what is brewster's angle (in degrees) for light traveling in benzene (n = 1.501) that is reflected from plexiglas (n = 1.51)?

Answers

Answer 1

Brewster's angle is the angle of incidence at which light reflected from a surface is completely polarized and perpendicular to the reflected ray. It is given by the equation: θB = arctan(np), where np is the refractive index of the second medium divided by the refractive index of the first medium.

When light is incident on a surface, some of it is reflected and some of it is transmitted through the surface. The reflected light can be partially or fully polarized, depending on the angle of incidence and the properties of the surface. Brewster's angle is the angle of incidence at which the reflected light is completely polarized and perpendicular to the reflected ray.

We can use the equation θB = arctan(np) to calculate the angle, where np is the ratio of the refractive indices of the two media. Plugging in the values given, we get θB = arctan(1.51/1.501) = 56.63 degrees.
Brewster's angle (θ_B) = arctan(n2/n1)
In this case, n1 represents the refractive index of benzene (1.501), and n2 represents the refractive index of Plexiglas (1.51). Plugging these values into the formula, we get: θ_B = arctan(1.51/1.501), θ_B ≈ 88.74 degrees.

To know more about reflected ray visit:

https://brainly.com/question/3764651

#SPJ11


Related Questions

the specific heat of lead is 0.030 cal/g°c. 458 g of lead shot at 110°c is mixed with 117.7 g of water at 65.5°c in an insulated container. what is the final temperature of the mixture?

Answers

Therefore, the final temperature of the mixture is approximately 69.75°C.

This question requires a long answer to solve using the equation for heat transfer, which is:
Q = m * c * ΔT
where Q is the heat transferred, m is the mass of the substance, c is the specific heat of the substance, and ΔT is the change in temperature.
To solve for the final temperature of the mixture, we need to find the amount of heat transferred from the lead to the water, and then use that value to solve for the final temperature.
First, let's find the amount of heat transferred from the lead to the water:

Q_lead = m_lead * c_lead * ΔT_lead
Q_lead = (458 g) * (0.030 cal/g°C) * (110°C - T_final)

Q_water = m_water * c_water * ΔT_water
Q_water = (117.7 g) * (1 cal/g°C) * (T_final - 65.5°C)
Since the container is insulated, we know that the heat transferred from the lead to the water is equal to the heat transferred from the water to the lead:
Q_lead = Q_wate
Substituting the equations above:
(m_lead * c_lead * ΔT_lead) = (m_water * c_water * ΔT_water)
(458 g) * (0.030 cal/g°C) * (110°C - T_final) = (117.7 g) * (1 cal/g°C) * (T_final - 65.5°C)
Simplifying:
12.972 cal/°C * (110°C - T_final) = 117.7 cal/°C * (T_final - 65.5°C)
1,426.92 - 12.972T_final = 117.7T_final - 7,680.35
130.672T_final = 9,107.27
T_final = 69.75°C
Therefore, the final temperature of the mixture is approximately 69.75°C.
To determine the final temperature of the mixture, we can use the principle of heat exchange. The heat gained by the water will be equal to the heat lost by the lead shot. We can express this using the equation:
mass_lead * specific_heat_lead * (T_final - T_initial_lead) = mass_water * specific_heat_water * (T_final - T_initial_water)
Given:
specific_heat_lead = 0.030 cal/g°C
mass_lead = 458 g
T_initial_lead = 110°C
mass_water = 117.7 g
T_initial_water = 65.5°C
specific_heat_water = 1 cal/g°C (since it's water)
Let T_final be the final temperature. Plugging the given values into the equation:
458 * 0.030 * (T_final - 110) = 117.7 * 1 * (T_final - 65.5)
Solving for T_final, we get:
13.74 * (T_final - 110) = 117.7 * (T_final - 65.5)
13.74 * T_final - 1501.4 = 117.7 * T_final - 7704.35
Now, isolate T_final:
103.96 * T_final  6202.95

T_final ≈ 59.65°C
So, the final temperature of the mixture is approximately 59.65°C.

To know more about final temperature visit:-

https://brainly.com/question/11244611

#SPJ11

A point charge of Q1= −87μC is fixed at R1=(0.3, −0.6)m and a second point charge of Q2= 31μC at R2=(−0.5, 0.5)m
What is the y-component of the electric field at the origin of the coordinate system, meaning, at (x,y)=(0,0)?
If a charge Q3=−46μC were to be placed into the origin, what would be the magnitude of the force on it?
I found the x component already and it was 1.171×106 N/C

Answers

The y-component of the electric field at the origin is 2.88x10^6 N/C. The magnitude of the force on charge Q3 at the origin would be -57.3 N.

To find the y-component of the electric field at the origin, we need to calculate the y-components of the electric fields created by Q1 and Q2 at the origin and then add them together. The formula for the electric field due to a point charge is:

E = kQ/r²

where k is Coulomb's constant, Q is the charge, and r is the distance from the charge to the point where the electric field is being calculated.

Using this formula, we can find the electric field due to Q1 and Q2 at the origin:

E1 = kQ1/r1² = (9 × 10^9 N·m²/C²)(-87 × 10⁻⁶ C)/(0.9 m)² = -1.22 × 10⁵ N/C

E2 = kQ2/r2² = (9 × 10⁹ N·m²/C²)(31 × 10⁻⁶ C)/(0.5 m)² = 3.12 × 10⁵ N/C

The y-component of the electric field at the origin is the sum of these two values:

Etotal,y = E1,y + E2,y = 0 + 3.12 × 10⁵ N/C = 3.12 × 10⁵ N/C

To find the force on Q3 at the origin, we need to calculate the electric field at the origin due to Q1 and Q2 and then use the formula:

F = QE

where Q is the charge of Q3 and E is the electric field at the origin. Using the values we found earlier:

Etotal = sqrt(Etotal,x² + Etotal,y²) = sqrt((1.171 × 10⁶ N/C)²+ (3.12 × 10⁵ N/C)²) = 1.247 × 10⁶ N/C

F = QEtotal = (-46 × 10⁻⁶ C)(1.247 × 10⁶ N/C) = -57.3 N

To know more about the electric field refer here :

https://brainly.com/question/1232456#

#SPJ11

an engine on each cycle takes in 40. joules, does 10. joules of work, and expels 30. j of heat. what is its efficiency?

Answers

The engine's efficiency is 25%.

An engine's efficiency refers to the ratio of useful work done to the total energy input. In this case, the engine takes in 40 joules of energy, does 10 joules of work, and expels 30 joules of heat. To calculate the efficiency, you can use the following formula: Efficiency = (Work done / Energy input) x 100%.

For this engine, the efficiency would be (10 joules / 40 joules) x 100%, which equals 25%. This means that 25% of the energy input is converted into useful work, while the remaining 75% is lost as heat. An ideal engine would have a higher efficiency, meaning more of the input energy is converted into useful work. However, in reality, all engines lose some energy as heat due to factors such as friction and other inefficiencies.

To know more about the efficiency, click here;

https://brainly.com/question/30861596

#SPJ11

a resistor dissipates 2.00 ww when the rms voltage of the emf is 10.0 vv .

Answers

A resistor dissipates 2.00 W of power when the RMS voltage across it is 10.0 V. To determine the resistance, we can use the power formula P = V²/R, where P is the power, V is the RMS voltage, and R is the resistance.

Rearranging the formula for R, we get R = V²/P.

Plugging in the given values, R = (10.0 V)² / (2.00 W) = 100 V² / 2 W = 50 Ω.

Thus, the resistance of the resistor is 50 Ω

The power dissipated by a resistor is calculated by the formula P = V^2/R, where P is power in watts, V is voltage in volts, and R is resistance in ohms. In this case, we are given that the rms voltage of the emf is 10.0 V and the power dissipated by the resistor is 2.00 W.

Thus, we can rearrange the formula to solve for resistance: R = V^2/P. Plugging in the values, we get R = (10.0 V)^2 / 2.00 W = 50.0 ohms.

Therefore, the resistance of the resistor is 50.0 ohms and it dissipates 2.00 W of power when the rms voltage of the emf is 10.0 V.

To know about power visit:

https://brainly.com/question/29575208

#SPJ11

the helix nebula is a planetary nebula with an angular di- ameter of 16’ that is located approximately 200 pc from earth. 1. what is a planetary nebula? 2. calculate the diameter of the nebula.

Answers

1. A planetary nebula is a type of emission nebula consisting of an expanding, glowing shell of ionized gas ejected from a red giant star in the last stage of its life. 2.  the diameter of the Helix Nebula is approximately 2.5 × 10^17 meters or 0.27 light years.

1. As the red giant's outer layers expand, they are blown away by strong stellar winds and radiation pressure, creating a shell of gas and dust that is illuminated by the central star's intense ultraviolet radiation. Planetary nebulae are named so because they have a round, planet-like appearance in early telescopes.

2. To calculate the diameter of the Helix Nebula, we can use the small angle formula:

angular diameter = diameter / distance

Rearranging the formula, we get:

diameter = angular diameter × distance

Substituting the given values, we get:

diameter = 16 arcmin × (1/60) degrees/arcmin × (π/180) radians/degree × 200 pc × (3.086 × 10^16 m/pc)

Simplifying, we get:

diameter ≈ 2.5 × 10^17 meters or 0.27 light years

Therefore, the diameter of the Helix Nebula is approximately 2.5 × 10^17 meters or 0.27 light years.

For more such questions on nebula

https://brainly.com/question/15431665

#SPJ11

A planetary nebula is a type of emission nebula that forms when a low or intermediate-mass star, like our Sun, reaches the end of its life and runs out of fuel to continue nuclear fusion reactions in its core. As the star dies, it expels its outer layers into space, creating a glowing shell of ionized gas and dust that is illuminated by the ultraviolet radiation from the central white dwarf. Despite their name, planetary nebulae have nothing to do with planets; they were named by early astronomers who observed them through small telescopes and thought they looked like the disc of a planet.

The angular diameter of the Helix Nebula is given as 16 arcminutes or 0.27 degrees. To calculate the physical diameter of the nebula, we need to know its distance from Earth. The question states that it is approximately 200 parsecs (pc) away.

Using the small angle formula, we can relate the angular diameter of an object (in radians) to its physical diameter (in units of distance) and its distance from the observer (also in units of distance):

Angular diameter = Physical diameter / Distance

We need to convert the angular diameter from degrees to radians:

Angular diameter in radians = (0.27 degrees / 360 degrees) x 2π radians = 0.0047 radians

Now we can rearrange the formula and solve for the physical diameter:

Physical diameter = Angular diameter x Distance

Physical diameter = 0.0047 radians x (200 pc x 3.26 light-years/pc) x (1.0 x 10^13 km/light year) = 1.8 x 10^14 km

Therefore, the diameter of the Helix Nebula is approximately 1.8 x 10^14 kilometres or about 1.2 light years.

Learn more about helix nebula, here:

brainly.com/question/18582489

#SPJ11

in a certain pinhole camera the screen is 10cm away from the pinhole .when the pinhole is placed 6m away from a tree sharp image is formed on the screen. find the height of the tree

Answers

Use similar triangles to find tree height: (tree height)/(6 m) = (image height)/(10 cm). Calculate image height and find tree height.


To find the height of the tree, we will use the concept of similar triangles.

In a pinhole camera, the image formed on the screen is proportional to the actual object. So, we can set up a proportion:
(tree height) / (distance from tree to pinhole: 6 m) = (image height) / (distance from pinhole to screen: 10 cm)

First, convert 6 meters to centimeters: 6 m * 100 cm/m = 600 cm. Now, our proportion is:
(tree height) / (600 cm) = (image height) / (10 cm)

Cross-multiply and solve for tree height:
(tree height) = (image height) * (600 cm) / (10 cm)

Once you measure the image height on the screen, plug it into the equation to find the height of the tree.

For more such questions on triangles, click on:

https://brainly.com/question/13495142

#SPJ11

4.14 For each of the following systems, investigate input-to-state stability. The function h is locally Lipschitz, h(0-0, and yh(y)2 ay2 V y, with a 〉 0.

Answers

The system y' = -ay + u(t), with h(y) = y², is input-to-state stable with respect to h, for all initial conditions y(0) and all inputs u(t), with k1 = 1, k2 = a/2, and k3 = 1/2a.

The system and the input-to-state stability condition can be described by the following differential equation:

y' = -ay + u(t)

where y is the system state, u(t) is the input, and a > 0 is a constant. The function h is defined as h(y) = y².

To investigate input-to-state stability of this system, we need to check if there exist constants k1, k2, and k3 such that the following inequality holds for all t ≥ 0 and all inputs u:

[tex]h(y(t)) \leq k_1 h(y(0)) + k_2 \int_{0}^{t} h(y(s)) ds + k_3 \int_{0}^{t} |u(s)| ds[/tex]

Using the differential equation for y, we can rewrite the inequality as:

[tex]y(t)^2 \leq k_1 y(0)^2 + k_2 \int_{0}^{t} y(s)^2 ds + k_3 \int_{0}^{t} |u(s)| ds[/tex]

Since h(y) = y^2, we can simplify the inequality as:

[tex]h(y(t)) \leq k_1 h(y(0)) + k_2 \int_{0}^{t} h(y(s)) ds + k_3 \int_{0}^{t} |u(s)| ds[/tex]

Now, we need to find values of k1, k2, and k3 that make the inequality true. Let's consider the following cases:

Case 1: y(0) = 0

In this case, h(y(0)) = 0, and the inequality reduces to:

[tex]h(y(t)) \leq k_2 \int_{0}^{t} h(y(s)) ds + k_3 \int_{0}^{t} |u(s)| ds[/tex]

Applying the Cauchy-Schwarz inequality, we have:

[tex]h(y(t)) \leq (k_2t + k_3\int_{0}^{t} |u(s)| ds)^2[/tex]

We can choose k2 = a/2 and k3 = 1/2a. Then, the inequality becomes:

[tex]h(y(t)) \leq \left(\frac{at}{2} + \frac{1}{2a}\int_{0}^{t} |u(s)| ds\right)^2[/tex]

This inequality is satisfied for all t ≥ 0 and all inputs u. Therefore, the system is input-to-state stable with respect to h.

Case 2: y(0) ≠ 0

In this case, we need to find a value of k1 that makes the inequality true. Let's assume that y(0) > 0 (the case y(0) < 0 is similar).

We can choose k1 = 1. Then, the inequality becomes:

[tex]y(t)^2 \leq y(0)^2 + k_2 \int_{0}^{t} y(s)^2 ds + k_3 \int_{0}^{t} |u(s)| ds[/tex]

Applying the Cauchy-Schwarz inequality, we have:

[tex]y(t)^2 \leq \left(y(0)^2 + k_2t + k_3\int_{0}^{t} |u(s)| ds\right)^2[/tex]

We can choose k2 = a/2 and k3 = 1/2a. Then, the inequality becomes:

[tex]y(t)^2 \leq \left(y(0)^2 + \frac{at}{2} + \frac{1}{2a}\int_{0}^{t} |u(s)| ds\right)^2[/tex]

This inequality is satisfied for all t ≥ 0 and all inputs u. Therefore, the system is input-to-state stable with respect to h.

To know more about the input-to-state refer here :

https://brainly.com/question/31779190#

#SPJ11

Particle A is placed at position (3, 3) m, particle B is placed at (-3, 3) m, particle C is placed at (-3, -3) m, and particle D is placed at (3, -3) m. Particles A and B have a charge of -q(-5µC) and particles C and D have a charge of +2q (+10µC).a) Draw a properly labeled coordinate plane with correctly placed and labeled charges (3 points).b) Draw and label a vector diagram showing the electric field vectors at position (0, 0) m (3 points).c) Solve for the magnitude and direction of the net electric field strength at position (0, 0) m (7 points).

Answers

The properly labeled coordinate plane are attached below. The proper vector diagram that shows the electric field are attached below. The magnitude of the net electric field is -18.58 × 10⁵

To solve for the magnitude and direction of the net electric field strength at position (0, 0) m, we need to calculate the electric field vectors produced by each charge at that position and add them up vectorially.

The electric field vector produced by a point charge is given by

E = kq / r²

where k is Coulomb's constant (9 x 10⁹ N.m²/C²), q is the charge of the particle, and r is the distance from the particle to the point where we want to calculate the electric field.

Let's start with particle A. The distance from A to (0, 0) is

r = √[(3-0)² + (3-0)²] = √(18) m

The electric field vector produced by A is directed toward the negative charge, so it points in the direction (-i + j). Its magnitude is

E1 = kq / r²

= (9 x 10⁹ N.m²/C²) x (-5 x 10⁻⁶ C) / 18 m² = -1.875 x 10⁶ N/C

The electric field vector produced by particle B is also directed toward the negative charge, so it points in the direction (-i - j). Its magnitude is the same as E1, since B has the same charge and distance as A

E2 = E1 = -1.875 x 10⁶ N/C

The electric field vector produced by particle C is directed away from the positive charge, so it points in the direction (i + j). Its distance from (0, 0) is

r = √[(-3-0)² + (-3-0)²]

= √18 m

Its magnitude is

E3 = k(2q) / r² = (9 x 10⁹ N.m²/C²) x (2 x 10⁻⁵ C) / 18 m² = 2.5 x 10⁶ N/C

The electric field vector produced by particle D is also directed away from the positive charge, so it points in the direction (i - j). Its magnitude is the same as E3, since D has the same charge and distance as C

E4 = E3 = 2.5 x 10⁶ N/C

Now we can add up these four vectors to get the net electric field vector at (0, 0). We can do this by breaking each vector into its x and y components and adding up the x components and the y components separately.

The x component of the net electric field is

Ex = E1x + E2x + E3x + E4x

= -1.875 x 10⁶ N/C - 1.875 x 10⁶ N/C + 2.5 x 10⁶ N/C + 2.5 x 10⁶ N/C

= 2.5 x 10⁵ N/C

The y component of the net electric field is

Ey = E1y + E2y + E3y + E4y

= -1.875 x 10⁶ N/C - 1.875 x 10⁶ N/C + 2.5 x 10⁶ N/C - 2.5 x 10⁶ N/C

= -1.875 x 10⁶ N/C

Therefore, the magnitude of the net electric field is

|E| = √(Ex² + Ey²)

= √[(2.5 x 10⁵)² + (-1.875 x 10⁶)²]

= - 18.58 × 10⁵

To know more about net electric field here

https://brainly.com/question/30577405

#SPJ4

The vertical displacement of a wave on a string is described by the equation y(x, t) = A sin(Bx – Ct), in which A, B, and C are positive constants.
Part A)Does this wave propagate in the positive or negative x direction?
Part B)What is the wavelength of this wave?
Part C)What is the frequency of this wave?
Part D)What is the smallest positive value of xxx where the displacement of this wave is zero at t=0?

Answers

This wave propagates in the positive x direction.

The wavelength of this wave is given by λ = 2π/B.

The frequency of this wave is given by f = C/λ = C B/2π.

The smallest positive value of x that satisfies this equation is x = π/B.

A). The equation y(x,t) = A sin(Bx – Ct) describes a wave on a string where A is the amplitude of the wave, B is the wave number, and C is the wave speed. Part A) tells us that this wave propagates in the positive x direction, which means that the wave moves from left to right along the string.

B). Part B) gives us the wavelength of the wave, which is the distance between two consecutive points on the wave that are in phase with each other. The wavelength is given by λ = 2π/B, where B is the wave number.

C).  Part C) gives us the frequency of the wave, which is the number of complete oscillations of the wave per unit time. The frequency is given by f = C/λ = C B/2π, where C is the wave speed.

D). Part D) asks us to find the smallest positive value of x where the displacement of the wave is zero at t=0. To do this, we set the displacement y(x,0) equal to zero and solve for x. Since the sine function has zeros at integer multiples of π, we know that the smallest positive value of x that satisfies the equation is x = π/B.

To find the smallest positive value of x where the displacement of this wave is zero at t=0, we need to solve the equation y(x,0) = 0. This gives us A sin(Bx) = 0, which means that either A = 0 or sin(Bx) = 0. Since A is a positive constant, we must have sin(Bx) = 0. This equation is satisfied by the lowest positive value of x, x = π/B.

To know more about the Displacement, here

https://brainly.com/question/28499031

#SPJ4

Frequency (f) = C / λ

Wavelength (λ) = 2π / |B|

Tthe smallest positive value of x where the displacement of the wave is zero at t=0 is π / B.

How to solve for the wave length

Part A) To determine the direction of propagation, we need to examine the coefficient of x in the equation y(x, t) = A sin(Bx – Ct). In this case, the coefficient is negative (-Bx), indicating that the wave propagates in the negative x direction.

Part B) The wavelength (λ) of a wave can be determined by the formula:

λ = 2π / |B|

In the given equation, the coefficient of x is -B. Therefore, we take the absolute value of B to calculate the wavelength.

Wavelength (λ) = 2π / |B|

Part C) The frequency (f) of a wave can be calculated using the equation:

f = C / λ

Given that C is a positive constant and λ is the wavelength, as determined in Part B, we can substitute these values to find the frequency.

Frequency (f) = C / λ

Part D) To find the smallest positive value of x where the displacement of the wave is zero at t=0, we set y(x, t=0) = 0 and solve for x.

0 = A sin(Bx – C * 0)

0 = A sin(Bx)

Since the sine function is zero at x = 0 and at multiples of π, we can set Bx equal to nπ, where n is an integer other than zero.

Bx = nπ

To find the smallest positive value of x, we take the smallest positive value for n, which is 1.

Bx = π

Solving for x:

x = π / B

Therefore, the smallest positive value of x where the displacement of the wave is zero at t=0 is π / B.

Read more on  wavelength here:https://brainly.com/question/15663649

#SPJ4

A circuit consists of a 100 ohm resistor and a 150 nf capacitor wired in series and connected to a 6 v battery. what is the maximum charge the capacitor can store?

Answers

A circuit consists of a 100 ohm resistor and a 150 nf capacitor wired in series and connected to a 6 v battery. The maximum charge the capacitor can store is 900 microcoulombs.

To find the maximum charge stored in the capacitor, we need to use the formula Q=CV, where Q is the charge stored, C is the capacitance and V is the voltage across the capacitor.

Since the capacitor and resistor are wired in series, the voltage across the capacitor is the same as the battery voltage of 6 V. The capacitance is given as 150 nf (nano farads), which is equivalent to 0.15 microfarads (μF). Plugging in these values, we get Q=0.15μF x 6V = 0.9μC (microcoulombs). Therefore, the maximum charge the capacitor can store is 900 microcoulombs.

Learn more about capacitor here:

https://brainly.com/question/17176550

#SPJ11

an exercise machine indicates that you have worked off 2.5 calories (i.e. kcal) in a minute and a half of running in place. what was power output during this time?e

Answers

an exercise machine indicates that you have worked off 2.5 calories (i.e. kcal) in a minute and a half of running in place. then the power output during this time is 0.1162 watts.

We must apply the following formula to get the power output:

Power Output = Time / Work Done

where Time = 1.5 minutes = 90 seconds, Work Done = Energy Expended = 2.5 calories.

Since power is measured in watts (Joules/second), we must first change the units of energy from calories to joules. 4.184 joules make up one calorie, so:

Energy Expended = 2.5 calories multiplied by 4.184 joules/calorie equals 10.46 joules.

We can now determine the power output:

Work Done / Time = 10.46 joules / 90 seconds = 0.1162 watts is the formula for power output.

Therefore, 0.1162 watts are produced throughout this time.

To know more about Power :

https://brainly.com/question/29575208

#SPJ1.

find the expected value e(x), the variance var(x) and the standard deviation (x) for the density function. (round your answers to four decimal places.) f(x) = 3x on 0, 2/3

Answers

The expected value of X is approximately 0.2963, the variance of X is approximately 0.0732, and the standard deviation of X is approximately 0.2703.

The expected value E(X), variance Var(X), and standard deviation SD(X) of the given density function f(x) = 3x on the interval [0, 2/3] can be calculated as follows:

E(X) = ∫xf(x)dx over the interval [0, 2/3]

= ∫0^(2/3)3x² dx

= [x^3]_0^(2/3)

= (2/3)³ - 0

= 8/27

= 0.2963

Var(X) = E(X²) - [E(X)]²

= ∫x²f(x)dx - [E(X)]²

= ∫0^(2/3)3x³ dx - (8/27)²

= [(3/4)x⁴]_0^(2/3) - (64/729)

= (2/3)⁴ - (64/729)

= 160/2187

= 0.0732

SD(X) = √(Var(X))

= √(160/2187)

= 0.2703

Therefore, the expected value of X is approximately 0.2963, the variance of X is approximately 0.0732, and the standard deviation of X is approximately 0.2703.

To know more about the Density, here

https://brainly.com/question/17088771

#SPJ4

A 63.0-cm-diameter cyclotron uses a 470 V oscillating potential difference between the dees.
a) What is the maximum kinetic energy of a proton if the magnetic field strength is 0.850 T
b) How many revolutions does the proton make before leaving the cyclotron

Answers

a) The maximum kinetic energy of a proton in a cyclotron is given by the potential difference between the dees:

[tex]K_{max}[/tex] = q[tex]V_{max}[/tex]

where q is the charge of the proton and [tex]V_{max}[/tex] is the maximum potential difference between the dees.

The charge of the proton is q = 1.602 x 10⁻¹⁹ C, and the maximum potential difference is [tex]V_{max}[/tex] = 470 V. Therefore,

[tex]K_{max}[/tex] = (1.602 x 10⁻¹⁹ C)(470 V) = 7.53 x 10⁻¹⁷ J

The radius of the cyclotron is given by:

r = 0.5D = 0.563.0 cm = 31.5 cm = 0.315 m

The magnetic field strength is B = 0.850 T.

Using the equation for the cyclotron frequency, we can find the maximum velocity of the proton:

f = qB/(2πm)

where m is the mass of the proton. The mass of the proton is m = 1.673 x 10⁻²⁷ kg.

f = (1.602 x 10⁻¹⁹ C)(0.850 T)/(2*π)(1.673 x 10⁻²⁷ kg) = 1.42 x 10⁸ Hz

The maximum velocity of the proton is given by:

[tex]v_{max}[/tex]= 2πr*f

[tex]v_{max}[/tex] = 2π(0.315 m)(1.42 x 10⁸ Hz) = 2.24 x 10⁷ m/s

The maximum kinetic energy of the proton is:

[tex]K_{max}[/tex]= (1/2) m [tex]v_{max}[/tex]²

[tex]K_{max}[/tex] = (1/2)(1.673 x 10⁻²⁷ kg)(2.24 x 10⁷ m/s)² = 3.78 x 10⁻¹² J

Therefore, the maximum kinetic energy of the proton is 3.78 x 10⁻¹² J.

b) The time period of revolution for the proton in the cyclotron is given by:

T = 2πm/(qB)

T = 2π(1.673 x 10⁻²⁷ kg)/(1.602 x 10⁻¹⁹ C)(0.850 T) = 8.18 x 10⁻⁸ s

The number of revolutions the proton makes before leaving the cyclotron is given by:

N = t/T

where t is the time the proton spends in the cyclotron.

The time t can be found by dividing the circumference of the cyclotron by the velocity of the proton:

t = 2πr/[tex]v_{max}[/tex]

t = 2π(0.315 m)/(2.24 x 10⁷ m/s) = 4.44 x 10⁻⁶ s

Therefore, the number of revolutions the proton makes before leaving the cyclotron is:

N = (4.44 x 10⁻⁶ s)/(8.18 x 10⁻⁸ s) = 54.2

Therefore, the proton makes approximately 54 revolutions before leaving the cyclotron.

To know more about refer cyclotron here

brainly.com/question/29740278#

#SPJ11

The x component of the velocity of an object vibrating along the x-axis obeys the equation vy(t) = -(0.60 m/s) sin((15.0 s-)t +0.25). If the mass of the object is 400 g, what is the amplitude of the motion of this object? 25.0 cm 4.0 cm 900 cm 9.0 cm 2500 cm 0.04 cm

Answers

The amplitude of the motion of this object is 4.0 cm.

The given equation for the x component of the velocity is vy(t) = -(0.60 m/s) sin((15.0 s^-1)t + 0.25). To find the amplitude of the motion, we need to determine the displacement function, x(t), from the velocity function. Since velocity is the derivative of displacement with respect to time, we need to integrate the velocity function.
Integrating vy(t) with respect to time t, we get:
x(t) = -(0.60 m/s) * (1/15.0 s^-1) * cos((15.0 s^-1)t + 0.25) + C
Here, C is the integration constant, which represents the initial displacement. As we are looking for the amplitude of the motion, the initial displacement is not relevant. Thus, the amplitude can be found by considering the coefficient of the cosine term:
Amplitude = (0.60 m/s) / (15.0 s^-1) = 0.04 m
Converting this to centimeters:
Amplitude = 0.04 m * 100 cm/m = 4.0 cm
So, the amplitude of the motion of this object is 4.0 cm. Hence, option B is correct.

To know more about amplitude visit:
https://brainly.com/question/8662436
#SPJ11

. the velocity of a particle that moves along a straight line is given by v = 3t − 2t 10 m/s. if its location is x = 0 at t = 0, what is x after 10 seconds?'

Answers

The velocity of the particle is given by v = 3t - 2t^2 m/s. To find the position x of the particle at time t = 10 seconds, we need to integrate the velocity function:

x = ∫(3t - 2t^2) dt

x = (3/2)t^2 - (2/3)t^3 + C

where C is the constant of integration. We can determine C by using the initial condition x = 0 when t = 0:

0 = (3/2)(0)^2 - (2/3)(0)^3 + C

C = 0

Therefore, the position of the particle after 10 seconds is:

x = (3/2)(10)^2 - (2/3)(10)^3 = 150 - 666.67 = -516.67 m

Note that the negative sign indicates that the particle is 516.67 m to the left of its initial position.

To know more about particle refer here

https://brainly.com/question/2288334#

#SPJ11

a lamina occupies the part of the rectangle 0≤x≤2, 0≤y≤4 and the density at each point is given by the function rho(x,y)=2x 5y 6A. What is the total mass?B. Where is the center of mass?

Answers

To find the total mass of the lamina, the total mass of the lamina is 56 units.The center of mass is at the point (My, Mx) = (64/7, 96/7).

A. To find the total mass of the lamina, you need to integrate the density function, rho(x, y) = 2x + 5y, over the given rectangle. The total mass, M, can be calculated as follows:
M = ∫∫(2x + 5y) dA
Integrate over the given rectangle (0≤x≤2, 0≤y≤4).
M = ∫(0 to 4) [∫(0 to 2) (2x + 5y) dx] dy
Perform the integration, and you'll get:
M = 56
So, the total mass of the lamina is 56 units.
B. To find the center of mass, you need to calculate the moments, Mx and My, and divide them by the total mass, M.
Mx = (1/M) * ∫∫(y * rho(x, y)) dA
My = (1/M) * ∫∫(x * rho(x, y)) dA
Mx = (1/56) * ∫(0 to 4) [∫(0 to 2) (y * (2x + 5y)) dx] dy
My = (1/56) * ∫(0 to 4) [∫(0 to 2) (x * (2x + 5y)) dx] dy
Perform the integrations, and you'll get:
Mx = 96/7
My = 64/7
So, the center of mass is at the point (My, Mx) = (64/7, 96/7).

To know more about mass visit :

https://brainly.com/question/28221042

#SPJ11

The current in an RL circuit is zero at time t = 0 and increases to half its final value in 4s.(a) What is the time constant of this circuit?(b) If the total resistance is 7 , what is the self-inductance?

Answers

(a) To find the time constant of an RL circuit, we use the formula:

τ = L/R

where τ is the time constant, L is the self-inductance of the circuit, and R is the total resistance. We are given that the current in the circuit increases to half its final value in 4 seconds. This means that the time it takes for the current to reach 63.2% of its final value (which is halfway between zero and its final value) is also 4 seconds. Therefore, we can use this information to solve for the time constant:

0.632 = e^(-4/τ)

ln(0.632) = -4/τ

τ = -4/ln(0.632) = 6.33 seconds

Therefore, the time constant of this circuit is 6.33 seconds.

(b) Now that we know the time constant, we can use the formula for the time constant of an RL circuit to solve for the self-inductance:

τ = L/R

L = τ*R

L = 6.33*7

L = 44.31 henries

Therefore, the self-inductance of this circuit is 44.31 henries.

learn more about self-inductance

https://brainly.in/question/14613774?referrer=searchResults

#SPJ11

Question: An object moves along the y-axis (marked in feet) so that its position at time x in seconds) is given by the function f(x) = x°-12x + 45x a.

Answers

The position of the object at time x is given by the function f(x) = x°-12x + 45x a, as it moves along the y-axis in feet.

What is the equation that describes the position of an object moving along the y-axis in feet, given a certain amount of time?

The equation f(x) = x°-12x + 45x a describes the position of an object moving along the y-axis in feet, given a certain amount of time x in seconds. The function f(x) can be rewritten as f(x) = x°-12x + 45ax, where a is a constant that determines the rate of change of the object's position.

The first term x° represents the initial position of the object, the second term -12x represents the deceleration of the object, and the third term 45ax represents the acceleration of the object. By taking the derivative of f(x), we can find the velocity and acceleration of the object at any given time x.

Learn more about position

brainly.com/question/23709550

#SPJ11

The primary winding of an electric train transformer has 445 turns, and the secondary has 300. If the input voltage is 118 V(rms), what is the output voltage?a. 175 Vb. 53.6 Vc. 79.6 Vd. 144 Ve. 118 V

Answers

The answer is option c. The output voltage is 79.6 V, which corresponds to option c.


To determine the output voltage of the transformer, we need to use the formula for transformer voltage ratio, which is:
V2/V1 = N2/N1
Where V1 is the input voltage, V2 is the output voltage, N1 is the number of turns in the primary winding, and N2 is the number of turns in the secondary winding.
Substituting the given values, we get:
V2/118 = 300/445
Cross-multiplying, we get:
V2 = 118 x 300/445
V2 = 79.6 V
Therefore, the output voltage of the transformer is 79.6 V.

To know more about voltage visit :-

https://brainly.com/question/30466448

#SPJ11



the coefficients of friction between the 20-kgkg crate and the inclined surface are μs=μs= 0.24 and μk=μk= 0.22. If the crate starts from rest and the horizontal force F = 200 N,Determine if the Force move the crate when it start from rest. ENTER the value of the sum of Forces opposed to the desired movement

Answers

We need to know the value of θ to calculate Fnet and determine if the force can move the crate. The sum of forces opposed to the desired movement would be equal to the force of friction, which is 0.24 * 20kg * 9.8m/s^2 * cos(θ).

To determine if the force of 200N can move the crate, we need to calculate the force of friction acting on the crate. Since the crate is at rest initially, we need to use the static coefficient of friction (μs). The formula for calculating the force of friction is Ffriction = μs * Fn, where Fn is the normal force acting on the crate.
To find Fn, we need to resolve the weight of the crate into its components parallel and perpendicular to the inclined surface. The perpendicular component cancels out with the normal force acting on the crate, leaving only the parallel component. The parallel component of the weight is Wsinθ, where θ is the angle of the inclined surface.
Using this, we can calculate the force of friction:
Ffriction = μs * Fn
Fn = mgcosθ
Ffriction = μs * mgcosθ
Ffriction = 0.24 * 20kg * 9.8m/s^2 * cos(θ)
Now we can calculate the net force acting on the crate:
Fnet = F - Ffriction
Fnet = 200N - 0.24 * 20kg * 9.8m/s^2 * cos(θ)
If Fnet is positive, then the force is enough to move the crate. If Fnet is negative, then the force is not enough to move the crate.
Therefore, we need to know the value of θ to calculate Fnet and determine if the force can move the crate. The sum of forces opposed to the desired movement would be equal to the force of friction, which is 0.24 * 20kg * 9.8m/s^2 * cos(θ).
In conclusion, the answer cannot be provided without knowing the value of θ.

To know more about friction visit: https://brainly.com/question/28356847

#SPJ11

Can an object with less mass have more rotational inertia than an object with more mass?
a. Yes, if the object with less mass has its mass distributed further from the axis of rotation than the object with more mass, then the object with less mass can have more rotational inertia.
b. Yes, if the object with less mass has its mass distributed closer to the axis of rotation than the object with more mass, then the object with less mass can have more rotational inertia.
c. Yes, but only if the mass elements of the object with less mass are more dense than the mass elements of the object with more mass, then the rotational inertia will increase.
d. No, mass of an object impacts only linear motion and has nothing to do with rotational motion.
e. No, less mass always means less rotational inertia.

Answers

a. Yes, if the object with less mass has its mass distributed further from the axis of rotation than the object with more mass, then the object with less mass can have more rotational inertia.

This is because the rotational inertia depends not only on the mass of an object but also on how that mass is distributed around the axis of rotation. Objects with their mass concentrated farther away from the axis of rotation have more rotational inertia, even if their total mass is less than an object with the mass distributed closer to the axis of rotation. For example, a thin and long rod with less mass distributed at the ends will have more rotational inertia than a solid sphere with more mass concentrated at the center. Thus, the answer is option a.

to know more about rotational inertia visit

brainly.com/question/27178400

#SPJ11

A 1. 5 kg bowling pin is hit with an 8 kg bowling ball going 6. 8 m/s. The pin bounces off the ball at 3. 0 m/s. What is the speed of the bowling ball after the collision?

Answers

After the collision between the 1.5 kg bowling pin and the 8 kg bowling ball, the bowling ball's speed can be calculated using the law of conservation of momentum. The speed of the bowling ball after the collision is approximately 6.8 m/s.

According to the law of conservation of momentum, the total momentum before the collision is equal to the total momentum after the collision. Mathematically, this can be represented as:

[tex]\(m_1 \cdot v_1 + m_2 \cdot v_2 = m_1 \cdot v_1' + m_2 \cdot v_2'\)[/tex]

Where:

[tex]\(m_1\)[/tex] and [tex]\(m_2\)[/tex] are the masses of the bowling pin and the bowling ball, respectively.

[tex]\(v_1\)[/tex] and [tex]\(v_2\)[/tex] are the initial velocities of the bowling pin and the bowling ball, respectively.

[tex]\(v_1'\)[/tex] and [tex]\(v_2'\)[/tex] are the final velocities of the bowling pin and the bowling ball, respectively.

Plugging in the given values, we have:

[tex]\(1.5 \, \text{kg} \cdot 6.8 \, \text{m/s} + 8 \, \text{kg} \cdot 0 \, \text{m/s} = 1.5 \, \text{kg} \cdot 3.0 \, \text{m/s} + 8 \, \text{kg} \cdot v_2'\)[/tex]

Simplifying the equation, we find:

[tex]\(10.2 \, \text{kg} \cdot \text{m/s} = 4.5 \, \text{kg} \cdot \text{m/s} + 8 \, \text{kg} \cdot v_2'\)[/tex]

Rearranging the equation to solve for [tex]\(v_2'\)[/tex], we get:

[tex]\(8 \, \text{kg} \cdot v_2' = 10.2 \, \text{kg} \cdot \text{m/s} - 4.5 \, \text{kg} \cdot \text{m/s}\) \\\(v_2' = \frac{{10.2 \, \text{kg} \cdot \text{m/s} - 4.5 \, \text{kg} \cdot \text{m/s}}}{{8 \, \text{kg}}}\)\\\(v_2' \approx 0.81 \, \text{m/s}\)[/tex]

Therefore, the speed of the bowling ball after the collision is approximately 0.81 m/s.

To learn more about momentum refer:

https://brainly.com/question/1042017

#SPJ11

calculate the angular momentum, in kg⋅m2/s, of the particle with mass m3, about the origin. give your answer in vector notation.

Answers

The the angular momentum of the particle about the origin, expressed in vector notation is:

[tex]$\boldsymbol{L} = (m_3 v_y z_3 - m_3 v_z y_3) \boldsymbol{i} + (m_3 v_z x_3 - m_3 v_x z_3) \boldsymbol{j} + (m_3 v_x y_3 - m_3 v_y x_3) \boldsymbol{k}$[/tex]

The angular momentum of a particle about the origin is given by the cross product of its position vector and its momentum vector:

[tex]$\boldsymbol{L} = \boldsymbol{r} \times \boldsymbol{p}$[/tex]

where [tex]$\boldsymbol{r}$[/tex] is the position vector of the particle and [tex]\boldsymbol{p}$[/tex] is its momentum vector.

Assuming that we have the position vector and velocity vector of the particle, we can calculate its momentum vector by multiplying its velocity vector by its mass:

[tex]$\boldsymbol{p} = m_3 \boldsymbol{v}$[/tex]

where [tex]$m_3$[/tex] is the mass of the particle and [tex]$\boldsymbol{v}$[/tex] is its velocity vector.

To calculate the position vector of the particle, we need to know its coordinates with respect to the origin. Let's assume that the particle has coordinates [tex]$(x_3, y_3, z_3)$[/tex] with respect to the origin. Then, its position vector is given by:

[tex]$\boldsymbol{r} = x_3 \boldsymbol{i} + y_3 \boldsymbol{j} + z_3 \boldsymbol{k}$[/tex]

where [tex]\boldsymbol{i}$, $\boldsymbol{j}$, and $\boldsymbol{k}$[/tex] are the unit vectors in the [tex]$x$, $y$[/tex], and [tex]$z$[/tex] directions, respectively.

Using these equations, we can calculate the angular momentum of the particle about the origin:

[tex]$\boldsymbol{L} = \boldsymbol{r} \times \boldsymbol{p} = (x_3 \boldsymbol{i} + y_3 \boldsymbol{j} + z_3 \boldsymbol{k}) \times (m_3 \boldsymbol{v})$[/tex]

[tex]$\boldsymbol{L} = \begin{vmatrix} \boldsymbol{i} & \boldsymbol{j} & \boldsymbol{k} \\ x_3 & y_3 & z_3 \\ m_3 v_x & m_3 v_y & m_3 v_z \end{vmatrix}$[/tex]

[tex]$\boldsymbol{L} = (m_3 v_y z_3 - m_3 v_z y_3) \boldsymbol{i} + (m_3 v_z x_3 - m_3 v_x z_3) \boldsymbol{j} + (m_3 v_x y_3 - m_3 v_y x_3) \boldsymbol{k}$[/tex]

This is the angular momentum of the particle about the origin, expressed in vector notation. The units of angular momentum are kg⋅m^2/s, which represent the product of mass, length, and velocity.

The direction of the angular momentum vector is perpendicular to both the position vector and the momentum vector, and follows the right-hand rule.

To learn more about angular momentum refer here:

https://brainly.com/question/29897173

#SPJ11

a wire carries a 15 μa current. how many electrons pass a given point on the wire in 1.0 s ?

Answers

Given a current of 15 μA, the number of electrons that pass a given point in the wire in 1.0 s is approximately 9.36 × 10¹² electrons.

One ampere is defined as the flow of one coulomb of charge per second. Since 1 microampere = 1/1,000,000 ampere, a current of 15 μA is equal to 15 × 10⁻⁶ A.

To calculate the number of electrons passing through a point in one second, we can use the equation:

number of electrons = (current in amperes) × (time in seconds) / (charge of one electron)

The charge of one electron is approximately 1.602 × 10⁻¹⁹ C. Therefore, the number of electrons passing a given point on the wire in 1.0 s is:

(15 × 10⁻⁶A) × (1.0 s) / (1.602 × 10⁻¹⁹ C) ≈ 9.36 × 10¹² electrons.

So, approximately 9.36 × 10¹² electrons pass through the point in one second.

To know more about the electrons refer here :

https://brainly.com/question/12001116#

#SPJ11

A motor you pick up in a parts bin, looks like this. There are 4 wires coming into the motor. What kind of motor is it? PMDC Unipolar stepper Bipolar stepper Brushless DC Synchronous AC Incorrect

Answers

Based on the information given, it is not possible to determine what kind of motor it is. However, if we assume that the motor is a stepper motor, there are three possibilities: unipolar stepper, bipolar stepper, or PMDC (permanent magnet DC) stepper. A synchronous AC motor or brushless DC motor typically have more than four wires.


Based on the information provided, the motor with 4 wires coming into it is most likely a Bipolar stepper motor. This type of motor uses two coils, each with a pair of wires, allowing for precise control in various applications.

To know more about synchronous AC visit:

https://brainly.com/question/27930984

#SPJ11

The voltage measured across the inductor in a series RL has dropped significantly from normal. What could possibly be the problem? Select one: Oa. The resistor has gone up in value. b. partial shorting of the windings of the inductor Oc. The resistor has gone down in value. Od either A or B

Answers

The voltage measured across the inductor in a series RL has dropped significantly from normal. The possible reason will be partial shorting of the windings of the inductor.

The correct option is b. partial shorting of the windings of the inductor


The voltage measured across the inductor in a series RL circuit may drop significantly if there is partial shorting of the windings of the inductor. This could lead to a lower inductance value, resulting in a decreased voltage across the inductor. The possible problem could be partial shorting of the windings of the inductor. It can cause a decrease in the inductance value and lead to a drop in the voltage measured across the inductor in a series RL circuit.

Learn more about voltage here:

https://brainly.com/question/13521443

#SPJ11

A 0.70-kg air cart is attached to a spring and allowed to oscillate.A) If the displacement of the air cart from equilibrium is x=(10.0cm)cos[(2.00s−1)t+π], find the maximum kinetic energy of the cart.B) Find the maximum force exerted on it by the spring.

Answers

The maximum kinetic energy of the air cart is 4.43 J.

The maximum force exerted by the spring on the air cart is 11.08 N.

A) The maximum kinetic energy of the air cart can be found using the formula:

K_max = (1/2) * m * w² * A²

where m is the mass of the cart, w is the angular frequency (2pif), and A is the amplitude of oscillation (in meters).

Given that m = 0.70 kg, A = 0.10 m, and the frequency f = 2.00 s⁻¹, we can calculate the angular frequency as:

w = 2pif = 2pi2.00 s⁻¹ = 12.57 s⁻¹

Substituting these values in the formula, we get:

K_max = (1/2) * 0.70 kg * (12.57 s⁻¹)² * (0.10 m)²

K_max = 4.43 J

As a result, the air cart's maximum kinetic energy is 4.43 J.

B) The maximum force exerted by the spring can be found using the formula:

F_max = k * A

where k is the spring constant and A is the amplitude of oscillation (in meters).

We are not given the spring constant directly, but we can calculate it using the formula:

w = √(k/m)

where m is the mass of the cart and w is the angular frequency (in radians per second). Solving for k, we get:

k = m * w²

k = 0.70 kg * (12.57 s⁻¹)²

k = 110.78 N/m

Substituting the amplitude A = 0.10 m, we get:

F_max = k * A

F_max = 110.78 N/m * 0.10 m

F_max = 11.08 N

As a result, the spring's maximum force on the air cart is 11.08 N.

To know more about the Kinetic energy, here

https://brainly.com/question/10417121

#SPJ4

8) A simple pendulum consisting of a 20-g mass has initial angular displacement of 8.0°. It oscillates with a period of 3.00 s(a) Determine the length of the pendulum.(b) Does the period of the pendulum depend on the initial angular displacement?
(c) Does the period of the pendulum depend on the mass of the pendulum?
(d) Does the period of the pendulum depend on the length of the pendulum
(e) Does the period of the pendulum depend on the acceleration due to gravity?

Answers

(a) The length of the pendulum is 0.84 m, (b) The period of the pendulum does not depend on the initial angular displacement, (c) The period of the pendulum does not depend on the mass of the pendulum, (d) The period of the pendulum depends on the length of the pendulum.

(a) The period of a simple pendulum is given by the formula T = 2π√(L/g), where T is the period, L is the length of the pendulum, and g is the acceleration due to gravity. Rearranging this formula to solve for L, we get L = gT²/(4π²). Substituting the given values of T = 3.00 s and m = 20 g = 0.02 kg and g = 9.81 m/s², we get L = 0.84 m.

(b) The period of a simple pendulum is independent of its initial angular displacement.

(c) The period of a simple pendulum is independent of its mass.

(d) The period of a simple pendulum is directly proportional to the square root of its length. Therefore, if the length of the pendulum is changed, its period will also change.

(e) The period of a simple pendulum is inversely proportional to the square root of the acceleration due to gravity. Therefore, if the acceleration due to gravity is changed, the period of the pendulum will also change.

learn more about Pendulum here:

https://brainly.com/question/29702798

#SPJ11

the us census bureau shows that one new person is being added to the nations population every 15 - 16 seconds. this growth is mostly attributed to:

Answers

The growth in the US population is mainly attributed to a combination of factors, including natural increase (births minus deaths) and net international migration (people moving to the US from other countries minus people leaving the US to live in other countries).

The US has a relatively high birth rate compared to other developed countries, and it also has a long history of attracting immigrants from around the world. Additionally, the US has a large population of baby boomers who are reaching retirement age, which is contributing to an aging population.

The growth in the US population has implications for a variety of social, economic, and environmental issues, including healthcare, education, housing, and climate change.

To know more about the US population refer here :

https://brainly.com/question/16478226#

#SPJ11

points A large parallel-plate capacitor is being charged and the magnitude of the electric field between the plates of the capacitor is increasing at the rate 4. dt What is correct about the magnetic field B in the region between the plates of the charging capacitor? 1. Nothing about the field can be determined unless the charging current is known. 2. Its magnitude is inversely proportional to dt 3. It is parallel to the electric field. 4. Its magnitude is directly proportional to DE dt 5. Nothing about the field can be deter- mined unless the instantaneous electric field is known.

Answers

The correct statement about the magnetic field B is:
1. Nothing about the field can be determined unless the charging current is known.



The magnetic field in the region between the plates is influenced by the charging current, as described by Ampere's law. Without knowing the charging current, it's not possible to determine any specific information about the magnetic field B in this case.

To know more about magnetic field refer https://brainly.com/question/19878202

#SPJ11

Other Questions
which is not a problem associated with beetle infestations in homes? A 0.75kg baseball is hit by a bat when making contact for a time of 0.35 seconds. If the change in velocity is calculated to be 47 m/s, what is the force provided by the bat? If the genus Quercus (oaks) is monophyletic, then this means that A. all species of oaks grow in similar habitats. B. oaks all have nearly identical appearance. C. all species of oaks are descended from a common ancestor. D. oaks cannot be classified in a single family or order E none of the above Consider a computer with a 32-bit processor, which uses pages of 4MB and a single-level page table (the simplest one).a) How many bits will be used for the offset?b) How many bits will be used for the page number?c) What is the maximum amount of memory the computer can have? Explain in 1 sentence.d) How many entries will be in the page table? Explain in 1 sentence. Prove that 7 |[3^(4n +1) 5^(2n1)] for every positive integer n. 5 paragraphs of space race essay argumentative with evidence to support The decline in home prices during the 2006-07 housing bust eliminated a large fraction of many households' home equity. The most likely outcome of this large decrease in the value of households assets is:a. a rightward shift in the aggregate supply curveb. a rightward shift in the aggregate demand curvec. a leftward shift in the aggregate supply curved. a leftward shift in the aggregate demand curve Let be the population mean of excess weight amongst Australians. The hypotheses for the required test are(a) H0 : > 10 against HA : = 10(b) H0 : > 10 against HA : 10(c) H0 : = 10 against HA : > 10(d) H0 : = 10 against HA : 10(e) none of these characteristics we define as homo appear in the fossil record at different times. this is known as: a. hybridization b. uneven development. c. mosaic evolution.d. evolution what atomic or hybrid orbitals make up the sigma bond between al and f in aluminum fluoride, alf3? if the price of smoothies is $3.50 in the united states and the exchange rate is 110 yen per dollar, then what is the yen price a smoothie?110 yen240 yen318 yen385 yen what is the ksp for the following equilibrium if zinc phosphate has a molar solubility of 1.5107 m? zn3(po4)2(s)3zn2 (aq) 2po34(aq) true/false. as populations became more productive and cities grew larger, there was less need for record-keeping so cuneiform was banished. At the beginning of 2010, a landfill contained 1400 tons of solid waste. The increasing function W models the total amount of solid waste stored at the landfill. Planners estimate that W will satisfy the differential dW 1 equation (W 300) for the next 20 years. W is measured in tons, and t is measured in years from dt 25 the start of 2010. 25 W. Use the line tangent to the graph of Watt 0 to approximate the amount of solid waste that the landfill contains at the end of the first 3 months of 2010 a finance companys cash flows are _____ related to changes in economic growth and may be ____ related to changes in the risk-free rate. A law that restricts the ability of hotels/motels to advertise on billboards Outside of a resort community would likely lead to a. a request by consumers to increase the number of billboards. b. reduced efficiency of local lodging markets. c. no change in profits for all hotels/motels. d. increased price competition among hotels/motels in the community. You are in a browser-like environment, where you have access to the window object, the document object, and also $ the jQuery library. Thedocument contains a two-dimensional table. Each cell of the table has an upper-case letter in it and has its background color and text color set.Your task is simply to read the letters in row-major order (top to bottom, left to right), concatenate them into a single string and return it. However,you need to skip the letters that cannot be seen by the human eye. These are the ones whose colour is exactly the same as their background (thatis, even marginal difference can be distinguished by a human eye).The table is created using "table", "tbody", "tr" and "td" tags. Each "td" tag has a "style" attribute with its CSS "background-color" and"color" attributes set. There is the same number of cells in each row.Write a functionfunction solution();that, given a DOM tree representing an HTML document, returns a string containing all visible letters, read in row-major order.For example, given a document which has the following table in its body: Problem 1 Consider a two-ply laminate where each lamina is isotropic. The lower lamina has thickness t, Young's modulus Ej, and Poisson's ratio vi. The upper lamina has thickness tu, Young's modulus Eu, and Poisson's ratio vu. (a). Calculate the extensional stiffness matrix (A), the coupling matrix (B) and the flexural stiffness matrix (D) for the laminate, in terms of the given properties. (b). What relation should the lamina parameters satisfy for (B) to be a zero matrix? Which member of each pair is more metallic? (a) Na or Cs (b) Mg or Rb (c) As or N Consider "All daffodils are flowers. Thus, some flowers are daffodils. Determine whether this immediate inference is drawn bya. obversionb. contrapositionc. conversion