Answer:
Option C. Keq = [SO2]² [O2] /[SO3]²
Explanation:
The equilibrium constant keq for a reaction is simply the ratio of the concentration of the products raised to their coefficient to the concentration of the reactants raised to their coefficient.
Now, let us determine the equilibrium constant for the reaction given in the question.
This is illustrated below:
2SO3(g) <==> 2SO2(g) + O2(g)
Reactant => SO3
Product => SO2, O2
Keq = concentration of products /concentration of reactants
Keq = [SO2]² [O2] /[SO3]²
A solution that is 0.135 M is diluted to make 500.0 mL of a 0.0851 M solution. How many milliliters of the original solution were required? View Available Hint(s) A solution that is 0.135 M is diluted to make 500.0 mL of a 0.0851 M solution. How many milliliters of the original solution were required? 5.74 mL 0.315 mL 793 mL 315 mL
Answer:
315mL
Explanation:
Data obtained from the question include the following:
Molarity of stock solution (M1) = 0.135 M
Volume of stock solution needed (V1) =?
Molarity of diluted solution (M2) = 0.0851 M
Volume of diluted solution (V2) = 500mL
The volume of the stock solution needed can be obtain as follow:
M1V1 = M2V2
0.135 x V1 = 0.0851 x 500
Divide both side by 0.135
V1 = (0.0851 x 500) / 0.135
V1 = 315mL
Therefore, the volume of the stock solution needed is 315mL
all compounds are neutral true or false
Answer:
Even all compounds are neutral.
Explanation:
Some of them exhibit polarity. Because of the difference in electron affinity of the constituent atoms, the shared electrons are pulled towards the atom with high affinity to electrons.
Which of the following would be more reactive than magnesium (Mg)?
A. Calcium (Ca)
B. Potassium (K)
C. Argon (Ar)
D. Beryllium (Be)
Answer:potassium is more reactive than Mg because both lie in the same group and the element potassium has more electropositivity than magnesium
Explanation:
I hope it will help you
Answer: B. Potassium(K)
Explanation:
A solution of benzene in methanol has a transmittance of 93.0 % in a 1.00 cm cell at a wavelength of 254 nm. Only the benzene absorbs light at this wavelength, not the methanol. What will the solution's transmittance be if it is placed in a 10.00 cm long pathlength cell
Answer:
T = 48.39%
Explanation:
In this case we need to apply the Beer law which is the following:
A = CεL (1)
Where:
A: Absorbance of solution
C: Concentration of solution
ε: Molar Absortivity (Constant)
L: Length of the cell
Now according to the given data, we have transmittance of 93% or 0.93. We can calculate absorbance using the following expression:
A = -logT (2)
Applying this expression, let's calculate the Absorbance:
A = -log(0.93)
A = 0.03152
Now that we have the absorbance, let's calculate the concentration of the solution, using expression (1).
A = CεL
C = A / εL
Replacing:
C = 0.03152 / 1 *ε (3)
Now, we want to know the transmittance of the solution with a length of 10 cm. so:
A = CεL
Concentration and ε are constant, so:
A = (0.03152 / ε) * ε * 10
A = 0.3152
Now that we have the new absorbance, we can calculate the new transmittace:
T = 10^(-A)
T = 0.4839 ----> 48.39%
Of Sr or Ba , the element with the higher first ionization energy is
Answer:
Sr
Explanation:
Sr has an ionization of 550 whereas Ba has an ionization of 503
A solution is prepared by mixing 5.00 mL of 0.100 M HCl and 2.00 mL of 0.200 M NaCl. What is the molarity of chloride ion in this solution?
Answer:
0.129 M
Explanation:
0.100 M HCl = 0.100 mol/L solution HCl
5.00 mL = 0.00500 L solution HCl
0.100 mol/L HCl * 0.00500 L = 0.000500 mol HCl
HCl ------> H+ + Cl-
1 mol 1 mol
0.000500 mol 0.000500 mol
0.200 M NaCl = 0.200 mol/L solution NaCl
2.00 mL = 0.00200 L solution NaCl
0.200 mol/L NaCl*0.00200 L = 0.000400 mol NaCl
NaCl ------> Na+ + Cl-
1 mol 1 mol
0.000400 mol 0.000400 mol
Chloride ion altogether (0.000500 mol + 0.000400 mol) =0.000900 mol
Solution altogether (0.00500 L+0.00200 L) = 0.00700L
Molarity (Cl-)= solute/solution = 0.000900 mol/0.00700L = 0.129 mol/L=
= 0.129 M
Given the following Fischer projection: Fischer projection for an entantiomer of 2-bromo-2,3-dihydroxypropanal with the bromine oriented horizontally to the left and the hydroxide group oriented horizontally to the right. draw the perspective formula of the molecule. Be sure to correctly indicate stereochemistry in your answer.
Answer:
Explanation:
Stereoisomers are two or more atoms that have the same bonding order of atoms but there is a difference spatial arrangement of the atoms in space.
A plane of symmetry divides a molecule into two equal halves.
A chiral stereoisomer are not superimposed on a mirror image , Hence they do not posses a plane of symmetry.
As a result to that. these non-superimposable mirror images are said to be Enantiomers.
However, a Fischer Projection emanates from a two - dimensional figure which is used for presenting a three - dimensional organic molecules.
From the given question;
Fischer projection for an enantiomer of 2-bromo-2,3-dihydroxypropanal with the bromine oriented horizontally to the left and the hydroxide group oriented horizontally to the right.
we can sketch the way the enantiomer of 2-bromo-2,3-dihydroxypropanal can be seen like the one shown below:
CH₂OH
|
|
|
Br -------------|----------------OH
|
|
|
CHO
The objective of this question is to drawn the perspective formula of the molecule.
So , from the attached file below; we can see the perspective formula of the molecule in a well structured 3-D format.
The reason for the dramatic decline in the number of measles cases from the 1960s to 2010 in the United States was because the vaccine
Answer:
It was because the vaccine generated actively acquired immunity, that is, inoculation of a portion of the measles virus so that the body forms the antibodies for a second contact and thus can destroy it without triggering the pathology.
Explanation:
Vaccines are methods of active acquired immunity since the antibody is not passively inoculated, it is manufactured by the body with a physiological process once part of the virus is inoculated.
The measles virus most of all affected the lives of infants or newborn children with severe rashes and high fevers that led to death.
What is the net ionic equation of the reaction of MgSO4 with Ba(NO3)2 ?
Answer:
Ba(+2)(aq) + SO4(-2)(aq) -----> BaSO4(s)
Explanation:
Take a look at the attachment below;
under the same conditions carbon (iv) oxide,propane and nitrogen (i) oxide diffuse at the same rate.Explain
Answer:
Rate of diffusion is same .
Explanation:
As we know that Rate of the diffusion is directly proportional to the [tex]\frac{1}{\sqrt{M} }[/tex] .They have same mass if there is same rate and similar condition therefore the mass of carbon (iv) oxide,propane and nitrogen (i) oxide will be similar.
The mass is directly proportional to the Rate of the diffusion.Therefore the rate of diffusion is similar in all carbon (iv) oxide,propane and nitrogen (i) oxide .A certain element consists of two stable isotopes. The first has a mass of 62.9 amu and a percent natural abundance of 69.1 %. The second has a mass of 64.9 amu and a percent natural abundance of 30.9 %. What is the atomic weight of the element?
Answer:
63.518
Explanation:
The following data were obtained from the question:
Mass of Isotope A = 62.9 amu
Abundance of isotope A (A%) = 69.1%
Mass of isotope B = 64.9 amu
Abundance of isotope B (B%) = 30.9%
Atomic weight of the element =..?
The atomic weight of the element can be obtained as follow:
Atomic weight = [(Mass of A x A%)/100] + [(Mass of B x B%) /100]
Atomic weight = [(62.9 x 69.1)/100] + [(64.9 x 30.9)/100]
Atomic weight = 43.4639 + 20.0541
Atomic weight = 63.518
Therefore, the atomic weight of the element is 63.518.
A certain mass of carbon reacts with 9.53 g of oxygen to form carbon monoxide. ________ grams of oxygen would react with that same mass of carbon to form carbon dioxide, according to the law of multiple proportions.
Answer: 9.53 *2= 19.06
Explanation:
The law of multiple proportions states that if two elements combines to form more than one compound the ratio of masses of the second element which combines to the fixed mass of the first element will always be the ratios of the small whole numbers.
in case of carbon monoxide, mass of carbon will be the same of mass of oxygen.
But in case of carbon dioxide, if carbon is 9.53 units then oxygen will be twice as that of carbon.
CO2, so 9.53*2= 19.06 grams of oxygen will combine with 9.53 grams of carbon to form carbon dioxide.
In the presence of a strong base, the following reaction between (CH3)3CCl and OH- occurs: (CH3)3CCl + OH- → (CH3)3COH + Cl- Studies have suggested that the mechanism for the reaction takes place in 2 steps: Step 1) (CH3)3CCl → (CH3)3C+ + Cl- (slow) Step 2) (CH3)3C+ + OH- → (CH3)3COH (fast) What is the rate law expression for the overall reaction? Group of answer choices
Answer:
D. rate = k [(CH3)3CCl]
Explanation:
(CH3)3CCl + OH- → (CH3)3COH + Cl-
The mechanisms are;
Step 1)
(CH3)3CCl → (CH3)3C+ + Cl- (slow)
Step 2)
(CH3)3C+ + OH- → (CH3)3COH (fast)
In kinetics, the slowest step is the ratee determining step.
For a given reaction;
A → B + C, the rate law expression is given as;
rate = k [A]
In this problem, from step 1. The rate expression is;
rate = k [(CH3)3CCl]
Give the characteristic of a zero order reaction having only one reactant. a. The rate of the reaction is not proportional to the concentration of the reactant. b. The rate of the reaction is proportional to the square of the concentration of the reactant. c. The rate of the reaction is proportional to the square root of the concentration of the reactant. d. The rate of the reaction is proportional to the natural logarithm of t
Answer:
a. The rate of the reaction is not proportional to the concentration of the reactant.
Explanation:
The rate expression for a zero order reaction is given as;
A → Product
Rate = k[A]⁰
[A]⁰ = 1
Rate = K
GGoing through the options;
a) This is correct because in the final form of the rate expression, the rate is independent of the concentration.
b) This option is wrong
c) This option is also wrong
d) Like options b and c this is also wrong becaus ethere is no relationship between either the concentration or t.
Describe the buffer capacity of the acetic acid buffer solution in relation to the addition of both concentrated and dilute acids and bases.
Answer:
The answer is in the explanation
Explanation:
Acetic acid, CH₃COOH, is a weak acid that will produce a buffer when its conjugate base, CH₃COO⁻, acetate ion, is added to the solution.
That is because a buffer is the mixture of a weak acid and its conjugate base or vice versa.
When an acid (HX) is added to the solution, the acetate ion will react producing acetic acid, thus:
CH₃COO⁻ + HX → CH₃COOH + X⁻
For this reason, the pH doesn't change abruptly because H⁺ ions are not produced.
Now, if a base (BOH) is added to the buffer, CH₃COOH will react producing acetate ion and water, thus:
CH₃COOH + BOH → CH₃COO⁻ + H₂O + B⁺.
In the same way, there are not produced free OH⁻ and the pH doesn't change significantly.
Carbon dioxide and water vapor are variable gases because _____.
Answer: their amounts vary throughout the atmosphere
Explanation:
There is very little that travels over the atmosphere
Vary=very little
Hope that helps
a) What substances are present in an aqueous buffer composed of HC2H3O2 and C2H3O2 - ?b) What happens when LiOH is added to a buffer composed of HC2H3O2 and C2H3O2 - ? Write a chemical equation for that reaction.c) What happens when HBr is added to this buffer? Write a chemical equation for that reaction.
Answer:
a) HC₂H₃O₂, C₂H₃O₂⁻, H₃O⁺, H₂O, OH⁻
b) HC₂H₃O₂ + LiOH ⇄ H₂O + LiC₂H₃O₂
c) C₂H₃O₂⁻ + HBr ⇄ HC₂H₃O₂ + Br⁻
Explanation:
a) In a HC₂H₃O₂/C₂H₃O₂⁻ buffer system, the following reactions take place:
HC₂H₃O₂ + H₂O ⇄ C₂H₃O₂⁻ + H₃O⁺
C₂H₃O₂⁻ + H₂O ⇄ HC₂H₃O₂ + OH⁻
Thus, the species present are: HC₂H₃O₂, C₂H₃O₂⁻, H₃O⁺, H₂O, OH⁻.
b) When LiOH is added to the buffer system, it is partially neutralized according to the following equation.
HC₂H₃O₂ + LiOH ⇄ H₂O + LiC₂H₃O₂
c) When HBr is added to the buffer system, it is partially neutralized according to the following equation.
C₂H₃O₂⁻ + HBr ⇄ HC₂H₃O₂ + Br⁻
The lock-and-key model and the induced-fit model are two models of enzyme action explaining both the specificity and the catalytic activity of enzymes. Following are several statements concerning enzyme and substrate interaction. Indicate whether each statement is part of the lock-and-key model, the induced-fit model, or is common to both models.
a. Enzyme conformation changes when it binds the substrate so the active site fits the substrate.
b. Substrate binds to the enzyme at the active site, forming an enzyme-substrate complex.
c. Enzyme active site has a rigid structure complementary
d. Substrate binds to the enzyme through noncovalent interactions
Answer:
The lock-and-key model:
c. Enzyme active site has a rigid structure complementary
The induced-fit model:
a. Enzyme conformation changes when it binds the substrate so the active site fits the substrate.
Common to both The lock-and-key model and The induced-fit model:
b. Substrate binds to the enzyme at the active site, forming an enzyme-substrate complex.
d. Substrate binds to the enzyme through non-covalent interactions
Explanation:
Generally, the catalytic power of enzymes are due to transient covalent bonds formed between an enzyme's catalytic functional group and a substrate as well as non-covalent interactions between substrate and enzyme which lowers the activation energy of the reaction. This applies to both the lock-and-key model as well as induced-fit mode of enzyme catalysis.
The lock and key model of enzyme catalysis and specificity proposes that enzymes are structurally complementary to their substrates such that they fit like a lock and key. This complementary nature of the enzyme and its substrates ensures that only a substrate that is complementary to the enzyme's active site can bind to it for catalysis to proceed. this is known as the specificity of an enzyme to a particular substrate.
The induced-fit mode proposes that binding of substrate to the active site of an enzyme induces conformational changes in the enzyme which better positions various functional groups on the enzyme into the proper position to catalyse the reaction.
Question 1
1 pts
2B+6HCI --
| --> 2BCl3 + 3H2
How many moles of boron chloride will be produced if you start with 8.752 moles of HCI
(hydrochloric acid)? (Round to 3 sig figs. Enter the number only do not include units.)
Answer:
2.92 mol
Explanation:
Step 1: Write the balanced equation
2 B(s) + 6 HCI(aq) ⇒ 2 BCl₃(aq) + 3 H₂(g)
Step 2: Establish the appropriate molar ratio
The molar ratio of hydrochloric acid to boron chloride is 6:2.
Step 3: Calculate the moles of boron chloride produced from 8.752 moles of hydrochloric acid
[tex]8.752molHCl \times \frac{2molBCl_3}{6molHCl} = 2.92molBCl_3[/tex]
25.00 mL of a H2SO4 solution with an unknown concentration was titrated to a phenolphthalein endpoint with 28.11 mL of a 0.1311 M NaOH solution. What is the concentration of the H2SO4 solution
Answer:
Concentration of the H₂SO₄ solution is 0.0737 M
Explanation:
Equation of the neutralization reaction between the acid, H₂SO₄, and the base, NaOH, is given below:
H₂SO₄ + 2NaOH -----> Na₂SO₄ + 2H₂O
From the above equation, one mole of acid requires 2 moles of base for complete neutralization which occurs at phenolphthalein endpoint.
mole ratio of acid to base, nA/nB = 1:2
Concentration of the base, Cb = 0.1311 M
Volume of base, Vb, = 28.11 mL
Concentration of acid, Ca = ?
Volume of acid, Va + 25.0 mL
Using the formula, CaVa/CbVb = nA/nB
making Ca subject of the formula, Ca = Cb*Vb*nA/Va*nB
substituting the values into the equation
Ca = (0.1311 * 28.11 * 1) / 25.0 * 2 = 0.0737 M
Therefore, concentration of the H₂SO₄ solution is 0.0737 M
Enter your answer in the provided box. On a cool, rainy day, the barometric pressure is 739 mmHg. Calculate the barometric pressure in centimeters of water (cmH2O) (d of Hg = 13.5 g/mL; d of H2O = 1.00 g/mL).
Answer:
997.65cmH2O
Explanation:
Barometric pressure = 739 mmHg
density of Hg = 13.5 g/ml
density of water (H2O) = 1.00 g/ml
Calculate Barometric pressure in centimetres of water ( cmH20)
equate the barometric pressure of Hg and water
739 * 13.5 * 9.8 = x * 1 * 9.81
x ( barometric pressure of water in mmH2O ) = 739 *13.5 / 1 = 9976.5mmH2O
in cmH2O = 997.65cmH2O
What is an ion?
A. An atom that has lost or gained 1 or more electrons
O B. An atom that has lost or gained 1 or more neutrons
O C. An atom that has lost or gained 1 or more protons
D. An atom that differs in mass from another atom of the same
element
Answer:
An ion is an atom that has lost or gained one or more electrons.
Explanation:
Ions are positively or negatively charged atoms of elements. This is because they can give, take, or share electrons with other elements to encourage the formation of chemical bonds.
Protons are what decide the chemical identity of the element. So, for example, if an atom has 11 protons, we know that will be a Sodium (Na) atom. A loss or gain of protons completely changes the chemical identity of the element and it will then become another element.
Electrons are what give an atom a neutral electrical charge (if that atom has the number of protons and neutrons normally described for the element - otherwise, a discrepancy or gain in neutrons is referred to as an isotope and declares that ions have nothing to do with the mass of an element).
With this information, you can realize that neutrons and protons have nothing to do with ions and you can confirm that ions are atoms that have lost or gained one or more electrons.
A piece of wood near a fire is at 23°C. It gains 1,160 joules of heat from the fire and reaches a temperature of 42°C. The specific heat capacity of
wood is 1.716 joules/gram degree Celsius. What is the mass of the piece of wood?
ОА. 16 g
OB. 29 g
ОC. 36 g
OD. 61 g
Answer:
35.578g or 36g if you round
Explanation:
Q=mc ∆∅ where ∅ is temperature difference
1160= m x 1.716 x (42-23)
m = 1160/ 1.716 x19
m=35.578g
m = 36g to nearest whole number
Answer: C. 36 g
Explanation: I got this right on Edmentum.