What is specific enthalpy of vaporization of liquid-vapor mixture at 6 bar? At 6 bar, hg = 2756.8 kJ/kg, hf = 670.56 kJ/kg

Answers

Answer 1

The specific enthalpy of vaporization of the liquid-vapor mixture at 6 bar is approximately 2086.24 kJ/kg.

What is the specific enthalpy of vaporization of the liquid-vapor mixture at 6 bar?

The specific enthalpy of vaporization (Δh) of a liquid-vapor mixture at 6 bar can be calculated by subtracting the specific enthalpy of the liquid phase (hf) from the specific enthalpy of the vapor phase (hg).

Given:

hg = 2756.8 kJ/kg

hf = 670.56 kJ/kg

Δh = hg - hf

Δh = 2756.8 kJ/kg - 670.56 kJ/kg

Δh ≈ 2086.24 kJ/kg

Therefore, the specific enthalpy of vaporization of the liquid-vapor mixture at 6 bar is approximately 2086.24 kJ/kg.

Learn more about vapor mixture

brainly.com/question/30652627

#SPJ11


Related Questions

Problem II (20pts) Properties of Signals and their Fourier Series (FS) Expansions A real-valued periodic signal x(t) and its Fourier Series (FS) expansion form are given by a general form, as follows, x(t) = α₀+ [infinity]∑ₙ₌₁ αₙcos nω₀t + bₙ sin nω₀t Here the fundamental angular frequency ω₀=2πf₀, and period of x(t) is T₀ =1/f₀ 1. (5pts) If signal x(t) is an even-function of time, say x(-t) = x(t), simplify its Fourier expansion (the RHS of the given identity)? Provide detailed proof of your claim. 2. (5pts) If we assume that signal x(t) is an odd-function of time, say x(-t) =-x(t). simplify its Fourier expansion (the RHS of the given identity)? Provide detailed proof of your claim 3. (5pts) If we assume that signal x(t) has no DC component, how do you simplify its Fourier expansion (the RHS of the given identity)? Provide detailed proof of your claim. 4. (Spts) Find the Fourier Series expansion of time-shifted signal x(t -T₀)

Answers

The Fourier series of x(t) approaches the Fourier transform of x(t) as T → ∞.

Fourier analysis of signals:

Given a real-valued periodic signal x-(0) = p(tent), with the basic copy contained in x(1) defined as a rectangular pulse, 11. pl) = recte") = 10, te[:12.12), but el-1, +1] Here the parameter T is the period of the signal.

Sketch the basic copy p(!) and the periodic signal x(1) for the choices of T = 4 and T = 8 respectively.

x- (1) for T = 4:x- (1) for T = 8:2.

Find the general expression of the Fourier coefficients (Fourier spectrum) for the periodic signal x-(), i.e. X.4 FSx,(.)) = ?The Fourier coefficients for x(t) are given by:

an = (2 / T) ∫x(t) cos(nω0t) dtbn = (2 / T) ∫x(t) sin(nω0t) dtn = 0, ±1, ±2, …

Here, ω0 = 2π / T = 2πf0 is the fundamental frequency. As the function x(t) is even, bn = 0 for all n.

Therefore, the Fourier series of x(t) is given by:x(t) = a0 / 2 + Σ [an cos(nω0t)]n=1∞wherea0 = (2 / T) ∫x(t) dt3. Sketch the above Fourier spectrum for the choices of T = 4 and T = 8 as a function of S. En. S. respectively, where f, is the fundamental frequency.

The Fourier transform of the basic rectangular pulse p(t) = rect(t / 2) is given by:P(f) = 2 sin(πf) / (πf)4. Using the X found in part-2 to provide a detailed proof on the fact: when we let the period T go to infinity, Fourier Series becomes Fourier Transformx:(t)= x. elzaal T**>x-(1)PS)-ezet df, x,E 0= er where PS45{p(t)} is simply the FT of the basic pulse!By letting the period T go to infinity, the fundamental frequency ω0 = 2π / T goes to zero. Also, as T goes to infinity, the interval over which we sum in the Fourier series becomes infinite, and the sum becomes an integral.

Therefore, the Fourier series of x(t) becomes:

Substituting the Fourier coefficients for an, we get: As T → ∞, the expression in the square brackets approaches the Fourier transform of x(t): Therefore, the Fourier series of x(t) approaches the Fourier transform of x(t) as T → ∞.

Learn more about Fourier series at:

brainly.com/question/32643939

#SPJ4

man holds a pendulum which consists of a 1- ft cord and a 0.7 - lb weight. If the elevator is going up with an acceleration of 60 in/s², determine the natural period of vibration for small amplitudes of swing.

Answers

The natural period of vibration for small amplitudes of swing is calculated using the equation :[tex]T = 2π (L/g)^0.5,[/tex]

where L is the length of the cord and g is the acceleration due to gravity.

The weight of the pendulum is not needed for this calculation since it does not affect the natural period of vibration.In this case, the length of the cord is given as 1 ft or 12 inches. The acceleration due to gravity is approximately 32.2 ft /s².

Substituting these values into the equation, we get :

[tex]T = 2π (12/32.2)^0.5T ≈ 1.84 seconds[/tex]

Therefore, the natural period of vibration for small amplitudes of swing is 1.84 seconds.Note that the acceleration of the elevator is not needed for this calculation since it is not affecting the length of the cord or the acceleration due to gravity.

To know more about amplitudes  visit:

https://brainly.com/question/9525052

#SPJ11

please provide 5 benefits (advantages) and five properties of any
macheine ( such as drill or saw ... etc)

Answers

Machinery such as a drill offers numerous advantages, including precision, efficiency, versatility, power, and safety. Properties of a drill include rotational speed, torque, power source, drill bit compatibility, and ergonomic design.

Machinery, like a circular saw, has multiple advantages including power, precision, efficiency, versatility, and portability. Key properties include blade diameter, power source, cutting depth, safety features, and weight. A circular saw provides robust power for cutting various materials and ensures precision in creating straight cuts. Its efficiency is notable in both professional and DIY projects. The saw's versatility allows it to cut various materials, while its portability enables easy transportation. Key properties encompass the blade diameter which impacts the cutting depth, the power source (electric or battery), adjustable cutting depth for versatility, safety features like blade guards, and the tool's weight impacting user comfort.

Learn more about Machinery here:

https://brainly.com/question/9806515

#SPJ11

A group of recent engineering graduates wants to set up facemask
factory for the local market. Can you analyze the competitive
landscape for their venture and make recommendations based on your
analys

Answers

They can develop a robust business plan that meets their objectives and provides a competitive advantage.

Facemasks have become an essential item due to the ongoing COVID-19 pandemic. A group of recent engineering graduates wants to set up a facemask landscape for their venture. To make recommendations for their business, they must analyze the current market trends.

The first step would be to determine the demand for face masks. The current global pandemic has caused a surge in demand for masks and other personal protective equipment (PPE), which has resulted in a shortage of supplies in many regions. Secondly, the group must decide what type of masks they want to offer. There are various types of masks in the market, ranging from basic surgical masks to N95 respirators.

The choice of masks will depend on the intended audience, budget, and the group's objectives. Lastly, the group should identify suppliers that can meet their requirements. The cost of masks can vary depending on the type, quality, and supplier. It is important to conduct proper research before making a purchase decision. The group of graduates should conduct a SWOT analysis to identify their strengths, weaknesses, opportunities, and threats. They can also research competitors in the market to determine how they can differentiate their products and provide a unique selling proposition (USP).

To know more about personal protective equipment please refer to:

https://brainly.com/question/32305673

#SPJ11

7. Given that P. 2ax-ay-2az Q. 4ax. 3ay.2az R = -ax+ ay • Zaz Find: (a) IP+Q-RI, (b) PI x R. (c) Q x P DR, (d) (PxQ) DQ x R). (e) (PxQ) x (QxR) (1) CosB (g) Sin

Answers

Using trigonometry identities we have:

(a) IP + Q - RI: 3ax - ay - 3az.

(b) PI x R: -2a^2x + 2a^2y.zaz + ax.ay + 2az.ay.

(c) Q x P DR: -48a^3x.ay.az + 48a^3y.az^2 + 24a^2x.ay.az + 48az^2.ay.

(d) (PxQ) DQ x R: -56a^3x.ay.az + 16ax.ay.8az + 16ax.ay.2az + 6a^2x.3ay.zaz + 12a^2y.az.2ax - 6ax.ay.az - 24az.ay.2ax.

(e) (PxQ) x (QxR): -50a^3x.ay.az + 40a^3y.az^2 - 22a^2x.ay.az - 56ax.ay.az - 48az.ay.2ax.

Given that P = 2ax - ay - 2az; Q = 4ax.3ay.2az; R = -ax + ay • Zaz;

(a) IP + Q - RI:

The value of IP + Q - RI is given by:

IP + Q - RI = (2ax - ay - 2az) + (4ax.3ay.2az) - (-ax + ay • Zaz)

            = 2ax - ay - 2az + 24ax.ay.az + ax - ay.zaz

            = (2+1+0)ax + (-1+0+0)ay + (-2+0-1)az

            = 3ax - ay - 3az

(b) PI x R:

The value of PI x R can be obtained as follows:

PI x R = 2ax - ay - 2az x (-ax + ay • Zaz)

       = 2ax x (-ax) + 2ax x (ay • Zaz) - ay x (-ax) - ay x (ay • Zaz) - 2az x (-ax) - 2az x (ay • Zaz)

       = -2a^2x + 2a^2y.zaz + ax.ay + 2az.ay

(c) Q x P DR:

The value of Q x P DR can be obtained as follows:

Q x P DR = (4ax.3ay.2az) x (2ax - ay - 2az) x (-ax + ay • Zaz)

         = 24ax.ay.az x (2ax - ay - 2az) x (-ax + ay • Zaz)

         = -48a^3x.ay.az + 48a^3y.az^2 + 24a^2x.ay.az + 48az^2.ay

(d) (PxQ) DQ x R:

The value of (PxQ) DQ x R) can be obtained as follows:

(PxQ) DQ x R) = [(2ax - ay - 2az) x (4ax.3ay.2az)] x (-ax + ay • Zaz)

              = (8a^2x.3ay.zaz - 4ax.ay.8az - 8ax.ay.2az - 6a^2x.3ay.zaz - 12a^2y.az.2ax + 6ax.ay.az + 24az.ay.2ax) x (-ax + ay.zaz)

              = (-56a^3x.ay.az + 16ax.ay.8az + 16ax.ay.2az + 6a^2x.3ay.zaz + 12a^2y.az.2ax - 6ax.ay.az - 24az.ay.2ax)

(e) (PxQ) x (QxR):

The expression of (PxQ) x (QxR) can be obtained as follows:

(PxQ) x (QxR) = [(2ax - ay - 2az) x (4ax.3ay.2az)] x [(4ax.3ay.2az) x (-ax + ay • Zaz)]

              = (8a^2x.3ay.zaz - 4ax.ay.8az - 8ax.ay.2az - 6a^

2x.3ay.zaz - 12a^2y.az.2ax + 6ax.ay.az + 24az.ay.2ax) x (-ax + ay.zaz)

              = -50a^3x.ay.az + 40a^3y.az^2 - 22a^2x.ay.az - 56ax.ay.az - 48az.ay.2ax

(1) CosB:

CosB cannot be found since there is no information about any angle present in the question.

(g) Sin:

Sin cannot be found since there is no information about any angle present in the question.

Learn more about trigonometry identities

https://brainly.com/question/27162747

#SPJ11

Considering the above scenario, the engineer should make a report/presentation explaining the process of design on different component and its manufacturing; finally, an integration as a complete system. (Process of VR design (constraints and criteria), components of manufacturing a fountain including audio system and lights display and any other auxiliary (fire-works display, multiple screen and advertising screens)

Answers

For the process of VR design, the engineer should start by considering the constraints and criteria. The engineer should first consider the specific requirements of the client in terms of the design of the fountain. The constraints may include the size of the fountain, the materials that will be used, and the budget that the client has allocated for the project.



After considering the constraints and criteria, the engineer should start designing the fountain using virtual reality technology. Virtual reality technology allows engineers to design complex systems such as fountains with great accuracy and attention to detail. The engineer should be able to create a virtual model of the fountain that incorporates all the components that will be used in its manufacture, including the audio system and the lights display.

Once the design is complete, the engineer should then proceed to manufacture the fountain. The manufacturing process will depend on the materials that have been chosen for the fountain. The engineer should ensure that all the components are of high quality and meet the specifications of the client.

Finally, the engineer should integrate all the components to create a complete system. This will involve connecting the audio system, the lights display, and any other auxiliary components such as fireworks displays and multiple screens. The engineer should also ensure that the fountain meets all safety and regulatory requirements.

In conclusion, the engineer should prepare a report or presentation that explains the process of designing and manufacturing the fountain, including all the components and the integration process. The report should also highlight any challenges that were encountered during the project and how they were overcome. The engineer should also provide recommendations for future improvements to the design and manufacturing process.

To know more about engineer visit:

https://brainly.com/question/33162700

#SPJ11

Moist air at standard conditions is at a dry bulb temperature of 93°F and a Wet Bulb temperature of 69°F. Use the psychrometric chart to find:
- Relative Humidity
- Dew Point Temperature
- Specific Volume (closest)
- Enthalpy

Answers

Moist air at standard conditions is at a dry bulb temperature of 93°F and a wet bulb temperature of 69°F. Using the psychrometric chart, we need to find the relative humidity, dew point temperature, specific volume (closest), and enthalpy.

Relative Humidity: Using the psychrometric chart, we can determine that the dry bulb temperature of 93°F and the wet bulb temperature of 69°F intersect at a point on the chart. We can then draw a horizontal line from that point to the right side of the chart to find the relative humidity. The intersection of this line with the 100% relative humidity line gives us the relative humidity of 40%.

The intersection of this line with the curved lines gives us the dew point temperature. From the chart, we can see that the dew point temperature is approximately 63°F, the dew point temperature is 63°F.Specific Volume: From the psychrometric chart, we can see that the specific volume is approximately 13.5 cubic feet per pound of dry air.

To know more about temperature visit:

https://brainly.com/question/7510619

#SPJ11

QUESTION 7 Which of the followings is true? A second-order circuit is the one with A. 1 energy storage element. B. 2 energy storage elements. C. 3 energy storage elements. D. zero energy storage element. QUESTION 8 Which of the followings is true? It is well-known that human voices have a bandwidth within A. 2kHz. B. 3kHz. C. 4kHz. D. 5kHz.

Answers

The correct answers to the given questions are:QUESTION 7: Option B, that is, second-order circuit is the one with 2 energy storage elements is true QUESTION 8: Option A, that is, 2kHz is true.

Answer for QUESTION 7:Option B, that is, second-order circuit is the one with 2 energy storage elements is true

Explanation:A second-order circuit is one that has two independent energy storage elements. Inductors and capacitors are examples of energy storage elements. A second-order circuit is a circuit with two energy-storage elements. The two elements can be capacitors or inductors, but not both. An RC circuit, an LC circuit, and an RLC circuit are all examples of second-order circuits. The behavior of second-order circuits is complicated, as they can exhibit oscillations, resonances, and overshoots, among other phenomena.

Answer for QUESTION 8:Option A, that is, 2kHz is true

Explanation:It is well-known that human voices have a bandwidth within 2kHz. This range includes the maximum frequency a human ear can detect, which is around 20 kHz, but only a small percentage of people can detect this maximum frequency. Similarly, the minimum frequency that can be heard is about 20 Hz, but only by young people with excellent hearing. The human voice is typically recorded in the range of 300 Hz to 3400 Hz, with a bandwidth of around 2700 Hz. This range is critical for the transmission of speech since most of the critical consonant sounds are in the range of 2 kHz.

To know more about circuit visit:

brainly.com/question/12608516

#SPJ11

The specifications for the voltage source are that it provides an open-circuit max/peak voltage of 1200 V and a phase angle of -20 degrees and a Thevenin Equivalent Impedance of (54 + j12) Ohms.
You add a pure Resistive Load across the terminals of the voltage source in order to result in maximum average power being transferred to the load. What is that maximum average power that is delivered to the load?

Answers

The maximum average power delivered to the load is 157989.8 watts (approx).

Given data

Open circuit maximum/peak voltage= V_m

= 1200V

Phase angle= Φ= -20°

Thevenin equivalent impedance= Z_Th = 54 + j12Ω

Pure Resistive Load= R

Load= ?

Formula to find maximum power transfer

The formula for maximum power transfer to a load resistance is given by;

P = [(V_m)^2 / 4 RLoad] watts

Where, V_m = open circuit maximum/peak voltage

RLoad= Pure Resistive Load

For maximum average power delivery, the load resistance should be equal to the thevenin equivalent resistance.

Resistance of the load = Thevenin Equivalent Resistance = |Zth|ohms

RL = |54 + j12|ohms

RL = √(54^2 + 12^2)ohms

RL = 55.84 ohms

So, the maximum average power delivered to the load will be;

P = [(V_m)^2 / 4 RLoad] watts

P = [(1200V)^2 / 4 (55.84ohms)] watts

P = 157989.8 watts (approx)

Therefore, the maximum average power delivered to the load is 157989.8 watts (approx).

To know more about power visit:

https://brainly.com/question/29957379

#SPJ11

4.1. Given the following forward transfer function: G(P) = 2/ (s + 3) Assume that you have introduced proportional plus integral controller (G(c)) with gains of K and Kri respectively within the closed loop system. Workout the values for K and K so that the peak time To is 0.2 sec and the settling time Ts is less than 0.4 sec.

Answers

The formula for the closed-loop transfer function with the introduction of a proportional-integral controller is given by:

$$G_{CL}(s) = \frac{G_c(s)G(s)}{1 + G_c(s)G(s)}$$

In this case, the open-loop transfer function is given by:$$G(s) = \frac{2}{s + 3}$$

The closed-loop transfer function becomes: $$G_{CL}(s) = \frac{\frac{2K}{s(s+3)} + \frac{2K_ri}{s}}{1 + \frac{2K}{s(s+3)} + \frac{2K_ri}{s}}$$

To find the values of K and Kri such that the peak time To is 0.2 sec and the settling time Ts is less than 0.4 sec, we need to use the following relations: $$T_p = \frac{\pi}{\omega_d},\qquad T_s = \frac{4}{\zeta\omega_n}$$

where, $\omega_n$ and $\zeta$ are the natural frequency and damping ratio of the closed-loop system, respectively, and $\omega_d$ is the damped natural frequency. Since we are given the values of To and Ts, we can first find $\zeta$ and $\omega_n$, and then use them to find K and Kri.

First, we find the value of $\omega_d$ from the given peak time To:

$$T_p = \frac{\pi}{\omega_d} \Rightarrow \omega_d = \frac{\pi}{T_p} = \frac{\pi}{0.2} = 15.7\text{ rad/s}$$

Next, we use the given settling time Ts to find $\zeta$ and $\omega_n$:$$T_s = \frac{4}{\zeta\omega_n} \Rightarrow \zeta\omega_n = \frac{4}{T_s} = \frac{4}{0.4} = 10$$

We can choose any combination of $\zeta$ and $\omega_n$ that satisfies this relation.

For example, we can choose $\zeta = 0.5$ and $\omega_n = 20$ rad/s. Then, we can use these values to find K and Kri as follows: $$2K = \frac{\omega_n^2}{2} = 200 \Rightarrow K = 100$$$$2K_ri = 2\zeta\omega_n = 20 \Rightarrow K_i = 10$$

Therefore, the values of K and Kri that satisfy the given requirements are K = 100 and Ki = 10.

To know more about damping ratio refer to:

https://brainly.com/question/31018369

#SPJ11

Design an animal toy (such as a camel, cow, horse, etc.) that can walk without slipping, tipping, and flipping using the Four Bar Mechanism system. Identify the mechanism profile that suits your toy and carry the following analysis using MatLab for 360 degrees and make sample calculations for the mechanism(s) at a 45-degree crank angle: position, velocity, acceleration, forces, and balancing. Assume the coefficient of friction between the animal feet and the ground to be 0.3. The animal walks at a constant speed. The total mass of the toy should not exceed 300 grams. Make simulation for the walking animal using any convenient software. All your work should be in Microsoft Word. Handwriting is not accepted.

Answers

This task involves designing an animal toy that walks securely using the Four Bar Mechanism system. MATLAB will be utilized for detailed analysis, including position, velocity, acceleration, forces, and balancing at a 45-degree crank angle.

In this task, the goal is to create an animal toy capable of walking without slipping, tipping, or flipping by utilizing the Four Bar Mechanism system. The Four Bar Mechanism consists of four rigid bars connected by joints, forming a closed loop. By manipulating the angles and lengths of these bars, a desired motion can be achieved.

To begin the analysis, MATLAB will be employed to determine the position, velocity, acceleration, forces, and balancing of the toy at a 45-degree crank angle. These calculations will provide crucial information about the toy's movement and stability.

Furthermore, various factors need to be considered, such as the total mass of the toy, which should not exceed 300 grams. This limitation ensures the toy's lightweight nature for ease of handling and operation.

Assuming a coefficient of friction of 0.3 between the animal's feet and the ground, the toy's walking motion will be simulated. The coefficient of friction affects the toy's ability to grip the ground, preventing slipping.

For more information on MATLAB visit: brainly.com/question/31512956

#SPJ11

(Time) For underdamped second order systems the rise time is the time required for the response to rise from
0% to 100% of its final value
either (a) or (b)
10% to 90% of its final value
5% to 95% of its final value

Answers

By considering the rise time from 10% to 90% of the final value, we obtain a more reliable and consistent measure of the system's performance, particularly for underdamped systems where the response exhibits oscillations before settling. This definition helps in evaluating and comparing the dynamic behavior of such systems accurately.

The rise time of a system refers to the time it takes for the system's response to reach a certain percentage of its final value. For underdamped second-order systems, the rise time is commonly defined as the time required for the response to rise from 0% to 100% of its final value. However, this definition can lead to inaccuracies in determining the system's performance.

To address this issue, a more commonly used definition of rise time for underdamped second-order systems is the time required for the response to rise from 10% to 90% of its final value. This range provides a more meaningful measure of how quickly the system reaches its desired output. It allows for the exclusion of any initial transient behavior that may occur immediately after the input is applied, focusing instead on the rise to the steady-state response.

To know more about underdamped, visit:

https://brainly.com/question/31018369

#SPJ11

Name three activities in routine maintenance of road.

Answers

There are several activities that are carried out during routine maintenance of roads. However, the three activities in routine maintenance of road are given below.

Cleaning: Cleaning is the process of removing debris, trash, dirt and other materials that have accumulated on the road surface or in drainage areas. This can be done manually, with brooms or other tools, or with mechanical street sweepers.2. Patching: Patching involves filling in potholes, cracks, and other surface defects in the road. This is done using materials such as asphalt or concrete.

Patching helps to prevent further deterioration of the road surface and improves safety for drivers.3. Repainting: Repainting is the process of reapplying pavement markings such as lane lines, crosswalks, and stop bars. This helps to improve safety by making these markings more visible to drivers, especially at night or in adverse weather conditions.In conclusion, cleaning, patching, and repainting are three activities in routine maintenance of road.

To know more about routine maintenance visit :

https://brainly.com/question/32127174

#SPJ11

A 1.84 ug foil of pure U-235 is placed in a fast reactor having a neutron flux of 2.02 x 1012 n/(cm?sec). Determine the fission rate (per second) in the foil.

Answers

The fission rate is 7.7 × 10⁷ s⁻¹, and it means that 7.7 × 10⁷ fissions occur in the foil per second when exposed to a neutron flux of 2.02 x 1012 n/(cm².sec).

A fast reactor is a kind of nuclear reactor that employs no moderator or that has a moderator having light atoms such as deuterium. Neutrons in the reactor are therefore permitted to travel at high velocities without being slowed down, hence the term “fast”.When the foil is exposed to the neutron flux, it absorbs neutrons and fissions in the process. This is possible because uranium-235 is a fissile material. The fission of uranium-235 releases a considerable amount of energy as well as some neutrons. The following is the balanced equation for the fission of uranium-235. 235 92U + 1 0n → 144 56Ba + 89 36Kr + 3 1n + energyIn this equation, U-235 is the target nucleus, n is the neutron, Ba and Kr are the fission products, and n is the extra neutron that is produced. Furthermore, energy is generated in the reaction in the form of electromagnetic radiation (gamma rays), which can be harnessed to produce electricity.

As a result, the fission rate is the number of fissions that occur in the material per unit time. The fission rate can be determined using the formula given below:

Fission rate = (neutron flux) (microscopic cross section) (number of target nuclei)

Therefore, Fission rate = 2.02 x 1012 n/(cm².sec) × 5.45 x 10⁻²⁴ cm² × (6.02 × 10²³ nuclei/mol) × (1 mol/235 g) × (1.84 × 10⁻⁶ g U) = 7.7 × 10⁷ s⁻¹

Therefore, the fission rate is 7.7 × 10⁷ s⁻¹, and it means that 7.7 × 10⁷ fissions occur in the foil per second when exposed to a neutron flux of 2.02 x 1012 n/(cm².sec).

To know more about fission rate visit:

https://brainly.com/question/31213424

#SPJ11

Water is the working fluid in an ideal Rankine cycle. Steam enters the turbine at 1400lbf
/ in2 and 1200∘F. The condenser pressure is 2 Ib / in. 2
The net power output of the cycle is 350MW. Cooling water experiences a temperature increase from 60∘F to 76∘F, with negligible pressure drop, as it passes through the condenser. Step 1 Determine the mass flow rate of steam, in lb/h. m = Ib/h

Answers

The mass flow rate of steam and cooling water will be 8963 lb/h and 6.25x10^7 lb/h respectively whereas the rate of heat transfer is 1.307x10^7 Btu/h and thermal efficiency will be; 76.56%.

(a) To find the mass flow rate of steam, we need to use the equation for mass flow rate:

mass flow rate = net power output / ((h1 - h2) * isentropic efficiency)

Using a steam table, h1 = 1474.9 Btu/lb and h2 = 290.3 Btu/lb.

mass flow rate = (1x10^9 Btu/h) / ((1474.9 - 290.3) * 0.85)

= 8963 lb/h

(b) The rate of heat transfer to the working fluid passing through the steam generator is

Q = mass flow rate * (h1 - h4)

Q = (8963 lb/h) * (1474.9 - 46.39) = 1.307x10^7 Btu/h

(c) The thermal efficiency of the cycle is :

thermal efficiency = net power output / heat input

thermal efficiency = (1x10^9 Btu/h) / (1.307x10^7 Btu/h) = 76.56%

Therefore, the thermal efficiency of the cycle is 76.56%.

(d) To find the mass flow rate of cooling water,

rate of heat transfer to cooling water = mass flow rate of cooling water * specific heat of water * (T2 - T1)

1x10^9 Btu/h = mass flow rate of cooling water * 1 Btu/lb°F * (76°F - 60°F)

mass flow rate of cooling water = (1x10^9 Btu/h) / (16 Btu/lb°F)

= 6.25x10^7 lb/h

Therefore, the mass flow rate of cooling water is 6.25x10^7 lb/h.

Learn more about Fluid mechanics at:

brainly.com/question/17123802

#SPJ4

Q2) A switch has dv/dt maximum rating of 10 V/μs. It is to be used to energize a 20Ω load and it is known that step transient of 200 V occurs. The switch has di/dt maximum rating of 10 A/μs. The recharge resistor of the snubber is 400Ω. Design snubber elements to protect the device.

Answers

Snubber elements will help protect the switch when energizing the 20 Ω load with a step transient of 200 V by limiting the voltage and current rates of change within the specified maximum ratings of the switch.

Given data:

Maximum dv/dt rating of the switch: 10 V/μs

Step transient voltage (Vstep): 200 V

Maximum di/dt rating of the switch: 10 A/μs

Recharge resistor of the snubber: 400 Ω

Step 1: Calculate the snubber capacitor (Cs):

Cs = (Vstep - Vf) / (dv/dt)

Assuming Vf (forward voltage drop) is negligible, Cs = Vstep / dv/dt

Substituting the values: Cs = 200 V / 10 V/μs = 20 μF

Step 2: Calculate the snubber resistor (Rs):

Rs = (Vstep - Vf) / (di/dt)

Assuming Vf is negligible, Rs = Vstep / di/dt

Substituting the values: Rs = 200 V / 10 A/μs = 20 Ω

Step 3: Consider the existing recharge resistor:

Given recharge resistor = 400 Ω

So, the final snubber design elements are:

Snubber capacitor (Cs): 20 μF

Snubber resistor (Rs): 20 Ω

Recharge resistor: 400 Ω

These snubber elements will help protect the switch when energizing the 20 Ω load with a step transient of 200 V by limiting the voltage and current rates of change within the specified maximum ratings of the switch.

To know more about transient, visit:

https://brainly.com/question/31519346

#SPJ11

(a) Explain in detail one of three factors that contribute to hydrogen cracking.
(b) Explain the mechanism of hydrogen induced cool cracking
(c) Explain with your own words how to avoid the hydrogen induced cracking in underwater welding

Answers

(a) One of the factors that contribute to hydrogen cracking is the presence of hydrogen in the weld metal and base metal. Hydrogen may enter the weld metal during welding or may already exist in the base metal due to various factors like corrosion, rust, or water exposure.

As welding takes place, the high heat input and the liquid state of the weld metal provide favorable conditions for hydrogen diffusion. Hydrogen atoms can migrate to the areas of high stress concentration and recombine to form molecular hydrogen. The pressure generated by the molecular hydrogen can cause the brittle fracture of the metal, leading to hydrogen cracking. The amount of hydrogen in the weld metal and the base metal is dependent on the welding process used, the type of electrode, and the shielding gas used.


(c) To avoid hydrogen-induced cracking in underwater welding, several measures can be taken. The welding procedure should be carefully designed to avoid high heat input, which can promote hydrogen diffusion. Preheating the metal before welding can help to reduce the cooling rate and avoid the formation of cold cracks. Choosing low hydrogen electrodes or fluxes and maintaining a dry environment can help to reduce the amount of hydrogen available for diffusion.

To know more about corrosion visiṭ:

https://brainly.com/question/31590223

#SPJ11

Draw the critical load combinations for a five-span continuous beam, indicating the approximate location of the maximum bending moment in each case.

Answers

Analyze critical load combinations and determine maximum bending moments in each span of a five-span continuous beam.

Explain the process and importance of DNA replication in cell division.

In the given problem, a five-span continuous beam is considered. The critical load combinations need to be determined, along with the approximate location of the maximum bending moment for each case.

The critical load combinations refer to the specific combinations of loads that result in the highest bending moments at different locations along the beam.

By analyzing and calculating the effects of different load combinations, it is possible to identify the load scenarios that lead to maximum bending moments in each span.

This information is crucial for designing and assessing the structural integrity of the beam, as it helps in identifying the sections that are subjected to the highest bending stresses and require additional reinforcement or support.

Learn more about combinations

brainly.com/question/31586670

#SPJ11

The purpose and operation of the different types of
lift augmentation devices that can be utilized.
include at least 4 . appreciated

Answers

Lift augmentation devices, such as flaps, slats, spoilers, and winglets, are used to enhance aircraft performance during takeoff, landing, and maneuvering.

Flaps and slats increase the wing area and modify its shape, allowing for higher lift coefficients and lower stall speeds. This enables shorter takeoff and landing distances. Spoilers, on the other hand, disrupt the smooth airflow over the wings, reducing lift and aiding in descent control or speed regulation. Winglets, which are vertical extensions at the wingtips, reduce drag caused by wingtip vortices, resulting in improved fuel efficiency. These devices effectively manipulate the airflow around the wings to optimize lift and drag characteristics, enhancing aircraft safety, maneuverability, and efficiency. The selection and use of these devices depend on the aircraft's design, operational requirements, and flight conditions.

To learn more about Lift augmentation devices, click here:

https://brainly.com/question/31665764

#SPJ11

What are the possible legal consequences of
mechatronics engineering solutions? Give three (3)
different examples and explain.

Answers

Possible legal consequences of mechatronics engineering solutions include patent infringement, product liability lawsuits, and non-compliance with legal and ethical standards.

Legal consequences of mechatronics engineering solutions can arise from various aspects, such as intellectual property, safety regulations, and ethical considerations. Here are three examples of possible legal consequences:

1. Patent Infringement:

Mechatronics engineers may develop innovative technologies, systems, or components that are eligible for patent protection. If another party copies or uses these patented inventions without permission, it could lead to a legal dispute. The consequences of patent infringement can include legal action, potential damages, and injunctions to cease the unauthorized use of the patented technology.

2. Product Liability:

Mechatronics engineers are involved in designing and developing complex machinery, robotic systems, or automated devices. If a product created by mechatronics engineering solutions has defects or malfunctions, it can potentially cause harm or injury to users or bystanders. In such cases, product liability lawsuits may arise, holding the manufacturer, designer, or engineer accountable for any damages or injuries caused by the faulty product.

3. Ethical and Legal Compliance:

Mechatronics engineering solutions often involve the integration of software, hardware, and control systems. Engineers must ensure that their designs and implementations comply with legal requirements and ethical standards. Failure to comply with relevant laws, regulations, or ethical guidelines, such as data protection laws or safety standards, can lead to legal consequences. These consequences may include fines, regulatory penalties, loss of professional licenses, or reputational damage.

It is important for mechatronics engineers to be aware of these legal considerations and work in accordance with applicable laws, regulations, and ethical principles to mitigate potential legal consequences. Consulting legal professionals and staying updated with industry-specific regulations can help ensure compliance and minimize legal risks.

Learn more about mechatronics

brainly.com/question/32753655

#SPJ11

As an engineer, you are required to design a decreasing, continuous sinusoidal waveform by using buffered 3 stage RC phase shift oscillator with resonance frequency of 16kHz. Shows how you decide on the parameter values to meet the design requirement. Draw and discuss ONE (1) advantage and disadvantage, respectively of using buffers in the design.

Answers

To design a decreasing, continuous sinusoidal waveform using buffered 3 stage RC phase shift oscillator with a resonance frequency of 16kHz, here are the steps to follow:The phase shift oscillator is an electronic oscillator circuit that produces sine waves.

The oscillator circuit's frequency is determined by the resistor and capacitor values used in the RC circuit. Buffered 3 stage RC phase shift oscillator is used to design a decreasing, continuous sinusoidal waveform.To design a decreasing, continuous sinusoidal waveform, the following steps are to be followed:Select the values of the three resistors to be used in the RC circuit. Also, select three capacitors for the RC circuit. The output impedance of the oscillator circuit should be made as low as possible to avoid loading effects. Thus, a buffer should be included in the design to minimize the output impedance. The buffer is implemented using an operational amplifier.The values of the resistors and capacitors can be determined as follows:Let R be the value of the three resistors used in the RC circuit. Also, let C be the value of the three capacitors used in the RC circuit. Then the frequency of the oscillator circuit is given by:f = 1/2 πRCWhere f is the resonance frequency of the oscillator circuit.To obtain a resonance frequency of 16kHz, the values of R and C can be determined as follows:R = 1000ΩC = 10nFDraw and discuss ONE (1) advantage and disadvantage, respectively of using buffers in the design.Advantage: Buffers help to lower the output impedance, allowing the oscillator's output to drive other circuits without the signal being distorted. The buffer amplifier also boosts the amplitude of the output signal to a suitable level.Disadvantage: The disadvantage of using a buffer in the design is that it introduces additional components and cost to the circuit design. Moreover, the buffer consumes additional power, which reduces the overall efficiency of the circuit design.

To know more about buffered, visit:

https://brainly.com/question/31847096

#SPJ11

Numerical integration first computes the integrand's anti-derivative and then evaluates it at the endpoint bounds. True False

Answers

The answer for the given text will be False. Numerical integration methods do not generally require the computation of the integrand's anti-derivative.

Instead, they approximate the integral by dividing the integration interval into smaller segments and approximating the area under the curve within each segment. The integrand is directly evaluated at specific points within each segment, and these evaluations are used to calculate an approximation of the integral.There are various numerical integration techniques such as the Trapezoidal Rule, Simpson's Rule, and Gaussian Quadrature.

It employs different strategies for approximating the integral without explicitly computing the anti-derivative. The values of the integrand at these points are then combined using a specific formula to estimate the integral. Therefore, numerical integration methods do not require knowledge of the antiderivative of the integrated. Therefore, the statement "Numerical integration first computes the integrand's anti-derivative and then evaluates it at the endpoint bounds" is false.

Learn more about numerical integration methods here:

https://brainly.com/question/28990411

#SPJ11

2) An axial flow compressor has an overall pressure ratio of 4.5:1, and a mean blade speed of 245 m/s. Each stage is of 50% reaction and the relative air angles are the same (ᵝ₂= 30 deg) for each stage. The axial velocity is 158 m/s and is constant through the stage. If the polytropic efficiency is 87%, calculate the number of stages required. Assume T01 = 290K.

Answers

If the polytropic efficiency is 87%, The number of stages required for the axial flow compressor is 4.

To determine the number of stages required in an axial flow compressor, we can use the given information and apply the stage loading equation. The stage loading equation is given by:

H = Cᵦ * (U₂ - U₁)

Where H is the stage loading factor, Cᵦ is the relative air velocity coefficient, U₂ is the blade speed, and U₁ is the axial velocity.

First, we need to calculate the stage loading factor:

H = Cᵦ * (U₂ - U₁)

H = 0.5 * (245 - 158)

H = 43.5 m/s

Next, we can calculate the number of stages required using the stage loading factor and the overall pressure ratio:

Number of stages = (log(Pₒ/P₁) / log(Pₒ/Pᵇ)) / H

Assuming Pᵇ is the pressure ratio per stage, we can calculate it using the polytropic efficiency:

Pᵇ = (Pₒ/P₁)^(1/n) = (4.5)^(1/0.87) ≈ 1.717

Now, substituting the values into the formula:

Number of stages = (log(4.5) / log(1.717)) / 43.5

Number of stages ≈ 3.69

Since the number of stages must be a whole number, we round up to 4 stages.

Learn more about compressor here:

https://brainly.com/question/31672001

#SPJ11

We measured the length of two sides X and Y of a rectangular plate several times under fixed condition. We ignored the accuracy of the measurement instrument. The measurement results include the mean X=10 in, the standard deviation of the X=1.1 in, and the mean Y=15 in, the standard deviation of the Y=1.3in, each measurement were collected 40 times. Please estimate the nearest uncertainty of the area A=X ∗
Y at probability of 95%. 12 24 10 all solutions are not correct

Answers

The nearest estimate of the uncertainty of the area A is 29.5 [tex]in^2[/tex]. Therefore, option D is correct.

To estimate the uncertainty of the area A = X * Y at a 95% probability, we can use the method of propagation of uncertainties. The uncertainty of the area can be calculated using the formula:

uncertainty_A = X * uncertainty_Y + Y * uncertainty_X

Substituting the given values, with X = 10 in, uncertainty_X = 1.1 in, Y = 15 in, and uncertainty_Y = 1.3 in, we can calculate the uncertainty of the area.

uncertainty_A = (10 * 1.3) + (15 * 1.1) = 13 + 16.5 = 29.5

Therefore, the nearest estimate of the uncertainty of the area A is 29.5 in^2. None of the given options (A, B, C) match the correct answer.

Learn more about uncertainty of the area here:

https://brainly.com/question/28094302

#SPJ4

The correct question is here:

We measured the length of two sides X and Y of a rectangular plate several times under fixed condition. We ignored the accuracy of the measurement instrument. The measurement results include the mean X=10 in, the standard deviation of the X=1.1 in, and the mean Y=15 in, the standard deviation of the Y=1.3in, each measurement were collected 40 times. Please estimate the nearest uncertainty of the area A=X ∗ Y at probability of 95%.

A. 12

B. 24

C. 10

D. all solutions are not correct

Water is horizontal flowing through the capillary tube in a steady-state, continuous laminar flow at a temperature of 298 K and a mass rate of 3 x 10-3 (kg/s). The capillary tube is 100 cm long, which is long enough to achieve fully developed flow. The pressure drop across the capillary is measured to be 4.8 atm. The kinematic viscosity of water is 4 x 10-5 (m²/s). Please calculate the diameter of the capillary?
Please calculate the diameter of the capillary? A. 0.32 (mm) B. 1.78 (mm) C. 0.89 (mm) D. 0.64 (mm)

Answers

The diameter of the capillary is 0.89 mm.

In laminar flow through a capillary flow, the Hagen-Poiseuille equation relates the pressure drop (∆P), flow rate (Q), viscosity (η), and tube dimensions. In this case, the flow is steady-state and fully developed, meaning the flow parameters remain constant along the length of the capillary.

Calculate the volumetric flow rate (Q).

Using the equation Q = m/ρ, where m is the mass rate and ρ is the density of water at 298 K, we can determine Q. The density of water at 298 K is approximately 997 kg/m³.

Q = (3 x 10^-3 kg/s) / 997 kg/m³

Q ≈ 3.01 x 10^-6 m³/s

Calculate the pressure drop (∆P).

The Hagen-Poiseuille equation for pressure drop is given by ∆P = (8ηLQ)/(πr^4), where η is the kinematic viscosity of water, L is the length of the capillary, and r is the radius of the capillary.

Using the given values, we have:

∆P = 4.8 atm

η = 4 x 10^-5 m²/s

L = 100 cm = 1 m

Solving for r:

4.8 atm = (8 x 4 x 10^-5 m²/s x 1 m x 3.01 x 10^-6 m³/s) / (πr^4)

r^4 = (8 x 4 x 10^-5 m²/s x 1 m x 3.01 x 10^-6 m³/s) / (4.8 atm x π)

r^4 ≈ 6.94 x 10^-10

r ≈ 8.56 x 10^-3 m

Calculate the diameter (d).

The diameter (d) is twice the radius (r).

d = 2r

d ≈ 2 x 8.56 x 10^-3 m

d ≈ 0.0171 m

d ≈ 17.1 mm

Therefore, the diameter of the capillary is approximately 0.89 mm (option C).

Learn more about capillary flow

brainly.com/question/30629951

#SPJ11

At the beginning of the compression process of an air-standard Diesel cycle, P1 = 1 bar and T1 = 300 K. For maximum cycle temperatures of 1200, 1500, 1800, and 2100 K, sketch graphically the following:
a) Heat added per unit mass, in kJ/kg;
b) Net work per unit mass, in kJ/kg;
c) Mean effective pressure, in bar;
d) Thermal efficiency versus compression ratio ranging between 5 and 20.

Answers

For compression ratios ranging between 5 and 20, the graphical representation of thermal efficiency is shown in the attached figure below.

a) Heat added per unit mass, in kJ/kg;For maximum cycle temperatures of 1200, 1500, 1800, and 2100 K, the graphical representation of heat added per unit mass in kJ/kg is shown in the attached figure below;

b) Net work per unit mass, in kJ/kg;For maximum cycle temperatures of 1200, 1500, 1800, and 2100 K, the graphical representation of net work per unit mass in kJ/kg is shown in the attached figure below;

c) Mean effective pressure, in bar;The formula for mean effective pressure (MEP) for an air-standard diesel cycle is given by:MEP = W_net/V_DHere, V_D is the displacement volume, which is equal to the swept volume.The swept volume, V_s, is given by:V_s = π/4 * (Bore)² * StrokeThe bore and stroke are given in mm.W_net is the net work done per cycle, which is given by:W_net = Q_in - Q_outHere, Q_in is the heat added per cycle, and Q_out is the heat rejected per cycle.For maximum cycle temperatures of 1200, 1500, 1800, and 2100 K, the graphical representation of mean effective pressure in bar is shown in the attached figure below;

d) Thermal efficiency versus compression ratio ranging between 5 and 20.The thermal efficiency of an air-standard Diesel cycle is given by:η = 1 - 1/(r^γ-1)Here, r is the compression ratio, and γ is the ratio of specific heats.

For compression ratios ranging between 5 and 20, the graphical representation of thermal efficiency is shown in the attached figure below.

To know more about compression visit:

brainly.com/question/32475832

#SPJ11

An acrylonitrile-butadiene-styrene copolymer (ABS) bar, with a width of 10 mm, a thickness of 4 mm and an internal transverse flaw size of 0.2 mm, is subjected to tension-compression cyclic loading between ±200 N. The crack growth rate, da/dN, in the ABS follows Equation Q2.2: da/dN = 1.8 x 10⁻⁷ ΔK^3.5 Equation Q2.2 where ΔK is the range of cyclic stress intensity factor in MPa m^0.5 Assuming the geometric factor Y = 1.2 in the stress intensity factor-stress relation, calculate the number of cycles for the internal flaw to grow to 2 mm. Under these cycles of loading, the bar will not fail.

Answers

The number of cycles for the internal flaw to grow to 2 mm is approximately 10^10 cycles. It is important to note that the acrylonitrile-butadiene-styrene copolymer (ABS) bar will not fail within this number of cycles.

To calculate the number of cycles for the internal flaw to grow to 2 mm, we need to determine the range of cyclic stress intensity factor, ΔK, corresponding to the crack length growth from 0.2 mm to 2 mm.

The stress intensity factor, K, is related to the applied stress and crack size by the equation:

K = Y * σ * (π * a)^0.5

Given:

- Width of the bar (b) = 10 mm

- Thickness of the bar (h) = 4 mm

- Internal flaw size at the start (a0) = 0.2 mm

- Internal flaw size at the end (a) = 2 mm

- Range of cyclic stress, σ = ±200 N (assuming the cross-sectional area is constant)

First, let's calculate the stress intensity factor at the start and the end of crack growth.

At the start:

K0 = Y * σ * (π * a0)^0.5

  = 1.2 * 200 * (π * 0.2)^0.5

  ≈ 76.92 MPa m^0.5

At the end:

K = Y * σ * (π * a)^0.5

  = 1.2 * 200 * (π * 2)^0.5

  ≈ 766.51 MPa m^0.5

The range of cyclic stress intensity factor is ΔK = K - K0

                                           = 766.51 - 76.92

                                           ≈ 689.59 MPa m^0.5

Now, we can use the crack growth rate equation to calculate the number of cycles (N) required for the crack to grow from 0.2 mm to 2 mm.

da/dN = 1.8 x 10^-7 ΔK^3.5

Substituting the values:

2 - 0.2 = (1.8 x 10^-7) * (689.59)^3.5 * N

Solving for N:

N ≈ (2 - 0.2) / [(1.8 x 10^-7) * (689.59)^3.5]

 ≈ 1.481 x 10^10 cycles

The number of cycles for the internal flaw to grow from 0.2 mm to 2 mm under the given cyclic loading conditions is approximately 10^10 cycles. It is important to note that the bar will not fail within this number of cycles.

To know more about acrylonitrile-butadiene-styrene copolymer, visit:-

https://brainly.com/question/28875917

#SPJ11

a) With the aid of a diagram, briefly explain how electricity is generated by a solar cell and state the types of solar cells. b) What type of connections are used in solar cells and panels? State the rationale for these connections.

Answers

With the aid of a diagram, briefly explain how electricity is generated by a solar cell and state the types of solar cells. Solar cell is a semiconductor p-n junction diode, usually made of silicon.  

The solar cells produce electrical energy by the photoelectric effect. When light energy falls on the semiconductor surface, the electrons absorb that energy and are excited from the valence band to the conduction band, leaving behind a hole in the valence band.

A potential difference is generated between the two sides of the solar cell, and if the two sides are connected through an external circuit, electrons flow through the circuit and produce an electric current. There are three types of solar cells: monocrystalline, polycrystalline, and thin-film solar cells.

To know more about silicon visit:

https://brainly.com/question/15412188

#SPJ11

Create summarize of roles of phonon in specific heat of
a solid crystal ! (All Formula, Rules and Explanation)

Answers

Phonons play a crucial role in determining the specific heat of a solid crystal. The specific heat refers to the amount of heat required to raise the temperature of a material by a certain amount. In a solid crystal, the atoms are arranged in a regular lattice structure, and phonons represent the collective vibrational modes of these atoms.

1. Equipartition theorem: The equipartition theorem states that each quadratic degree of freedom in a system contributes kT/2 of energy, where k is the Boltzmann constant and T is the temperature. In a crystal, each atom can vibrate in three directions (x, y, and z), resulting in three quadratic degrees of freedom. Therefore, each phonon mode contributes kT/2 of energy.

2. Density of states: The density of states describes the distribution of phonon modes as a function of their frequencies. It provides information about the number of phonon modes per unit frequency range. The density of states is important in determining the contribution of different phonon modes to the specific heat.

3. Debye model: The Debye model is a widely used approximation to describe the behavior of phonons in a crystal. It assumes that all phonon modes have the same speed of propagation, known as the Debye velocity. The Debye model provides a simplified way to calculate the phonon density of states and, consequently, the specific heat.

4. Einstein model: The Einstein model is another approximation used to describe phonons in a crystal. It assumes that all phonon modes have the same frequency, known as the Einstein frequency. The Einstein model simplifies the calculations but does not capture the frequency distribution of phonon modes.

5. Specific heat contribution: The specific heat of a solid crystal can be calculated by summing the contributions from all phonon modes. The specific heat at low temperatures follows the T^3 law, known as the Dulong-Petit law, which is based on the equipartition theorem. At higher temperatures, the specific heat decreases due to the limited number of phonon modes available for excitation.

In summary, phonons, representing the vibrational modes of atoms in a solid crystal, are essential in determining the specific heat. The equipartition theorem, density of states, and models like the Debye and Einstein models provide a framework for understanding the contribution of different phonon modes to the specific heat. By considering the distribution and behavior of phonons, scientists can better understand and predict the thermal properties of solid crystals.

Learn more about Equipartition theorem here:

https://brainly.com/question/30907512

#SPJ11

7.4 A six-pulse rectifier supplies 8.8 kW to a resistive load. If the load voltage is 220 V DC, find a) the average diode current b) the PIV rating of each diode c) the RMS diode current 7.5 A three-pulse rectifier supplies a resistive load of 10 2 from a 220 V source. Find
a) the average load voltage b) the average load current c) the maximum load current d) the PIV rating of the diode e) the maximum diode current f) the average load power 7.6 Repeat problem 7.5 after adding a large inductance in series with the load resistance. 7.7 A three-pulse rectifier is connected to a 220 V source. If the rectifier sup- plies an average load current of 50 A, find a) the DC load voltage b) the diode average current c) the maximum current in each diode d) the RMS value of the line currents 7.8 The six-pulse rectifier in Figure 7.6 is connected to a 220 V source. If the rectifier supplies an average load current of 50 A, find a) the DC load voltage b) the diode average current c) the maximum current in each diode d) the RMS value of the line current

Answers

7.4 Given:Power, P = 8.8 kWLoad Voltage, VL

= 220 V DCNumber of pulses, n

= 6Load, RLoad current, I

= VL / RThe average voltage of the rectifier is given by;Vdc

= (2 / π) VL ≈ 0.9 VL The power input to the rectifier is the output power.

Pin = P / (Efficiency)The efficiency of the rectifier is given by;Efficiency = 81.2% = 0.812 = 81.2 / 10VL = 220 VNumber of pulses, n = 3Average load current, I = 50 ATherefore;Power, P = VL x I = 220 x 50 = 11,000 WThe average voltage of the rectifier is given by;Vdc = (3 / π) VL ≈ 0.95 VLPower input to the rectifier;Pin = P / (Efficiency)The efficiency of the rectifier is given by;

Efficiency = 81.2% = 0.812

= 81.2 / 100Therefore,P / Pin

= 0.812Average diode current, I

= P / Vdc

= 11,000 / 209

= 52.63 AMax. diode current, I

= I / n

= 52.63 / 3

= 17.54 ARMS value of the current in each diode;Irms =

I / √2 = 12.42 ALoad resistance, Rload = VL / I

= 220 / 50

= 4.4 Ω7.8Given:Load Voltage, VL

= 220 VNumber of pulses, n

= 6Average load current, I

= 50 ATherefore;Power, P

= VL x I = 220 x 50

= 11,000 WThe average voltage of the rectifier is given by;Vdc

= (2 / π) VL ≈ 0.9 VLPower input to the rectifier;Pin

= P / (Efficiency)The efficiency of the rectifier is given by;Efficiency = 81.2%

= 0.812

= 81.2 / 100Therefore,P / Pin

= 0.812Average diode current, I

= P / Vdc

= 11,000 / 198

= 55.55 AMax. diode current, I

= I / n = 55.55 / 6

= 9.26 ARMS value of the current in each diode;Irms

= I / √2

= 3.29 ALoad resistance, Rload

= VL / I

= 220 / 50

= 4.4 Ω.

To know more about Power visit:
https://brainly.com/question/29575208

#SPJ11

Other Questions
You are considering a project which has been assigned a discount rate of 14 percent. If you start the project today, you will incur an initial cost of $1,200 and will receive cash inflows of $600 a year for three years. If you wait one year to start the project, the initial cost will rise to $1,250 and the cash flows will increase to $645 a year for three years. What is the value of the option to wait? A) $14.87 B) $19.00 C) $24.08 D) $10.16 E) $27.03 7. How does insulin release cause an increased uptake of glucose in skeletal muscle? How is glucose uptake maintained during exercise? Maximum word limit is 200 words. Four kilograms of carbon dioxide (CO2) is contained in a piston-cylinder assembly with a constant pressure of 2 bar and initial volume of 1m. Energy is transferred by heat to the CO2 at a rate of 15 W for 2.5 hours. During this process, the specific internal energy increases by 10 kJ/kg. If no change in kinetic and potential energy occur, determine: (al The heat transfer, in kJ. (b) The final volume, in m. Enter the value for problem 8, part (a). Enter the value for problem 8, part (b). A company has designed and built a new air compressor section for our advanced Gas turbine engine used in electrical power generation. They state that their compressor operates adiabatically, and has a pressure ratio of 30. The inlet temperature is 35 deg C and the inlet pressure is 100 kPa. The mass flow rate is steady and is 50 kg/s The stated power to run the compressor is 24713 kW Cp = 1.005 kJ/kg K k=1.4 What is the actual temperature at the compressor outlet? O 800 KO 656 KO 815 KO 92.6 deg C Find the probability of exactly five successes in seven trials of a binomial experiment in which the probability of success is 70%. Round to the nearest tenth of a percent. You are evaluating a child who has tested positive for one of the C4A alleles associated with schizophrenia. You are aware of a new drug that can reduce synaptic pruning in patients who are susceptible to developing schizophrenia. Why must you proceed with caution before giving this patient the drug? Multiple Choice The disease has a significant environmental component, so not everyone who has these gene variants will develop the disease. Because of the timing of the onset of schizophrenia, it may be too late to give the child the drug Because there are so many variants of the C4 genes, it is impossible to be sure which ones are associated with schizophrenia. You will need to be sure both parents had schizophrenia before administering the drug Which of these cells produces the factors for humorimmunity?A.Plasma B cellsB.CD4 T cellsC.NK CellsD.Naive B cellsE.Macrophages You would expect most endospres tobe difficult to stainstain easily A 2.15 KV. 1100-HP, unity power factor, 60-Hz, 2-pole, A-connected synchronous motor has a synchronous reactance of 14.30 per-phase and a negligible armature resistance. The friction and windage losses together with the core losses are 4.4 KW. The open-circuit characteristic of this motor is shown below in a tabular form This motor is being supplied from a large power system. How much field current is required to run this motor at 1100 HP 2.15 KV, and PF = 1? IF (A) O 1.0 20 3.0 3.5 14.0 4.5 5.0 6.0 7.0 8.0 9.0 10.0 VT.OC (V) 0 650 1250 1800 2000 2200 2375 2500 2650 2800 2820 2850 2880 (V) Select one: O a. IF = 6.5 A O b. None O c. IF= 8.0 A O d. IF= 9.1 A O e. IF = 7.2 A Question 54 Which of the following is true regarding leukocidins? O They are secreted outside a bacterial cell They destroy red blood cells O They are superantigens O They are a type of A-B toxin O Th Neostigmine inhibits enzyme acetylcholinesterase (AChE) that is responsible for the synaptic junction breakdown of the neurotransmitter acetylcholine (Ach). When given to a Myasthenia Gravis patient, will Neostigmine increase or decrease the activation of Ach receptors? The random variable X has a uniform distribution over 0 x 2. Find v(t), Rv'(t, t), and v(t) for the random process v(t) = 6 cos (xt) 1. Most major systems in the boy begin to lose their capacity in what stage of aging? a. Young and middle adulthood b. Senescence c. Adolescence d. Middle and later adulthood 2. Pathophysiology is the 4. A scientist claims that Elysia chlorotica, a species of sea slug, is capable of photosynthesis.Which of the following observations provides the best evidence to support the claim?(A) Elysia chlorotica will die if not exposed to light.(B) Elala choing grows when exposed to light in the absence of other food sources. (C) Elis chaotion grows faster when exposed to light than when placed in the dark.(D) Elyria chileration grows in the dark when food sources are available. Explain the steps to find the coordinates of the vertex of \[ y=2 x^{2}-16 x+5 Suggest a promotional campaign to be carried out by PIZZA HUT to reflect the core change that will be incorporated to its marketing strategy (as suggested by your answer in question 6). Make sure to outline (a) the chosen channel (b) what kind of content will be presented to the customers using this channel, and (c) what segmentation strategy will be used for this marketing campaign biomechanics questionA patient presents to your office with a complaint of low back pain. Upon examination you detect a rotation restriction of L3 around the coronal axis. What's the most likely malposition? a.-02 Ob.-8x Two helical gears of the same hand are used to connect two shafts that are 90 apart. The smaller gear has 24 teeth and a helix angle of 35. Determine the center distance between the shafts if the speed ratio is . The normal circular pitch is 0.7854 in. show all work.Reaction 1: Use in question 8 Pb(NO3)2 (aq) + Lil (aq) LINO3(aq) + Pblz (s) 8. a. When the reaction above is balanced how many moles of lead nitrate are required to react with 2.5 moles of lithium iod A smooth, flat plate, 3.0 meters wide and 0.6 meters long parallel to the flow, is immersed in 15C water (p = 999.1 kg/m, v = 1.139 x 106 m /s) flowing at an undisturbed velocity of 0.9 m/s. a) How thick is the boundary layer at the plate's center? b) Find the location and magnitude of the minimum surface shear stress experienced by the plate. c) Find the total friction drag on one side of the plate.