What is Dark Matter?

Answers

Answer 1

Explanation:

dark matter is a form of matter thought to account for approximately 85% of the matter in the universe and about a quarter of its total mass–energy density or about 2.241×10⁻²⁷ kg/m³. Its presence is implied in a variety of astrophysical observations, including gravitational effects that cannot be explained by accepted theories of gravity unless more matter is present than can be seen. For this reason, most experts think that dark matter is abundant in the universe and that it has had a strong influence on its structure and evolution. Dark matter is called dark because it does not appear to interact with the electromagnetic field, which means it doesn't absorb, reflect or emit electromagnetic radiation, and is therefore difficult to detect.


Related Questions

In an experiment different wavelengths of light, all able to eject photoelectrons, shine on a freshly prepared (oxide-free) zinc surface. Which statement is true

Answers

Answer:

the energy of the photons is greater than the work function of the zinc oxide.

                     h f> = Ф

Explanation:

In this experiment on the photoelectric effect, it is explained by the Einstein relation that considers the light beam formed by discrete energy packages.

                    K_max = h f - Ф

in the exercise phase, they indicate that different wavelengths can inject electrons, so the energy of the photons is greater than the work function of the zinc oxide.

                     h f > = Ф

A particle is released as part of an experiment. Its speed t seconds after release is given by v (t )equalsnegative 0.4 t squared plus 2 t​, where v (t )is in meters per second. ​a) How far does the particle travel during the first 2 ​sec? ​b) How far does it travel during the second 2 ​sec?

Answers

Answer:

a) 2.933 m

b) 4.534 m

Explanation:

We're given the equation

v(t) = -0.4t² + 2t

If we're to find the distance, then we'd have to integrate the velocity, since integration of velocity gives distance, just as differentiation of distance gives velocity.

See attachment for the calculations

The conclusion of the attachment will be

7.467 - 2.933 and that is 4.534 m

Thus, The distance it travels in the second 2 sec is 4.534 m

What force is required so that a particle of mass m has the position function r(t) = t3 i + 7t2 j + t3 k?

Answers

Answer:

[tex]F(t)=m\,\,a(t)=6\,m\,t\,\hat i+14\,m\,\hat j+6\,m\,t\,\hat k\\F(t)=\,(6\,m\,t,14\,m,6\,m\,t)[/tex]

Explanation:

Recall that force is defined as mass times acceleration, and acceleration is the second derivative with respect to time of the position. Since the position comes in terms of time, and with separate functions for each component in the three dimensional space, we first calculate the velocity (with the first derivative, and then the acceleration as the second derivative:

[tex]r(t)=t^3\,\hat i+7\,t^2\,\hat j+t^3\,\hat k\\v(t)=3\,t^2\,\hat i+14\,t\,\hat j+3\,t^2\,\hat k\\a(t)=6\,t\,\hat i+14\,\hat j+6\,t\,\hat k[/tex]

Therefore, the force will be given by the product of this acceleration times the mass "m":

[tex]F(t)=m\,\,a(t)=6\,m\,t\,\hat i+14\,m\,\hat j+6\,m\,t\,\hat k[/tex]

A man stands on a merry-go-round that is rotating at 2.5 rad/s. If the coefficient of static friction between the man’s shoes and the merry-go-round is µs = 0.5, how far from the axis of rotation can he stand without sliding?

Answers

Answer:

0.8 m

Explanation:

Draw a free body diagram.  There are three forces:

Weight force mg pulling down,

Normal force N pushing up,

and friction force Nμ pushing towards the center.

Sum of forces in the y direction:

∑F = ma

N − mg = 0

N = mg

Sum of forces in the centripetal direction:

∑F = ma

Nμ = m v²/r

Substitute and simplify:

mgμ = m v²/r

gμ = v²/r

Write v in terms of ω and solve for r:

gμ = ω²r

r = gμ/ω²

Plug in values:

r = (10 m/s²) (0.5) / (2.5 rad/s)²

r = 0.8 m

The distance (radius) from the axis of rotation which the man can stand without sliding is 0.784 meters.

Given the following data:

Angular speed = 2.5 rad/s.Coefficient of static friction = 0.5

To determine how far (radius) from the axis of rotation can the man stand without sliding:

We would apply Newton's Second Law of Motion, to express the centripetal and force of static friction acting on the man.

[tex]\sum F = \frac{mv^2}{r} - uF_n\\\\\frac{mv^2}{r} = uF_n[/tex]....equation 1.

But, Normal force, [tex]F_n = mg[/tex]  

Substituting the normal force into eqn. 1, we have:

[tex]\frac{mv^2}{r} = umg\\\\\frac{v^2}{r} = ug[/tex]....equation 2.

Also, Linear speed, [tex]v = r\omega[/tex]

Substituting Linear speed into eqn. 2, we have:

[tex]\frac{(r\omega )^2}{r} = ug\\\\r\omega ^2 = ug\\\\r = \frac{ug}{\omega ^2}[/tex]

Substituting the given parameters into the formula, we have;

[tex]r = \frac{0.5 \times 9.8}{2.5^2} \\\\r = \frac{4.9}{6.25}[/tex]

Radius, r = 0.784 meters

Read more: https://brainly.com/question/13754413

A 5000 kg railcar hits a bumper (a spring) at 1 m/s, and the spring compresses 0.1 meters. Assume no damping. a) Find the spring constant k.

Answers

Answer:

k = 0.5 MN/m

Explanation:

Mass of the railcar, m = 5000 kg

Speed of the rail car, v = 1 m/s

The Kinetic energy(KE) of the railcar is given by the equation:

KE = 0.5 mv²

KE = 0.5 * 5000 * 1²

KE = 2500 J

The spring's compression, x = 0.1 m

The potential energy(PE) stored in the spring is given by the equation:

PE = 0.5kx²

PE = 0.5 * k * 0.1²

PE = 0.005k

According to the principle of energy conservation, Kinetic energy of the railcar equals the potential energy stored in the spring

KE = PE

2500 = 0.005k

k = 2500/0.005

k = 500000 N/m

k = 0.5 MN/m

According to Newton, when the distance between two interacting objects doubles, the gravitational force is

Answers

Answer:

1/4 of its original value

Explanation:

Newton's law of universal gravitation states that when two bodies of masses M₁ and M₂ interact, the force of attraction (F) between these bodies is directly proportional to the product of their masses and inversely proportional to the square of the distance (r) between these bodies. i.e

F ∝ [tex]\frac{M_1 M_2}{r^2}[/tex]       ------------(i)

From the equation above, it can be deduced that;

F ∝ [tex]\frac{1}{r^2}[/tex]

=> F = G [tex]\frac{1}{r^2}[/tex]       -----------(ii)

Where;

G = constant of proportionality called the gravitational constant

Equation (ii) can be re-written as

Fr² =  G

=> F₁r₁² = F₂r₂²              -----------(iii)

Where;

F₁ and r₁ are the initial values of the force and distance respectively

F₂ and r₂ are the final values of the force and distance respectively

From the question, if the distance doubles i.e;

r₂ = 2r₁,

Then the final value of the gravitational force F₂ is calculated as follows;

Substitute the value of r₂ = 2r₁ into equation (iii) as follows;

F₁r₁² = F₂(2r₁)²

F₁r₁² = 4F₂r₁²          [Divide through by r₁²]

F₁ = 4F₂                 [Make F₂ subject of the formula]

F₂ = F₁ / 4              [Re-write this]

F₂ = [tex]\frac{1}{4} F_1[/tex]

Therefore the gravitational force will be 1/4 of its original value when the distance between the bodies doubles.

Consider a heat engine that inputs 10 kJ of heat and outputs 5 kJ of work. What are the signs on the total heat transfer and total work transfer

Answers

Answer:

Total heat transfer is positive

Total work transfer is positive

Explanation:

The first law of thermodynamics states that when a system interacts with its surrounding, the amount of energy gained by the system must be equal to the amount of energy lost by the surrounding. In a closed system, exchange of energy with the surrounding can be done through heat and work transfer.

Heat transfer to a system is positive and that transferred from the system is negative.

Also, work done by a system is positive while the work done on the system is negative.

Therefore, from the question, since the heat engine inputs 10kJ of heat, then heat is being transferred to the system. Hence, the sign of the total heat transfer is positive (+ve)

Also, since the heat engine outputs 5kJ of work, it implies that work is being done by the system. Hence the sign of the total work transfer is also positive (+ve).

If a pickup is placed 16.25 cm from one of the fixed ends of a 65.00-cm-long string, which of the harmonics from n=1 to n=12 will not be "picked up" by this pickup?

Answers

Answer:

The answer to this question can be defined as follows:

Explanation:

Therefore the 4th harmonicas its node is right and over the pickup so, can not be captured from 16.25, which is 1:4 out of 65. Normally, it's only conceptual for the certain harmonic, this will be low, would still be heard by the catcher.

Instead, every harmonic node has maximum fractions along its string; the very first node is the complete string length and the second node is half a mile to the third node, which is one-third up and so on.

Answer:

b

Explanation:

because:/

A tightly wound toroid of inner radius 1.2 cm and outer radius 2.4 cm has 960 turns of wire and carries a current of 2.5 A.

Requried:
a. What is the magnetic field at a distance of 0.9 cm from the center?
b. What is the field 1.2 cm from the center?

Answers

Answer:

a

  [tex]B = 0.0533 \ T[/tex]

b

  [tex]B = 0.04 \ T[/tex]

Explanation:

From the question we are told that

   The inner radius is [tex]r = 1.2 \ cm = 0.012 \ m[/tex]

   The  outer radius is  [tex]r_o = 2.4 \ cm = \frac{2.4}{100} = 0.024 \ m[/tex]

    The nu umber of turns is  [tex]N = 960[/tex]

    The current it is carrying is  [tex]I = 2. 5 A[/tex]

Generally the magnetic field is mathematically represented as

      [tex]B = \frac{\mu_o * N* I }{2 * \pi * r }[/tex]

Where  [tex]\mu_o[/tex] is the permeability of free space with a constant value    

            [tex]\mu = 4\pi * 10^{-7} N/A^2[/tex]

And the given distance where the magnetic field is felt is  r =  0.9 cm  =  0.009 m

Now  substituting values

     [tex]B = \frac{ 4\pi * 10^{-7} * 960* 2.5 }{2 * 3.142 * 0.009 }[/tex]

    [tex]B = 0.0533 \ T[/tex]

    Fro the second question the distance of the position considered from the center is  r =  1.2 cm  =  0.012 m

So the  magnetic field is  

        [tex]B = \frac{ 4\pi * 10^{-7} * 960* 2.5 }{2 * 3.142 * 0.012 }[/tex]

        [tex]B = 0.04 \ T[/tex]

The magnetic field at a distance of 0.9 cm from the center of the toroid is 0.053 T.

The magnetic field at a distance of 1.2 cm from the center of the toroid is 0.04 T.

The given parameters;

radius of the toroid, r = 1.2 cm = 0.012 mouter radius of the toroid, R = 2.4 cm = 0.024 mnumber of turns, N = 960 turnscurrent in wire, I = 2.5 A

The magnetic field at a distance of 0.9 cm from the center of the toroid is calculated as follows;

[tex]B = \frac{\mu_o NI}{2\pi r} \\\\B = \frac{(4\pi \times 10^{-7})\times (960) \times (2.5)}{2\pi \times 0.009} \\\\B = 0.053 \ T[/tex]

The magnetic field at a distance of 1.2 cm from the center of the toroid is calculated as follows;

[tex]B = \frac{\mu_o NI}{2\pi r} \\\\B = \frac{(4\pi \times 10^{-7})\times (960) \times (2.5)}{2\pi \times 0.012} \\\\B = 0.04 \ T[/tex]

Learn more here:https://brainly.com/question/19564329

a certain plane parallel capacitor stores energy E when the plates have a charge Q on each plate. Then distance between the plates is double. In order to store triply as much energy, how much charge should it have in its plates

Answers

Answer:

[tex]Q'=\sqrt{6}Q[/tex]

Explanation:

You have that a parallel plate capacitor has a total energy of E when the distance between the plates is d and the charge on each plate is Q.

You take into account the following formula for the stored energy in the capacitor:

[tex]E=\frac{1}{2}\frac{Q^2}{C}[/tex]          (1)

The capacitance C of the parallel plate capacitor is given by the following formula is:

[tex]C=\epsilon_o\frac{A}{d}[/tex]          (2)

A: area of the plates

ε0: dielectric permittivity of vacuum

You replace the expression (2) into the equation (1):

[tex]E=\frac{1}{2}\frac{Q^2A}{\epsilon_o d}[/tex]       (3)

the previous formula is the expression for the total energy stored for the given parameters A, d and Q.

If the distance between the plates is twice and it is required that the energy is three times the initial energy, to find the value of the charge you use the equation (3):

[tex]E'=\frac{1}{2}\frac{Q'^2A}{\epsilon_o d'}[/tex]        (4)

d' = 2d

E' = 3E

Q': required charge

You replace the values of d' and E' in the equation (4) and then divide the result with the equation (3):

[tex]3E=\frac{1}{2}\frac{Q'^2A}{\epsilon_o(2d)}=\frac{1}{4}\frac{Q'^2A}{\epsilon_od}\\\\\frac{3E}{E}=\frac{1/4\frac{Q'^2A}{\epsilon_od}}{1/2\frac{Q^2A}{\epsilon_o d}}\\\\3=\frac{1}{2}\frac{Q'^2}{Q^2}[/tex]

Finally, you solve for Q':

[tex]3=\frac{1}{2}\frac{Q'^2}{Q^2}\\\\Q'=\sqrt{6}Q[/tex]

Then, the required charge is √6Q , to obtain three times the initial energy E, when the distance between plates is doubled.

Which observation have scientists used to support Einstein's general theory of relativity?
The orbital path of Mercury around the Sun has changed.
O GPS clocks function at the same rate on both Earth and in space.
O The Sun has gotten more massive over time.
Objects act differently in a gravity field than in an accelerating reference frame.

Answers

Answer:

Objects act differently in a gravity field than in an accelerating reference frame.

Explanation:

The main thrust of the theory general relativity as proposed by Albert Einstein boarders on space and time as the two fundamental aspects of spacetime. Spacetime is curved in the presence of gravity, matter, energy, and momentum. The theory of general relativity explains gravity based on the way space can 'curve', that is, it seeks to relate gravitational force to the changing geometry of space-time.

The Einstein general theory of relativity has replaced Newton's ideas proposed in earlier centuries as a means of predicting gravitational interactions. This concept is quite helpful but cannot be fitted into the context of quantum mechanics due to obvious incompatibilities.

Answer:

A - The orbital path of mercury around the sun has changed.

Explanation:

got right on edg.

A ball is dropped from the top of an eleven-story building to a balcony on the ninth floor. In which case is the change in the potential energy associated with the motion of the ball the greatest

Answers

Answer:

at the top of the 9 story building i think

Explanation:

When the ball starts to move, its kinetic energy increases and potential energy decreases. Thus the ball will experience its maximum potential energy at the top height before falling.

What is potential energy?

Potential energy of a massive body is the energy formed by virtue of its position and displacement. Potential energy is related to the mass, height and gravity as P = Mgh.

Where, g is gravity m is mass of the body and h is the height from the surface.  Potential energy is directly proportional to mass, gravity and height.

Thus, as the height from the surface increases, the body acquires its maximum potential energy. When the body starts moving its kinetic energy progresses and reaches to zero potential energy.

Therefore, at the sate where the ball is at the  top of the building it have maximum potential energy and then changes to zero.

To find more about potential energy, refer the link below:

https://brainly.com/question/24284560

#SPJ2

A bicycle tire pump has a piston with area 0.43 In2. If a person exerts a force of 16 lb on the piston while Inflating a tire, what pressure does this produce on the air in the pump?

Answers

Answer:

The pressure produced on the air in the pump is 37.209 pounds per square inch.

Explanation:

By definition, the pressure is the force exerted on the piston divided by its area. Given that, force is distributed uniformly on the piston area, the formula to determine the pressure is:

[tex]p = \frac{F}{A}[/tex]

Where:

[tex]p[/tex] - Pressure, measured in pounds per square inch.

[tex]F[/tex] - Force exerted on the piston, measured in pounds.

[tex]A[/tex] - Piston area, measured in square inches.

If [tex]F = 16\,lb[/tex] and [tex]A = 0.43\,in^{2}[/tex], the pressure produced on the air in the pump is:

[tex]p = \frac{16\,lb}{0.43\,in^{2}}[/tex]

[tex]p = 37.209\,psi[/tex]

The pressure produced on the air in the pump is 37.209 pounds per square inch.

Why can a magnetic monopole not exist, assuming Maxwell's Equations are currently correct and complete?

Answers

Answer:

Because closed magnetic field loops have to be formed between both ends of the magnet, a magnet will always have two poles.

Explanation:

Magnetic Monopoles do not exist in nature because a magnetic field always forms a loop that runs from one end of the magnet to the other.

Since this loop of the magnetic field has an origination and termination point which are at the two ends of the magnet (North and South poles).  A magnet will always be bipolar which is in this case, North and South; even at an atomic level.

Two vehicles approach an intersection, a 2500kg pickup travels from E to W at 14.0m/s and a 1500kg car from S to N at 23.0m/s. Find P net of this system (direction and magnitude)

Answers

Answer:

The magnitude of the momentum is 49145.19 kg.m/s

The direction of the two vehicles is 44.6° North West

Explanation:

Given;

speed of first vehicle, v₁ = 14 m/s (East to west)

mass of first vehicle, m₁ = 1500 kg

speed of second vehicle, v₂ = 23 m/s (South to North)

momentum of the first vehicle in x-direction (E to W is in negative x-direction)

[tex]P_x = mv_x\\\\P_x = 2500kg(-14 \ m/s)\\\\P_x = -35000 \ kg.m/s[/tex]

momentum of the second vehicle in y-direction (S to N is in positive y-direction)

[tex]P_y = m_2v_y\\\\P_y = 1500kg(23 \ m/s)\\\\P_y = 34500 \ kg.m/s[/tex]

Magnitude of the momentum of the system;

[tex]P= \sqrt{P_x^2 + P_y^2} \\\\P = \sqrt{(-35000)^2+(34500)^2} \\\\P = 49145.19 \ kg.m/s[/tex]

Direction of the two vehicles;

[tex]tan \ \theta = \frac{P_y}{|P_x|} \\\\tan \ \theta = \frac{34500}{35000} \\\\tan \ \theta = 0.9857\\\\\theta = tan^{-1} (0.9857)\\\\\theta = 44.6^0[/tex]North West

A length of organ pipe is closed at one end. If the speed of sound is 344 m/s, what length of pipe (in cm) is needed to obtain a fundamental frequency of 50 Hz

Answers

Answer:

The length = 27.52m

Explanation:

v=f x wavelength

a heat engine with an efficiency of 30.0% performs 2500 j of work. how much heat is discharged to the lower temperature reservoir

Answers

Answer:

Q₂ = 5833.33 J

Explanation:

First we need to find the energy supplied to the heat engine. The formula for the efficiency of the heat engine is given as:

η = W/Q₁

where,

η = efficiency of engine = 30% = 0.3

W = Work done by engine = 2500 J

Q₁ = Heat supplied to the engine = ?

Therefore,

0.3 = 2500 J/Q₁

Q₁ = 2500 J/0.3

Q₁ = 8333.33 J

Now, we find the heat discharged to lower temperature reservoir by using the formula of work:

W = Q₁ - Q₂

Q₂ = Q₁ - W

where,

Q₂ = Heat discharged to the lower temperature reservoir = ?

Therefore,

Q₂ = 8333.33 J - 2500 J

Q₂ = 5833.33 J

What is the change in internal energy of an engine if you put 15 gallon of gasoline into its tank? The energy content of gasoline is 1.5 x 106 J/gallon. All other factors, such as the engine’s temperature, are constant. How many hours the engine can work if the power of the engine’s motor is 600 W? (8 marks)

Answers

Answer:

ΔU = 2.25 x 10⁸ J

t = 104.17 s

Explanation:

The change in internal energy of the engine can be given by the following formula:

ΔU = (Mass of Gasoline)(Energy Content of Gasoline)

ΔU = (1.5 x 10⁶ J/gallon)(15 gallon)

ΔU = 2.25 x 10⁸ J

Now, for the time of operation, we use the following formula of power.

P = W/t = ΔU/t

t = ΔU/P

where,

t = time of operation = ?

ΔU = Change in internal energy = 2.25 x 10⁸ J

P = Power of motor = 600 W

Therefore,

t = (2.25 x 10⁸ J)/(600 W)

t = (375000 s)(1 h/3600 s)

t = 104.17 s

Consider a sound wave modeled with the equation s(x, t) = 3.00 nm cos(3.50 m−1x − 1,800 s−1t). What is the maximum displacement (in nm), the wavelength (in m), the frequency (in Hz), and the speed (in m/s) of the sound wave?

Answers

Answer:

-   maximum displacement = 3.00nm

-   λ = 1.79m

-  f = 286.47 s^-1

Explanation:

You have the following equation for a sound wave:

[tex]s(x,t)=3.00nm\ cos(3.50m^{-1}x- 1,800s^{-1} t)[/tex]              (1)

The general form of the equation of a sound wave can be expressed as the following formula:

[tex]s(x,t)=Acos(kx-\omega t)[/tex]            (2)

A: amplitude of the wave = 3.00nm

k: wave number = 3.50m^-1

w: angular frequency = 1,800s^-1

- The maximum displacement of the wave is given by the amplitude of the wave, then you have:

maximum displacement = A = 3.00nm

- The wavelength is given by :

[tex]\lambda=\frac{2\pi}{k}=\frac{2\pi}{3.50m^{-1}}=1.79m[/tex]

The values for the wavelength is 1.79m

- The frequency is:

[tex]f=\frac{\omega}{2\pi}=\frac{1,800s^{-1}}{2\pi}=286.47s^{-1}[/tex]

The frequency is 286.47s-1

what is drift speed ? {electricity}​

Answers

Answer: In physics a drift velocity is the average velocity attained by charged particles, such as electrons, in a material due to an electric field.

Explanation:

A guitar string 0.65 m long has a tension of 61 N and a mass per unit length of 3.0 g/m. (i) What is the speed of waves on the string when it is plucked? (ii) What is the string's fundamental frequency of vibration when plucked? (iii) At what other frequencies will this string vibrate?

Answers

Answer:

i

  [tex]v = 142.595 \ m/s[/tex]

ii

  [tex]f = 109.69 \ Hz[/tex]

iii1 )

  [tex]f_2 =219.4 Hz[/tex]

iii2)

   [tex]f_3 =329.1 Hz[/tex]

iii3)

    [tex]f_4 =438.8 Hz[/tex]

Explanation:

From the question we are told that

    The length of the string is  [tex]l = 0.65 \ m[/tex]

     The tension on the string is  [tex]T = 61 \ N[/tex]

     The mass per unit length is  [tex]m = 3.0 \ g/m = 3.0 * \frac{1}{1000} = 3 *10^{-3 } \ kg /m[/tex]

     

The speed of wave on the string is mathematically represented as

       [tex]v = \sqrt{\frac{T}{m} }[/tex]

substituting values

      [tex]v = \sqrt{\frac{61}{3*10^{-3}} }[/tex]

     [tex]v = 142.595 \ m/s[/tex]

generally the  string's  frequency is mathematically represented as

         [tex]f = \frac{nv}{2l}[/tex]

n = 1  given that the frequency we are to find is the fundamental frequency

So

      substituting values

       [tex]f = \frac{142.595 * 1 }{2 * 0.65}[/tex]

       [tex]f = 109.69 \ Hz[/tex]

The  frequencies at which the string would vibrate include

1       [tex]f_2 = 2 * f[/tex]

Here [tex]f_2[/tex] is  know as the second harmonic and the value is  

      [tex]f_2 = 2 * 109.69[/tex]

      [tex]f_2 =219.4 Hz[/tex]

2

[tex]f_3 = 3 * f[/tex]

Here [tex]f_3[/tex] is  know as the third harmonic and the value is  

      [tex]f_3 = 3 * 109.69[/tex]

     [tex]f_3 =329.1 Hz[/tex]

3

     [tex]f_3 = 4 * f[/tex]

Here [tex]f_4[/tex] is  know as the fourth harmonic and the value is  

      [tex]f_3 = 4 * 109.69[/tex]

     [tex]f_4 =438.8 Hz[/tex]

Two children are balanced on a seesaw, but one child weighs twice as much as the other child. The heavier child is sitting half as far from the pivot as is the lighter child. Since the seesaw is balanced, the heavier child is exerting on the seesaw:_______.
a. a force that is less than the force the lighter child is exerting.
b. a force that is equal in amount but oppositely directed to the force the lighter child is exerting.

Answers

Answer:

B. A force that is equal in amount but oppositely directed to the force the lighter child is exerting.

Explanation:

If they are sitting at the same distance away from the pivot yet the seesaw is balanced, the only conclusion is the heavier child is exerting a lower force. This causes the pivot exertion and balances to be equal. The equilibrium of the pivot-seesaw is not affected by the weight because of force exertion.

A particle with kinetic energy equal to 282 J has a momentum of magnitude 26.4 kg · m/s. Calculate the speed (in m/s) and the mass (in kg) of the particle.

Answers

Answer:

[tex]v=21.36\,\,\frac{m}{s}\\[/tex]

[tex]m=1.2357\,\,kg[/tex]

Explanation:

Recall the formula for linear momentum (p):

[tex]p = m\,v[/tex]  which in our case equals 26.4 kg m/s

and notice that the kinetic energy can be written in terms of the linear momentum (p) as shown below:

[tex]K=\frac{1}{2} m\,v^2=\frac{1}{2} \frac{m^2\,v^2}{m} =\frac{1}{2}\frac{(m\,v)^2}{m} =\frac{p^2}{2\,m}[/tex]

Then, we can solve for the mass (m) given the information we have on the kinetic energy and momentum of the particle:

[tex]K=\frac{p^2}{2\,m}\\282=\frac{26.4^2}{2\,m}\\m=\frac{26.4^2}{2\,(282)}\,kg\\m=1.2357\,\,kg[/tex]

Now by knowing the particle's mass, we use the momentum formula to find its speed:

[tex]p=m\,v\\26.4=1.2357\,v\\v=\frac{26.4}{1.2357} \,\frac{m}{s} \\v=21.36\,\,\frac{m}{s}[/tex]

An amusement park ride has a vertical cylinder with an inner radius of 3.4 m, which rotates about its vertical axis. Riders stand inside against the carpeted surface and rotate with the cylinder while it accelerates to its full angular velocity. At that point the floor drops away and friction between the riders and the cylinder prevents them from sliding downward. The coefficient of static friction between the riders and the cylinder is 0.87. What minimum angular velocity in radians/second is necessary to assure that the riders will not slide down the wall?

Answers

Answer:

The minimum angular velocity necessary to assure that the riders will not slide down the wall is 1.58 rad/second.

Explanation:

The riders will experience a centripetal force from the cylinder

[tex]F_{C}[/tex] = mrω^2    .... equ 1

where

m is the mass of the rider

r is the inner radius of the cylinder = 3.4 m

ω is the angular speed of of the rider

For the riders not to slide downwards, this centripetal force is balanced by the friction between the riders and the cylinder. The frictional force is given as

[tex]F_{f}[/tex] = μR       ....equ 2

where

μ = coefficient of friction = 0.87

R is the normal force from the rider = mg

where

m is the rider's mass

g is the acceleration due to gravity = 9.81 m/s

substitute mg for R in equ 2, we'll have

[tex]F_{f}[/tex] = μmg     ....equ 3

Equating centripetal force of equ 1 and frictional force of equ 3, we'll get

mrω^2 = μmg

the mass of the rider cancels out, and we are left with

rω^2 = μg

ω^2 = μg/r

ω = [tex]\sqrt{\frac{ug}{r} }[/tex]

ω = [tex]\sqrt{\frac{0.87*9.81}{3.4} }[/tex]

ω = 1.58 rad/second

The minimum angular velocity necessary so that the riders will not slide down the wall is 1.58 rad/s

The riders will experience a  centripetal force from the cylinder

[tex]F = mrw^2[/tex]

where  m is the mass of the rider

r is the inner radius of the cylinder = 3.4 m

ω is the angular speed of the rider

For the riders not to slide downwards, this centripetal force must be balanced by friction. The frictional force is given as

f = μN

where

μ = coefficient of friction = 0.87

N is the normal force = mg

f = μmg  

Equating centripetal force of and frictional force of we'll get

[tex]mrw^2 = umg[/tex]

[tex]rw^2 = ug[/tex]

[tex]w^2 = ug/r[/tex]

[tex]w= \sqrt{ug/r}[/tex]

[tex]w= \sqrt{0.87*9.8/3.4}[/tex]  

ω = 1.58 rad/s is the minimum angular velocity needed to prevent the rider from sliding.

Learn more:

https://brainly.com/question/24638181

You have a 2m long wire which you will make into a thin coil with N loops to generate a magnetic field of 3mT when the current in the wire is 1.2A. What is the radius of the coils and how many loops, N, are there

Answers

Answer:

radius of the loop =  7.9 mm

number of turns N ≅ 399 turns

Explanation:

length of wire L= 2 m

field strength B = 3 mT = 0.003 T

current I = 12 A

recall that field strength B = μnI

where n is the turn per unit length

vacuum permeability μ  = [tex]4\pi *10^{-7} T-m/A[/tex] = 1.256 x 10^-6 T-m/A

imputing values, we have

0.003 = 1.256 x 10^−6 x n x 12

0.003 = 1.507 x 10^-5 x n

n = 199.07 turns per unit length

for a length of 2 m,

number of loop N = 2 x 199.07 = 398.14 ≅ 399 turns

since  there are approximately 399 turns formed by the 2 m length of wire, it means that each loop is formed by 2/399 = 0.005 m of the wire.

this length is also equal to the circumference of each loop

the circumference of each loop = [tex]2\pi r[/tex]

0.005 = 2 x 3.142 x r

r = 0.005/6.284 = [tex]7.9*10^{-4} m[/tex] = 0.0079 m = 7.9 mm

Suppose the current in a conductor decreases exponentially with time according to the equation I(t) = I0e-t/τ, where I0 is the initial current (at t = 0), and τ is a constant having dimensions of time. Consider a fixed observation point within the conductor.

Required:
a. How much charge passes this point between t = 0 and t = τ?
b. How much charge passes this point between t = 0 and t = 10 τ?
c. What If ? How much charge passes this point between t = 0 and t = [infinity]?

Answers

Answer:

Pls see attached file

Explanation:

Water flowing through a garden hose of diameter 2.76 cm fills a 20.0-L bucket in 1.45 min. (a) What is the speed of the water leaving the end of the hose

Answers

Answer:

v = 31.84 cm/s or 0.318 m/s

the speed of the water leaving the end of the hose is 31.84 cm/s or 0.318 m/s

Explanation:

Given;

Diameter of hose d = 2.76 cm

Volume filled V = 20.0 L = 20,000 cm^3

Time t = 1.45 min = 105 seconds

The volumetric flow rate of water is;

F = V/t = 20,000cm^3 ÷ 105 seconds

F = 190.48 cm^3/s

The volumetric flow rate is equal the cross sectional area of pipe multiply by the speed of flow.

F = Av

v = F/A

Area A = πd^2/4

Speed v = F/(πd^2/4)

v = 4F/πd^2 ......1

Substituting the given values;

v = (4×190.48)/(π×2.76^2)

v = 31.83767439628 cm/s

v = 31.84 cm/s or 0.318 m/s

the speed of the water leaving the end of the hose is 31.84 cm/s or 0.318 m/s

How fast is the spaceship traveling towards the Sun? The radius of the orbit of Jupiter is 43.2 light-minutes, and that of the orbit of Mars is 12.6 light-minutes.

Answers

Question:

A spaceship enters the solar system moving toward the Sun at a constant speed relative to the Sun. By its own clock, the time elapsed between the time it crosses the orbit of Jupiter and the time it crosses the orbit of Mars is 35.0 minutes

How fast is the spaceship traveling towards the Sun? The radius of the orbit of Jupiter is 43.2 light-minutes, and that of the orbit of Mars is 12.6 light-minutes.

Answer:

S = 5.508 × 10¹¹m

V = 2.62 × 10⁸ m/s

Explanation:

The radius of the orbit of Jupiter, Rj is 43.2 light-minutes

radius of the orbit of Mars, Rm is 12.6 light-minutes

Distance travelled S = (Rj - Rm)

= 43.2 - 12.6 = 30.6 light- minutes

= 30.6 × (3 ×10⁸m/s) × 60 s

= 5.508 × 10¹¹m

time = 35mins = (35 × 60 secs)

= 2100 secs

speed = distance/time

V = 5.508 × 10¹¹m / 2100 s

V = 2.62 × 10⁸ m/s

A railroad boxcar rolls on a track at 2.90 m/s toward two identical coupled boxcars, which are rolling in the same direction as the first, but at a speed of 1.20 m/s. The first reaches the second two and all couple together. The mass of each is 3.05 ✕ 104 kg.(a)What is the speed (in m/s) of the three coupled cars after the first couples with the other two? (Round your answer to at least two decimal places.)Incorrect: Your answer is incorrect.What is the momentum of the two coupled cars? What is the momentum of the first car in terms of its mass and initial speed? Note all cars are initially traveling in the same direction. Apply conservation of momentum to find the final speed. m/s(b)Find the (absolute value of the) amount of kinetic energy (in J) converted to other forms during the collision.J

Answers

Answer:

momentum of the coupled cars V =  1.77 m/s

kinetic energy coverted to other forms during the collision ΔK.E = -2.892×10⁴J

Explanation:

given

m₁ =3.05 × 10⁴kg

u₁ =2.90m/s

m₂=6.10× 10⁴kg

u₂=1.20m/s

using law of conservation of momentum

m₁u₁ + m₂u₂ = (m₁ + m₂) V

3.05 × 10⁴ ×2.90 + 6.10× 10⁴× 1.20 = (9.15×10⁴)V

V =  1.617×10⁵/9.15×10⁴

V = 1.77m/s

K.E =1/2mV²

ΔK.E = K.E(final) - K.E(initial)

ΔK.E = ¹/₂ × 9.15×10⁴ ×(1.77)² -  ¹/₂ ×3.05 × 10⁴ × (2.90)² -¹/₂ × 6.10× 10⁴× (1.20)²

ΔK.E = ¹/₂ × (28.67-25.65-8.784) ×10⁴

ΔK.E = -2.892×10⁴J

The final speed is 1.77 m/s

The initial momentum is 8.84 × 10⁴ kgm/s [first car] and 7.3 × 10⁴ kgm/s [coupled car]

2.892×10⁴J of energy is converted.

Inelastic collision:

Since the first boxcar collides and couples with the two coupled boxcars, the collision is inelastic. In an inelastic collision, the momentum of the system is conserved but there is a loss in the total kinetic energy of the system.

Let the mass of the railroad boxcar be m₁ =3.05 × 10⁴kg

The initial speed of the railroad boxcar is u₁ = 2.90m/s

Mass of the two coupled boxcars m₂ = 2 × 3.05 × 10⁴kg = 6.10× 10⁴kg

And the initial speed be u₂ = 1.20m/s

The initial momentum of the first car is:

m₁u₁ = 3.05 × 10⁴ × 2.90 =  8.84 × 10⁴ kgm/s

The initial momentum of the coupled car is:

m₁u₁ = 6.10 × 10⁴ × 1.20 = 7.3 × 10⁴ kgm/s

Let the final speed after all the boxcars are coupled be v

From the law of conservation of momentum, we get:

m₁u₁ + m₂u₂ = (m₁ + m₂)v

3.05 × 10⁴ ×2.90 + 6.10× 10⁴× 1.20 = (9.15×10⁴)Vv

v =  1.617×10⁵/9.15×10⁴

v = 1.77m/s

The difference between initial and final kinetic energies is the amount of energy converted into other forms, which is given as follows:

ΔKE = K.E(final) - K.E(initial)

ΔKE = ¹/₂ × 9.15×10⁴ ×(1.77)² -  ¹/₂ ×3.05 × 10⁴ × (2.90)² -¹/₂ × 6.10× 10⁴× (1.20)²

ΔKE = ¹/₂ × (28.67-25.65-8.784) ×10⁴

ΔKE = -2.892×10⁴J

Learn more about inelastic collision:

https://brainly.com/question/13861542?referrer=searchResults

A parallel-plate air capacitor is connected to a constant-voltage battery. If the separation between the capacitor plates is doubled while the capacitor remains connected to the battery, the energy stored in the capacitor
1) drops to one-fourth its previous value.
2) quadruples.
3) becomes six times its previous value.
4) doubles.
5) drops to one-third its previous value.
6) Not enough information is provided.
7) triples.
8) drops to half its previous value.
9) drops to one-sixth its previous value.
10) remains unchanged.

Answers

Answer:

Drop to half of the previous value

Explanation:

Energy stored in capacitor is inversly propotional to the distance between the plates.

If the separation between the capacitor plates is doubled while the capacitor remains connected to the battery, the energy stored in the capacitor drops to half its previous value.

What is parallel plate capacitor?

The two parallel plates placed at a distance apart used to store charge when electric supply is on.

The capacitance of a capacitor is  given by

C = ε₀ A/d

where, ε₀ is the permittivity of free space, A = area of cross section of plates and d is the distance between them.

Capacitance is inversely proportional to the distance between them. So, if distance is doubled, the capacitance decreases to half its original value.

Thus, the correct option is 8.

Learn more about parallel plate capacitor.

https://brainly.com/question/12733413

#SPJ2

Other Questions
4. The rate of output for a product was 1,000 units per month. Thecompany increased all inputs by 20 percent and output increasedto 1,500 units per month. Are the returns to scale increasing,decreasing, or constant for this product? What should happen tothe production cost per unit? news coverage and tend to _ drug use?a)discourage B)glamorizeC)glamorize Can someone help assist me on this Honors Algebra 2 Problem? Challenge Problems #6. The distance from a point on the curve y=x to the point (2,0) is equal to 2 at what points on the curve? (Hint: Draw a picture.) God brings flood in order to Which simplified fraction is equivalent of 5.6 3/15 14/25 5/6 14/250 If f(x) = 7 + 4x and g (x) = StartFraction 1 Over 2 x EndFraction, what is the value of (StartFraction f Over g EndFraction) (5)? not quite sure of the answer. help me out??? Which statement explains how the lines x+y=2 and y=x+4 are related?(1) They are parallel.(2) They are perpendicular. (3) They are the same line. 4) They are not related. Part 1 of 1 -Question 2 of 502 PointsSolve the equation for x. x/3 -1 = -2Copyright 2010-2020 edtell, LLC. All rights reserved. Portions of this software are copyrighted by other parties as described in the Acknov help but do inorder of operations form Wavetel, a hardware company based in Europe, acquires Telior, its competitor in a neighboring country. Identify the market-entry strategy that best describes Wavetel's move. Joint venture Direct foreign investment Franchising Indirect exporting 10. 80 machines can produce 4800 identical pens in 5 hours. At this ratea) how many pens would one machine produce in one hour?b) how many pens would 25 machines produce in 7 hours? -4 + 3a2 from 7a - a2 addicted to smokeless tobacco can develop thick, leathery white spots in the mouth. What are these spots called?A. emphysemaB. leukoplakiaC. mouth ulcers Which is the topic sentence of the following paragraph? Each paragraph should have a topic sentence, support, and a concluding sentence. The topic sentence tells the one thing you will discuss in this paragraph. The support gives the information, facts, details, reasons, examples, and anything else you wish to tell about the one topic you are writing about. The concluding sentence summarizes the paragraph's content. Question 4 options: a) Each paragraph should have a topic sentence, support, and a concluding sentence. b) The support gives the information, facts, details, reasons, examples, and anything else you wish to tell about the one topic you are writing about. c) The concluding sentence summarizes the paragraph's content. d) The topic sentence tells the one thing you will discuss in this paragraph. Drag each tile to the correct box.Put the events of the English Reformation in the order in which they occurred. Read the following excerpt from chapter 21 of John Steinbeck's The Grapes ofWrath.Those families which had lived on a little piece of land, who hadlived and died on forty acres, had eaten or starved on theproduce of forty acres, had now the whole West to rove in. Andthey scampered about, looking for work; and the highways werestreams of people, and the ditch banks were lines of people.Behind them more were coming. The great highways streamedwith moving people. There in the Middle and Southwest had liveda simple agrarian folk who had not changed with industry, whohad not farmed with machines or known the power and dangerof machines in private hands. They had not grown up in theparadoxes of industry. Their senses were still sharp to theridiculousness of the industrial life.And then suddenly the machines pushed them out and theyswarmed on the highways. The movement changed them; thehighways, the camps along the road, the fear of hunger and thehunger itself, changed them. The children without dinnerchanged them, the endless moving changed them. They weremigrants. And the hostility changed them, welded them, unitedthem-hostility that made the little towns group and arm asthough to repel an invader, squads with pick handles, clerks andstorekeepers with shotguns, guarding the world against their ownpeople.Analyze how the author uses the rhetorical devices of parallelism and diction toconvey the tone of the text. Be sure to include specific details from the text tosupport your answer. What steps would you take to determine if these figures are similar? Check all that apply. Use a scale factor of 2. Multiply the vertices of polygon ABCD by One-half. Translate the intermediate image 4 units down. Perform two different dilations. Reflect the intermediate image. Fill in the missing information. Tim Worker is doing his budget. He discovers that the average miscellaneous expense is $45.00 with a standard deviation of $16.00. What percent of his expense in this category would he expect to fall between $38.60 and $57.80? An automobile accelerates from zero to 30 m/s in 6 s. The wheels have a diameter of 0.4 m. What is the angular acceleration of each wheel