make up the story in the play True/False: to be effective as a follower, it is necessary to implement decisions made by a leader even when they are misguided or unethical. Four racecars are driving at constant speeds around a circular racetrack. The daiabie gives the speed of each car and each car's d Speed (m/s) 40 40 50 50 Position (m) 20 25 20 Car Rank the cars' accelerations from largest to smallest. To rank items as equivalent, overlap them Largest Acceleration lu The corect rankig carat be determined. You bought some shares of stock and sell them one year later. At the end of the year, the price per share was 5 percent higher and the price level was 3 percent higher. Before taxes, you experienced a. a nominal gain and a real loss, and you paid taxes on the nominal gain. b. both a nominal gain and a real gain, and you paid taxes only on the real gain. c. both a 2. list the name of project that has most of working hours sql How long does it take a motor with an output of 8. 0 W to lift a 2. 0 kg object 88 cm? Given an array holding ten integers (int type) that has already been created and loaded with values, write a code segment to print out the contents of the array in reverse order.Language is C++