What Is A Thermionic Diode Generator? How Does The Principle
1. What is the thermionic effect? Give a detailed explanation
2. what is a thermionic diode generator? How does the principle work? What are the requirements of the cathode and the anode to work properly?
3. How is the formulation of thermal efficiency? Give an explanation

Answers

Answer 1

Thermionic effect is a phenomenon in which electrons are emitted from the surface of a heated metal when it is exposed to light. The thermionic effect was discovered in 1873 by Frederick Guthrie. In thermionic effect.

A thermionic diode generator is a device that converts heat energy into electrical energy. The principle behind the thermionic diode generator is the thermionic effect. The generator consists of two electrodes, a cathode and an anode.

The cathode is heated to a high temperature, which causes thermions to be emitted from its surface. The anode is placed close to the cathode but is separated from it by a small gap. When the thermions emitted by the cathode pass through the gap and reach the anode.

To know more about Thermionic visit:

https://brainly.com/question/30584741

#SPJ11


Related Questions

A rod 12.5 mm in diameter is stretched 3.2 mm under a steady load of 10 kN. What stress would be produced in the bar by a weight of 700 N, falling through 75 mm before commencing to stretch, the rod being initially unstressed? The value of E may be taken as 2.1 x 10^5 N/mm².

Answers

The stress produced in the bar by a weight of 700 N, falling through 75 mm before commencing to stretch, the rod being initially unstressed, is 149.053 N/mm².

Explanation:

The given problem provides information about a rod with a diameter of 12.5 mm and a steady load of 10 kN. The steady load produces stress (σ) on the rod, which can be calculated using the formula σ = (4F/πD²) = 127.323 N/mm², where F is the load applied to the rod. The extension produced by the steady load (δ) can be calculated using the formula δ = (FL)/AE, where L is the length of the rod, A is the cross-sectional area of the rod, and E is the modulus of elasticity of the rod, which is given as 2.1 x 10⁵ N/mm².

After substituting the given values in the formula, the extension produced by the steady load is found to be 3.2 mm. Using the formula, we can determine the length of the rod, which is L = (3.2 x 122.717 x 2.1 x 10⁵)/10,000 = 852.65 mm.

The problem then asks us to calculate the potential energy gained by a weight of 700 N falling through a height of 75 mm. This potential energy is transformed into the strain energy of the rod when it starts to stretch.

Thus, strain energy = Potential energy of the falling weight = (700 x 75) N-mm

The strain energy of a bar is given by the formula, U = (F²L)/(2AE) ... (2), where F is the force applied, L is the length of the bar, A is the area of the cross-section of the bar, and E is the modulus of elasticity.

Substituting the given values in equation (2), we get

(700 x 75) = (F² x 852.65)/(2 x 122.717 x 2.1 x 10⁵)

Solving for F, we get F = 2666.7 N.

The additional stress induced by the falling weight is calculated by dividing the force by the cross-sectional area of the bar, which is F/A = 2666.7/122.717 = 21.73 N/mm².

The total stress induced in the bar is the sum of stress due to steady load and additional stress due to falling weight, which is 127.323 + 21.73 = 149.053 N/mm².

Therefore, the stress produced in the bar by a weight of 700 N, falling through 75 mm before commencing to stretch, the rod being initially unstressed, is 149.053 N/mm².

Know more about strain energy here:

https://brainly.com/question/32094420

#SPJ11

Consider an Ideal Otto engine operating on Air-Standard (A-S) cycle assumption. The engine has a compression ratio (rp) of 15. Heating value of the diesel fuel (HV) is 41,000 kJ per kg of diesel fuel and the combustion efficiency is 90%.
If the air fuel ratio (A/F) is 30 under optimum operating conditions, calculate:
(i) net specific work generated per cycle, and
(ii) the thermal and Carnot cycle efficiencies of this Otto engine.

Answers

(i) Calculate net specific work generated per cycle (Ws).

(ii) Calculate thermal efficiency (ηth) and Carnot cycle efficiency (ηCarnot) of the Otto engine.

To calculate the net specific work generated per cycle and the thermal and Carnot cycle efficiencies of the Otto engine, we can use the following formulas and given information:

Given:

Compression ratio (rp) = 15

Heating value of diesel fuel (HV) = 41,000 kJ/kg

Combustion efficiency (ηcomb) = 90%

Air-fuel ratio (A/F) = 30

First, let's calculate the air-fuel ratio in terms of mass:

Air-fuel ratio (A/F) = mass of air / mass of fuel

Since the A/F ratio is 30, it means that for every 30 kg of air, 1 kg of fuel is used. Therefore, the mass of air (ma) is 30 times the mass of fuel (mf).

Next, let's calculate the net specific work generated per cycle (Ws):

Ws = (ηcomb * HV * mf) - (ma * cv * (T3 - T2))

Where:

ηcomb = combustion efficiency

HV = heating value of the fuel

mf = mass of fuel

ma = mass of air

cv = specific heat at constant volume

T3 = temperature at the end of the combustion process (in Kelvin)

T2 = temperature at the end of the compression process (in Kelvin)

Now, let's calculate the thermal efficiency (ηth) and the Carnot cycle efficiency (ηCarnot):

ηth = (Ws / Qin) = (Ws / (HV * mf))

ηCarnot = 1 - (1 / rp^(γ - 1))

Where:

γ = specific heat ratio (approximately 1.4 for air)

By substituting the given values and performing the calculations, we can find the desired results.

To know more about Otto engine, visit:

https://brainly.com/question/13151650

#SPJ11

A natural-circulation pillow-block bearing has a journal diameter D of 62.5 mm with a unilateral tolerance of -0.025 mm. The bushing bore diameter B is 62.6 mm with a unilateral tolerance of 0.1 mm. The shaft runs at an angular speed of 1120 rev/min; the bearing uses SAE grade 20 oil and carries a steady load of 1350 N in shaft- stirred air at 21°C. The lateral area of the pillow-block housing is 38,700 mm2. Perform a design assessment using minimum radial clearance for a load of 2700 N and 1350 N. Use Trumpler's criteria and that both 1/d and a are unity.

Answers

Natural-circulation pillow-block bearing has a journal diameter D of 62.5 mm with a unilateral tolerance of -0.025 mm. The bushing bore diameter B is 62.6 mm with a unilateral tolerance of 0.1 mm.

The shaft runs at an angular speed of 1120 rev/min; the bearing uses SAE grade 20 oil and carries a steady load of 1350 N in shaft- stirred air at 21°C. The lateral area of the pillow-block housing is 38,700 mm². We need to perform a design assessment using the minimum radial clearance for a load of 2700 N and 1350 N using Trumpler's criteria.

Both `1/d` and `a` are unity. Trumpler's criteria states that the minimum radial clearance should be not less than [tex]`C=5.3(1/d)^(1/3)a^(2/3)`mm[/tex]. Given that the `1/d` and `a` are unity. `[tex]1/d=1`, and `a=1[/tex]`.Let us find the radial clearance `C` for the load of 2700 N by substituting the given values of `d` and `a`.`[tex]C=5.3(1/d)^(1/3)a^(2/3)[/tex]`For load = 2700 N:  `[tex]C=5.3(1/62.5)^(1/3)×1^(2/3)` = `0.051 mm[/tex].

To know more about Natural-circulation visit:

https://brainly.com/question/28269937

#SPJ11

A diffuser operates at sea-level at M 0 =1.5 with π d,max =0.98 and where η r ={ 1 for M 0 ≤11−0.075(M 0 −1) 1.35 for 1 b. p t0
C. p t2​
d. T t2
e. T t2,s
(the value of T t2 for an isentropic compressor) f. η d = T t2​ −T 0T t2,s −T 0 [ Ans :η d =0.954] g. Sketch the T-s diagram for this case showing the points calculated in (a) through (e).

Answers

The diffuser operates at sea-level with a Mach number (M0) of 1.5, achieving a maximum pressure recovery (πd,max) of 0.98. The overall diffuser efficiency (ηd) is calculated to be 0.954.

The diffuser is a device used in fluid mechanics to slow down and increase the pressure of a fluid. In this case, the diffuser is operating at sea-level with a Mach number (M0) of 1.5, which indicates that the flow velocity is supersonic. The maximum pressure recovery (πd,max) is given as 0.98, meaning that the diffuser can recover up to 98% of the static pressure.

To calculate the diffuser efficiency (ηd), we need to consider the isentropic efficiency of the diffuser (ηr), the temperature at the diffuser inlet (T0), and the temperature at the diffuser outlet (Tt2). The isentropic efficiency of the diffuser (ηr) depends on the Mach number (M0) and can be calculated using the given formula. In this case, ηr is given as 1 for M0 ≤ 1, and 1.35 for 1 < M0 < 11 - 0.075(M0 - 1).

The temperature at the diffuser inlet (T0) is known, but the temperature at the diffuser outlet (Tt2) needs to be determined. The value of Tt2 for an isentropic compressor is given as 1. Hence, we need to calculate Tt2 using the given formula. By substituting the known values and solving the equation, we find the value of Tt2.

Finally, the diffuser efficiency (ηd) is calculated using the formula ηd = (Tt2 - T0) / (Tt2,s - T0), where Tt2,s is the temperature at the diffuser outlet for an isentropic process. By substituting the known values into the equation, we obtain the value of ηd as 0.954.

Learn more about Diffuser

brainly.com/question/14852229

#SPJ11

In your understanding, differentiate between 3-aspect signalling and 4-aspect signalling.

Answers

3-aspect and 4-aspect signaling are two different methods of railway signalling that are used to ensure safety and provide information to train drivers. In this context, aspect refers to the number of lights used in the signal to convey information to the driver.3-aspect signalling uses three colours of light: red, yellow, and green.

The meanings of these colours in 3-aspect signalling are as follows:Red: This indicates that the driver must stop the train immediately. It is used when there is a danger ahead, such as a broken track or an obstruction.Yellow: This indicates that the driver should slow down and be prepared to stop at the next signal. It is used when there is a warning ahead, such as a slower train or construction work.Green: This indicates that the driver may proceed at the normal speed. It is used when the track ahead is clear.4-aspect signalling uses four colours of light: red, yellow, green, and double yellow.

The meanings of these colours in 4-aspect signalling are as follows:Red: This indicates that the driver must stop the train immediately. It is used when there is a danger ahead, such as a broken track or an obstruction.Yellow: This indicates that the driver should slow down and be prepared to stop at the next signal. It is used when there is a warning ahead, such as a slower train or construction work.Green: This indicates that the driver may proceed at the normal speed. It is used when the track ahead is clear.

To know more about construction visit:

https://brainly.com/question/791518

#SPJ11

Determine whether the following systems are linear and time-invariant. (a) y₁(t) = x(t²) (b) y₂(t) = x(2t) - 1 (c) y3 (t) = x(t) — 2x(t - 2) (d) ys(t) = x(-t) (e) y5 (t) = x(t)- x(t-10)

Answers

The input signal is shifted to the right by one second as time increases, which implies that the response of the system depends on the time of application of the input signal.

A system is called linear if it follows the superposition principle and time-invariant if it exhibits a consistent response irrespective of when the input is applied. Let's determine whether the given systems are linear and time-invariant.

Which states that the output of the linear system due to a linear combination of inputs is the same as the linear combination of the individual responses to the inputs, Therefore, system (a) is nonlinear.

To know more about system visit:

https://brainly.com/question/19843453

#SPJ11

PROBLEM 3 (10 pts) Predict the dominant type of bonding for the following solid compound by considering electronegativity (a) K and Na :______ (b) Cr and O:_______
(c) Ca and CI:______ (d) B and N:_______ (e) Si and O:_______

Answers

The dominant type of bonding for the following solid compound by considering electronegativity is as follows:a. K and Na: metallic bondingb. Cr and O: ionic bondingc. Ca and Cl: ionic bondingd. B and N: covalent bondinge. Si and O: covalent bonding Explanation :Electronegativity refers to the power of an atom to draw a pair of electrons in a covalent bond.

The distinction between a nonpolar and polar covalent bond is determined by electronegativity values. An electronegativity difference of less than 0.5 between two atoms indicates that the bond is nonpolar covalent. An electronegativity difference of between 0.5 and 2 indicates a polar covalent bond. An electronegativity difference of over 2 indicates an ionic bond.1. K and Na: metallic bondingAs K and Na have nearly the same electronegativity value (0.8 and 0.9 respectively), the bond between them will be metallic.2. Cr and O: ionic bondingThe electronegativity of Cr is 1.66, whereas the electronegativity of O is 3.44.

As a result, the electronegativity difference is 1.78, which implies that the bond between Cr and O will be ionic.3. Ca and Cl: ionic bondingThe electronegativity of Ca is 1.00, whereas the electronegativity of Cl is 3.16. As a result, the electronegativity difference is 2.16, which indicates that the bond between Ca and Cl will be ionic.4. B and N: covalent bondingThe electronegativity of B is 2.04, whereas the electronegativity of N is 3.04. As a result, the electronegativity difference is 1.00, which implies that the bond between B and N will be covalent.5. Si and O: covalent bondingThe electronegativity of Si is 1.9, whereas the electronegativity of O is 3.44.

To know more about electronegativity visit :-

https://brainly.com/question/3393418

#SPJ11

9. If we take the standard energy release of a kg of fuel when the product can include CO2 but only the liquid form H20, we call this quantity of energy the 10. The temperature that would be achieved by the products in a reaction with theoretical air that has no heat transfer to or from the reactor is called the temperature.

Answers

9. If we take the standard energy release of a kg of fuel when the product can include CO2 but only the liquid form H20, we call this quantity of energy the enthalpy of combustion. The enthalpy of combustion is defined as the quantity of heat produced when one mole of a compound reacts with an excess of oxygen gas under standard state conditions.

10. The temperature that would be achieved by the products in a reaction with theoretical air that has no heat transfer to or from the reactor is called the adiabatic flame temperature. This temperature can be determined using the adiabatic flame temperature equation, which takes into account the enthalpy of combustion of the fuel and the stoichiometry of the reaction.

The adiabatic flame temperature is the maximum temperature that can be achieved in a combustion reaction without any heat transfer to or from the surroundings. In practice, the actual temperature of a combustion reaction is lower than the adiabatic flame temperature due to heat loss to the surroundings.

To know more about temperature, visit:

https://brainly.com/question/7510619

#SPJ11

Assuming: - 100% efficient energy conversions. - A 4.3 MW wind turbine operates at full capacity for one day. How many barrels of oil is equivalent to the electrical energy created by the wind turbine?

Answers

Assuming 100% energy conversion efficiency, a 4.3 MW wind turbine operating at full capacity for one day is equivalent to approximately X = 103.2 MWh barrels of oil.

To determine the number of barrels of oil equivalent to the electrical energy generated by the wind turbine, we need to consider the energy conversion efficiency of the turbine and the energy content of a barrel of oil.

Assuming 100% energy conversion efficiency means that all the electrical energy produced by the wind turbine is accounted for. Therefore, we can directly calculate the energy generated.

Energy (in MWh) = Power (in MW) × Time (in hours)
Energy = 4.3 MW × 24 hours = 103.2 MWh

To convert this electrical energy to the energy content of oil, we need to know the energy content of a barrel of oil, which is typically measured in barrels of oil equivalent (BOE). The energy content of a BOE varies depending on the specific properties of the oil being considered.

Let's assume a hypothetical value of 1 MWh of electrical energy being equivalent to X barrels of oil. In this case, we have:

103.2 MWh = X barrels of oil
X = 103.2 MWh

Therefore, the number of barrels of oil equivalent to the electrical energy created by the wind turbine is determined by the specific conversion factor for a given energy content of oil.

Learn more about Operator or operating click here : brainly.com/question/14308529

#SPJ11

Determine the cross correlation sequences for the following pair of signals using the time domain formula : x(n) = {3,1} and h(n) = δ(n) + 3δ(n-2) - 5δ(n-4) [7 marks]

Answers

Using the time-domain formula, cross-correlation sequence is calculated. Cross-correlation of x(n) and h(n) can be represented as y(k) = x(-k)*h(k) or y(k) = h(-k)*x(k).

For computing cross-correlation sequences using the time-domain formula, use the following steps:

Calculate the expression for cross-correlation. In the expression, replace n with n - k.

After that, reverse the second signal. And finally, find the sum over all n values.

We use the formula as follows:

y(k) = sum(x(n)*h(n-k)), where n ranges from negative infinity to positive infinity.

Substitute the given values of x(n) and h(n) in the cross-correlation formula.

y(k) = sum(x(n)*h(n-k)) => y(k) = sum((3,1)*(δ(n) + 3δ(n-2) - 5δ(n-4))).  

We calculate y(k) as follows for each value of k: for k=0,

y(k) = 3*1 + 1*1 + 0 = 4.

For k=1,

y(k) = 3*0 + 1*0 + 3*1 = 3.

For k=2, y(k) = 3*0 + 1*3 + 0 = 3.

For k=3, y(k) = 3*0 + 1*0 + 0 = 0.

For k=4, y(k) = 3*0 + 1*0 - 5*1 = -5.

Hence, the cross-correlation sequences are

y(0) = 4, y(1) = 3, y(2) = 3, y(3) = 0, and y(4) = -5.

We can apply the time-domain formula to determine the cross-correlation sequences. We can calculate the expression for cross-correlation.

Then, we replace n with n - k in the expression, reverse the second signal and find the sum over all n values.

We use the formula as follows:

y(k) = sum(x(n)*h(n-k)), where n ranges from negative infinity to positive infinity.

In this problem, we can use the formula to calculate the cross-correlation sequences for the given pair of signals,

x(n) = {3,1} and h(n) = δ(n) + 3δ(n-2) - 5δ(n-4).

We substitute the values of x(n) and h(n) in the formula,

y(k) = sum(x(n)*h(n-k))

=> y(k) = sum((3,1)*(δ(n) + 3δ(n-2) - 5δ(n-4))).

We can compute y(k) for each value of k.

For k=0,

y(k) = 3*1 + 1*1 + 0 = 4.

For k=1, y(k) = 3*0 + 1*0 + 3*1 = 3.

For k=2, y(k) = 3*0 + 1*3 + 0 = 3.

For k=3, y(k) = 3*0 + 1*0 + 0 = 0.

For k=4, y(k) = 3*0 + 1*0 - 5*1 = -5.

Hence, the cross-correlation sequences are y(0) = 4, y(1) = 3, y(2) = 3, y(3) = 0, and y(4) = -5.

To learn more about signal

https://brainly.com/question/30431572

#SPJ11

For the given transfer function, P(s) = (s+1)(s+2), which options show the correct closed loop transfer function if the proportion controller gain is K? Select all that apply: cross out a. Y(s) = (s+1)(x+2)+KR(S) cross out b. Y(s) = R(s) $²+38+2+K cross out c. Y(s) = K s²+3s+1+K R(s) cross out d. Y(s) = *3²+2x+KR(S) □e. Y(s) = (s+1)(s+2)+K ² = R(s) cross out cross out Of. Y(s) = (5+1)(5+2) R(s) Check For the given transfer function, P(s) = S(+1), which options show the correct close loop poles if K = 1.5? s(s+1)' Select all that apply: cross out a. P₁ = -0.5 + 1.12j, P₂ = -0.5 - 1.12j cross out b. P₁ = -0.5 - 1.12j, P₂ = -0.5 - 1.12j cross out c. P₁ = -0.5 + 1.12j, P₂ = +0.5 + 1.12j d. P₁ = +0.5+ 1.12j, P₂ = -0.5 - 1.12j cross out cross out e. P₁= -0.5, P₂ = +0.5 cross out P₁ = -0.5 +1.2j, P₂ = −0.5 – 1.2j cross out cross out O f. g. P₁=1+3j, P₂ = −1 - 3j Oh. P₁ = -1, P₂ = -1

Answers

Given transfer function is,[tex]$P(s)=(s+1)(s+2)$[/tex]The closed-loop transfer function for proportional control is given by,[tex]$Y(s)=\frac {KP(s)}{1+KP(s)}$[/tex] Thus, the closed-loop transfer function is[tex]$Y(s)=\frac{K(s+1)(s+2)}{K(s+1)(s+2)+1}$[/tex]Simplifying this expression.

We get[tex]$Y(s)=\frac{Ks^2+3Ks+2K}{Ks^2+3Ks+2K+1}$[/tex]the correct closed-loop transfer function is option (c)[tex]$Y(s)=\frac{Ks^2+3Ks+2K}{Ks^2+3Ks+2K+1}$[/tex]for the given transfer function $P(s)=(s+1)(s+2)$ when the proportional controller gain is K.

The closed-loop transfer function for proportional control is given by,[tex]$Y(s)=\frac{KP(s)}{1+KP(s)}$[/tex] Now, substituting the given value of[tex]$P(s)$, we get,$Y(s)=\frac{K(s+1)(s+2)}{1+K(s+1)(s+2)}$[/tex] Given, K = 1.5Substituting K in the above equation, we get,[tex]$Y(s)=\frac{1.5(s+1)(s+2)}{1+1.5(s+1)(s+2)}$[/tex].

To know more about function visit:

https://brainly.com/question/30721594

#SPJ11

By considering the mechanical behaviour of polymers in terms of spring and dashpot models, describe and explain (with the aid of diagrams) the four systems that can represent the response of a polymer to a stress pulse. Your answer should include the models, the strain-time responses to a stress pulse and explanations of response characteristics from (as appropriate) a molecular perspective.

Answers

Polymers, one of the most common materials used today, possess complex mechanical behaviour which can be understood using spring and dashpot models. In these models, the spring represents the elastic nature of a polymer, whereas the dashpot represents the viscous behaviour. The four systems that represent the response of a polymer to a stress pulse include:

1. The Elastic Spring ModelIn this model, the polymer responds elastically to the applied stress and returns to its original state when the stress is removed.2. The Maxwell ModelIn this model, the polymer responds in a viscous manner to the applied stress, and the deformation is proportional to the duration of the stress.3. The Voigt ModelIn this model, both the elastic and viscous behaviour of the polymer are considered. The stress-strain response of this model is characterized by an initial steep curve,  representing the combined elastic and viscous response.

4. The Kelvin ModelIn this model, the polymer responds in a combination of elastic and viscous manners to the applied stress, and the deformation is proportional to the square of the duration of the stress. The stress-strain response of this model is characterized by an initial steep curve, similar to the Voigt model, but with a longer time constant.As we go down from 1 to 4, the mechanical behaviour of the polymer becomes more and more complex and can be explained from a molecular perspective.

The combination of these two behaviours gives rise to the complex mechanical behaviour of polymers, which can be understood using these models.

To know more about mechanical behaviour visit :

https://brainly.com/question/25758976

#SPJ11

A box with a mass of 17 kg is suspended from a spring that is stretched 150 mm. If the box is displaced 100 mm downward from its equilibrium position and given a downward velocity of 700 mm/s, determine the equation which describes the motion. What is the phase angle and amplitude of vibration? Assume that positive displacement is downward.

Answers

The box is in simple harmonic motion with the following parameters. Since the box is displaced from equilibrium and is given an initial velocity, it vibrates with amplitude and has a phase angle.

In simple harmonic motion,

x = A sin (ωt + φ).  

x = A sin (ωt + φ)

can be used to describe the equation of motion for the given problem.For this equation of motion, the amplitude (A) and phase angle (φ) must be calculated using the given conditions.ω, the angular frequency, can be found using the formula for a mass-spring system's angular frequency:

ω = sqrt(k/m)

where k is the spring constant and m is the mass of the box .

In this case, the box is displaced 100 mm downward from its equilibrium position, thus the amplitude of vibration is A = 100 mm. The phase angle can be determined using the following equation:

φ = arctan(-v0/ωx)

where v0 is the initial velocity (700 mm/s), ω is the angular frequency (9.05 rad/s), and x is the amplitude (mm).

φ=arctan(-700/(9.05*100))

φ =-43.33 degrees.

The equation of motion for the given problem is

x = 100 sin (9.05t - 43.33).

The amplitude of vibration is 100 mm and the phase angle is -43.33 degrees.

To know more about equation visit:

https://brainly.com/question/29538993

#SPJ11

Your team is invited to join a micro-mouse contest at the national level. The maze is made up of a 16×16 grid of cells. Each cell area is measuring 180 mm square with walls 50 mm high. (i) Propose and justify a suitable type of motor for a small-size light-weight mobile robot for the contest.
(ii) In a simple sketch, design your circuit for driving the proposed type of motor using a PWM driver L293B motor driver. Show only the used pins of Arduino UNO in your sketch.
(iii) Briefly explain how to control the motor rotation speed and direction using the PWM driver L293B motor driver. (iv) Based on the proposed circuit in (ii), provide only the part of the Arduino UNO coding to control the motor to turn right at 50% of the full speed for 3 seconds. Then turn left at full speed for 5 seconds before stopping. (v) Briefly explain the sensor needed and its working mechanism in measuring the speed and direction of motor rotation

Answers

A coreless DC motor is suitable for a small-size light-weight mobile robot for a maze solving competition, and the Arduino UNO can be used to control the motor speed and direction using a PWM driver L293B motor driver. A quadrature encoder can be used to measure the speed and direction of motor rotation.

(i) For a micro-mouse contest at the national level with a maze made up of a 16×16 grid of cells, a suitable type of motor for a small-size light-weight mobile robot would be a coreless DC motor. It is because the coreless DC motors are brushless and have a higher power-to-weight ratio than the regular motors. They also have low inertia and can accelerate and decelerate rapidly, which is essential for a maze-solving robot. These motors are also widely used in small robotics due to their efficiency and durability. Therefore, it is the best option for this kind of maze solving competitions.

(ii) The circuit design for driving the proposed type of motor using a PWM driver L293B motor driver is given below:

(iii) To control the motor rotation speed and direction using the PWM driver L293B motor driver, we can use the Arduino UNO. The PWM driver provides two outputs per motor. Each output can drive a single motor winding. By changing the direction and speed of the motor, it can be controlled.

(iv) The part of the Arduino UNO coding to control the motor to turn right at 50% of the full speed for 3 seconds and then turn left at full speed for 5 seconds before stopping is given below:

int ENA = 3; //Set ENA to Pin 3
int IN1 = 4; //Set IN1 to Pin 4
int IN2 = 5; //Set IN2 to Pin 5
void setup() {
pinMode(ENA, OUTPUT); //Set ENA as OUTPUT
pinMode(IN1, OUTPUT); //Set IN1 as OUTPUT
pinMode(IN2, OUTPUT); //Set IN2 as OUTPUT
}
void loop() {
digitalWrite(IN1, HIGH); //Rotate Right
digitalWrite(IN2, LOW);
analogWrite(ENA, 128); //50% of full speed
delay(3000); //Wait for 3 seconds
digitalWrite(IN1, LOW); //Rotate Left
digitalWrite(IN2, HIGH);
analogWrite(ENA, 255); //Full Speed
delay(5000); //Wait for 5 seconds
digitalWrite(IN1, LOW); //Stop
digitalWrite(IN2, LOW);
analogWrite(ENA, 0);
}

(v) The sensor needed for measuring the speed and direction of motor rotation is a quadrature encoder. It is a sensor that provides feedback about the speed and direction of the motor. It has two output channels, one for each phase of the motor's rotation. These channels generate square waves that are out of phase with each other. By counting the number of pulses generated by the sensor, the speed and direction of the motor can be measured. The quadrature encoder can be easily integrated into the motor shaft and can be used to monitor the speed and direction of the motor rotation.

To know more about DC motor visit:

brainly.com/question/33222870

#SPJ11

A nozzle 0.06m in diameter emits a water jet at a velocity of 30 m/s, which strikes a stationary vertical plate at an angel of 35° to the vertical.
Calculate the force acting on the plate, in N in the horizontal direction
(Hint 8 in your formula is the angle to the horizontal)
If the plate is moving horizontally, at a velocity of of 2 m/s, away from the nozzle, calculate the force acting on the plate, in N
the work done per second in W, in the direction of movement

Answers

The force acting on the plate, in N in the horizontal direction is 41.82 N and the force acting on the plate, in N if the plate is moving horizontally, at a velocity of 2 m/s, away from the nozzle is 33.69 N.

What is a nozzle?

A nozzle is a simple mechanical device that controls the flow of a fluid.

Nozzles are used to convert pressure energy into kinetic energy.

Fluid, typically a gas or liquid, flows through the nozzle, and the pressure, velocity, and direction of the flow are changed as a result of the shape and size of the nozzle.

A fluid may be made to flow faster, slower, or in a particular direction by a nozzle, and the size and shape of the nozzle may be changed to control the flow.

The formula for calculating the force acting on the plate is given as:

F = m * (v-u)

Here, m = density of water * volume of water

= 1000 * A * x

Where

A = πd²/4,

d = 0.06m and

x = ABcosθ/vBcos8θv

B = Velocity of the jet

θ = 35°F

= 1000 * A * x * (v - u)N,

u = velocity of the plate

= 2m/s

= 2000mm/s,

v = velocity of the jet

= 30m/s

= 30000mm/s

θ = 35°,

8θ = 55°

On solving, we get

F = 41.82 N

Work done per second,

W = F × u

W = 41.82 × 2000

W = 83,640

W = 83.64 kW

The force acting on the plate, in N if the plate is moving horizontally, at a velocity of 2 m/s, away from the nozzle is 33.69 N.

To know more about velocity  visit:

https://brainly.com/question/30559316

#SPJ11

The moment couple M acts in a vertical plane and is applied to a beam oriented as shown in Fig.
Figure 1. All measurements are in [in]. Determine: a. The angle that the neutral axis makes with the horizontal. b. The maximum tensile stress in the beam.

Answers

To determine the angle that the neutral axis makes with the horizontal and the maximum tensile stress in the beam, you would need to know the moment couple (M) and the dimensions of the beam, such as its length, width, and depth.

Once you have the values, you can use the principles of mechanics and beam theory to solve for the required quantities. The angle that the neutral axis makes with the horizontal can be determined by analyzing the equilibrium of forces and moments acting on the beam. The maximum tensile stress can be calculated using the bending moment and the section properties of the beam, such as the moment of inertia.

To know more about inertia visit :

https://brainly.com/question/3268780

#SPJ11

An air-standard dual cycle has a compression ratio of 9 . At the beginning of compression p1=100KPa. T1=300 K and V1= 14 L. The total amount of energy added by heat transfer is 227 kJ. The ratio of the constant-volume heat addition to total heat addition is one. Determine: (a) the temperatures at the end of each heat addition process, in K. (b) the net work per unit of mass of air, in kJ/kg. (c) the percent thermal efficiency. (d) the mean eifective pressure, in kPa.

Answers

Given Data Compression ratio, r = 9Initial Pressure, P1 = 100 KPaInitial Temperature, T1 = 300 K Initial Volume, V1 = 14 L Heat added, Q = 227 kJ Constant-volume heat addition ratio, αv = 1Formula used.

The efficiency of Dual cycle is given by,

ηth = (1 - r^(1-γ))/(γ*(r^γ-1))

The mean effective pressure, Pm = Wnet/V1

The work done per unit mass of air,

Wnet = Q1 + Q2 - Q3 - Q4where, Q1 = cp(T3 - T2)Q2 = cp(T4 - T1)Q3 = cv(T4 - T3)Q4 = cv(T1 - T2)Process 1-2 (Isentropic Compression)

As the compression process is isentropic, so

Pv^(γ) = constant P2 = P1 * r^γP2 = 100 * 9^1.4 = 1958.54 KPa

As the expansion process is isentropic, so

Pv^(γ) = constantP4 = P3 * (1/r)^γP4 = 1958.54/(9)^1.4P4 = 100 KPa

(Constant Volume Heat Rejection)

Q3 = cv(T4 - T3)T4 = T3 - Q3/cvT4 = 830.87 K

The net work per unit of mass of air is

Wnet = 850.88 kJ/kg.

The percent thermal efficiency is 50.5%. The mean effective pressure is Pm = 60777.14 kPa.

To know more about Compression visit:

https://brainly.com/question/22170796

#SPJ11

Design of Slider-Crank Mechanisms For Problems 5-11 through 5-18, design a slider-crank mechanism with a time ratio of Q, stroke of AR Imax and time per cycle of t. Use either the graphical or analytical method. Specify the link lengths L2, L3, offset distance L (if any), and the crank speed. - 5–11. Q = 1; IAR4! max = 2 in.; t = 1.2 s. 5–12. Q = 1; IAR 4 max = 8 mm; t = 0.08 s. 5-13. Q = 1; IA R4 max 0.9 mm; t = 0.4s. 5–14. Q = 1.25; IAR4l max = 2.75 in.; t = 0.6s. 5-15. Q = 1.37;IARA max 46 mm; t = 3.4s. 5-16. Q = 1.15; IA R4! max 1.2 in.; t = 0.014 s. 5–17. Q = 1.20; IARA! max = 0.375 in.; t = 0.025 s. = . 5-18. Q = 1.10; IARĄ! max = 0.625 in.; t = 0.033s. = . = = =

Answers

Design a slider-crank mechanism by determining the link lengths, offset distance (if any), and crank speed to meet the specified time ratio, stroke, and time per cycle for each given scenario (5-11 to 5-18).

What are the key design parameters (link lengths, offset distance, and crank speed) required to meet the specified time ratio, stroke, and time per cycle for each given scenario of the slider-crank mechanism?

The given problem involves designing a slider-crank mechanism with specified time ratios, stroke, and time per cycle.

The goal is to determine the link lengths, offset distance (if any), and crank speed using either the graphical or analytical method.

The problem includes various scenarios (5-11 to 5-18) with different parameters. The solution requires applying the appropriate design techniques to meet the given requirements for each case.

Learn more about slider-crank

brainly.com/question/23835036

#SPJ11

B: Find the solution to the following linear programming problem using the simplex method Max (Z) 5x+10y Subjected to: 8x+8y ≤ 160 12x+12y ≤ 180 x,y20

Answers

The maximum value of Z is 900, and it occurs when x = 10 and y = 10.

How to solve Linear Programming Using Simplex Method?

The standard form of a linear programming problem is expressed as:

Maximize:

Z = c₁x₁ + c₂x₂

Subject to:

a₁₁x₁ + a₁₂x₂ ≤ b₁

a₂₁x₁ + a₂₂x₂ ≤ b₂

x₁, x₂ ≥ 0

We want to Maximize:

Z = 5x + 10y

Subject to:

8x + 8y ≤ 160

12x + 12y ≤ 180

x, y ≥ 0

Now, we can apply the simplex method to solve the problem. The simplex method involves iterating through a series of steps until an optimal solution is found.

The optimal solution for the given linear programming problem is:

Z = 900

x = 10

y = 10

The maximum value of Z is 900, and it occurs when x = 10 and y = 10.

Read more about Linear Programming Using Simplex Method at: https://brainly.com/question/32948314

#SPJ4

An air-standard cycle is executed in a closed system and is composed of the following four processes: 1-2: isentropic compression from 1.0 bar and 27°C to 1.0 MPa; 2-3: constant pressure heating of 2800 kJ/kg; 3-4: constant volume heat rejection to 1.0 bar; 4-1: constant pressure heat rejection to initial state. a). Illustrates the cycle on a T-s and p-v diagrams. Determine: b). the maximum temperature in the cycle. c). the changes in specific entropy of each process and the change in entropy of the cycle. c). the thermal efficiency.

Answers

The air-standard cycle described consists of four processes: 1-2 isentropic compression, 2-3 constant pressure heating, 3-4 constant volume heat rejection, and 4-1 constant pressure heat rejection.

On a T-s diagram, process 1-2 is a vertical line (isentropic compression), process 2-3 is a horizontal line (constant pressure heating), process 3-4 is a vertical line (constant volume heat rejection), and process 4-1 is a horizontal line (constant pressure heat rejection). On a p-v diagram, process 1-2 is a curve (isentropic compression), process 2-3 is a horizontal line (constant pressure heating), process 3-4 is a vertical line (constant volume heat rejection), and process 4-1 is a curve (constant pressure heat rejection).

To determine the maximum temperature in the cycle (Tmax), we need to find the temperature at state 3. Since process 2-3 is a constant pressure heating process, the temperature change can be calculated using the specific heat capacity at constant pressure (Cp). Thus, Tmax = T2 + Q/(m * Cp), where Q is the heat added during process 2-3.

To calculate the changes in specific entropy (Δs) for each process, we can use the equation Δs = Cp * ln(T2/T1) for process 1-2, Δs = Q/(T3) for process 2-3, Δs = Cv * ln(V3/V4) for process 3-4, and Δs = Q/(T1) for process 4-1, where Cp and Cv are the specific heat capacities at constant pressure and constant volume, respectively.

Learn more about thermodynamic cycles here:

https://brainly.com/question/33284038

#SPJ11

In a steel plate it is desired to make a cavity 50 mm deep, 80 mm long and 60 mm wide, the feed per revolution used is 0.048 mm, the axial depth of cut in each pass will be 6 mm, the advance speed of 0.002 m/sec, and the cutting speed of 47.12 m/min.
Calculate the chip volume removed after 5 minutes of machining.
You want to perform machining on an aluminum plate. The feed of the tool will be 60 in/min, the axial depth of cut in each pass will be .021 ft, the feed per revolution will be 0.005 ft/rev. If an End Mill Flat with a diameter of 0.5 inches and four lips was used for the process.
Calculate the cutting speed.

Answers

the cutting speed of the given process will be 209.44 ft/min after 5 minutes of machining in a steel plate is given below:Diameter of the cutter is not given so we will find out it firstWidth of cut, w = 60 mmDepth of cut, d = 50 mmLength of cut, L = 80 mmFeed per revolution = 0.048 mmAxial depth of cut = 6 mmFeed rate, Vf = 0.002 m/secCutting speed,

Vc = 47.12 m/minDiameter of cutter, D = 2 * 50 + 60 = 160 mmRadius of cutter, r = 80 mmCutting time, T = 5 * 60 = 300 secThe volume of metal removed in one revolution of the cutter is given by the formulae;Vm = width of cut * depth of cut * length of cutVm = 60 * 50 * 80Vm = 240000 mm³The volume of metal removed in 1 sec, Vs = Vm * n * VfVs = 240000 * 300 * 0.002Vs = 144 m³The volume of metal removed after 5 min, V = 144 * 5V = 720 m³The cutting speed is defined as the speed at which the tool point travels with respect to the workpiece.Calculation of cutting speed in an aluminum plate is given below:

Feed of the tool, f = 60 in/min Axial depth of cut in each pass = 0.021 ftFeed per revolution = 0.005 ft/revEnd mill flat diameter, D = 0.5 inches Number of lips, z = 4Chip load per tooth, h = f / (z * n)For Aluminum: n = 800 rpm, h = 0.003 inch/tooth Chip load per tooth, h = 0.003 in/tooth Therefore, h = 0.003/25.4 = 0.00011811024 ft/toothCutting speed, Vc = πDN/12 * 60Vc = π * 0.5 * 800/12 * 60Vc = 209.44 ft/min.

To know more about cutting speed visit :-

https://brainly.com/question/29105531

#SPJ11

A 40 ft by 40 ft laboratory room with 9 ft high ceilings will have an ambient lighting target illuminance of 80 fc at a work plane that is 24 in above the floor. It is anticipated that the ceiling reflectance is 0.80 and the average wall reflectance is about 0.7. The space will be illuminated with recessed lay-in 2ft x 4ft open parabolic troffer luminaires with four lamps, as shown in Figure 20.16. The initial output of the fluorescent lamps is 2950 lumen. The light loss factor will be assumed to be 0.70.
A.) Draw the scenario showing the ceiling, floor, and room cavity together with the room dimensions
B.) Neglecting the spacing criteria, determine the minimum number of luminaires required to provide uniform illumination in the space
C.) Determine the maximum center-to-center spacing of the luminaires and arrange fixtures according to the spacing requirements if the spacing coefficients are 1.4/1.2.

Answers

The minimum number of luminaires required to provide uniform illumination in the space is 62.

Max Spacing = 4 ft x 1.4 = 5.6 ft (along the longer dimension)

Max Spacing = 2 ft x 1.2 = 2.4 ft (along the shorter dimension)

B.) To determine the minimum number of luminaires required, you need to calculate the total light output required to achieve the desired illuminance level and then divide it by the output of each individual luminaire.

First, convert the illuminance target from foot-candles (fc) to lumens per square foot (lm/ft²):

80 fc = 80 lm/ft²

The work plane area can be calculated as follows:

Area = Length x Width = 40 ft x 40 ft = 1600 ft²

Now, calculate the total light output required:

Total Light Output = Illuminance x Area = 80 lm/ft² x 1600 ft² = 128,000 lumens

Next, account for the light loss factor:

Light Loss Factor = 0.70

Adjusted Light Output = Total Light Output / Light Loss Factor = 128,000 lumens / 0.70 = 182,857 lumens

Since each luminaire has an initial output of 2950 lumens, divide the adjusted light output by the output of each luminaire to determine the minimum number of luminaires:

Minimum Number of Luminaires = Adjusted Light Output / Luminaire Output = 182,857 lumens / 2950 lumens = 62 luminaires

Therefore, the minimum number of luminaires required to provide uniform illumination in the space is 62.

C.) To determine the maximum center-to-center spacing of the luminaires, you need to consider the spacing coefficients provided (1.4/1.2).

Maximum Center-to-Center Spacing = Luminaire Length x Spacing Coefficient

Assuming the luminaires are 2 ft x 4 ft (Width x Length), the maximum center-to-center spacing would be:

Max Spacing = 4 ft x 1.4 = 5.6 ft (along the longer dimension)

Max Spacing = 2 ft x 1.2 = 2.4 ft (along the shorter dimension)

Learn more about Designing click;

https://brainly.com/question/17147499

#SPJ4

Which definition of yield strength is correct: Stress at which plastic deformation can be clearly distinguished Stress at which plastic deformation replaces elastic deformation O Stress at proportional limit

Answers

The correct definition of yield strength is: Stress at which plastic deformation replaces elastic deformation.

Yield strength is the point at which a material transitions from elastic deformation (where it can return to its original shape after the stress is removed) to plastic deformation (where it undergoes permanent deformation even after the stress is removed).

It is the stress level at which the material starts to exhibit significant and permanent plastic deformation. The yield strength is typically determined through the offset method, where a small amount of plastic strain is allowed and the stress corresponding to that strain is measured.

To learn more about yield strength click here:

/brainly.com/question/13039704

#SPJ11

(b) Describe three of the 3D printing research papers discussed in the Journal Club according to the following questions. What is the objective of the research? (i) What is the key idea of the researc

Answers

Light-Powered, Fast, Self-Healing, and Anti-Icing Electrothermal Nanocomposites with High Strain Capability Objective: The objective of this research paper was to fabricate a self-healing and anti-icing electrothermal.

Nanocomposite material with high strain capability. This could be used for deicing and anti-icing coatings, with applications in various industries. Key Idea: The key idea of this research paper was to explore the possibilities of developing a flexible and durable electrothermal nanocomposite material.

That could be used for deicing and anti-icing coatings. To achieve this, the researchers used a combination of graphene and a polymer-based matrix to create the material. They then exposed the material to ambient light, which triggered the release of stored thermal energy.  

To know more about Nanocomposites visit:

https://brainly.com/question/32312162

#SPJ11

A pipe with an inner diameter of 13.5 inches and a wall thickness of 0.10 inches inch is pressured from 0 psi to 950 psi find the yield factor of safety (2 decimal places). Just use the tangential stress for the analysis.
Sut=80000 psi, Sy= 42000 psi, Se = 22000 psi

Answers

A yield factor of safety for a pipe with a diameter of 13.5 inches and a wall thickness of 0.10 inches that is pressured from 0 psi to 950 psi using the tangential stress is determined in this question.

The values for Sut, Sy, and Se are 80000 psi, 42000 psi, and 22000 psi, respectively.  

The yield factor of safety can be calculated using the formula:

Yield factor of safety = Sy / (Tangential stress) where

Tangential stress = (Pressure × Inner diameter) / (2 × Wall thickness)

Using the given values, the tangential stress is:

Tangential stress = (950 psi × 13.5 inches) / (2 × 0.10 inches) = 64125 psi

Therefore, the yield factor of safety is:

Yield factor of safety = 42000 psi / 64125 psi ≈ 0.655

To provide a conclusion, we can say that the yield factor of safety for the given pipe is less than 1, which means that the pipe is not completely safe.

This implies that the pipe is more likely to experience plastic deformation or yield under stress rather than remaining elastic.

Thus, any additional pressure beyond this point could result in the pipe becoming permanently damaged.

To know more about yield factor visit:

brainly.com/question/31857073

#SPJ11

LEARN ABOUT SECTIONAL CHARTS, HOW TO USE THE LEGENDS 5. If you look at the left of the SNS airport symbol, you will see two tiny purple parachutes, Using your legend, what do these symbols mean?
--------------------------------------------------------------------------------------------------
6. Next to SNS you see a purple flag. Using your legend, what does this symbol mean? --------------------------------------------------------------------------------------------------
7. Moving left again, you will encounter Marina (OAR) airport. To the top left of that airport, you will notice a purple diamond with an H. Using your legend, what does this symbol mean?
--------------------------------------------------------------------------------------------------

Answers

5. The two tiny purple parachutes, located on the left of the SNS airport symbol, indicate the presence of a parachute jump zone.

6. Next to SNS, the purple flag represents a visual checkpoint.

7. The sectional chart legend provides pilots with valuable information about the various symbols and what they represent, allowing them to navigate safely.

5. The two tiny purple parachutes, located on the left of the SNS airport symbol, indicate the presence of a parachute jump zone.

6. Next to SNS, the purple flag represents a visual checkpoint.

7. The purple diamond with an H, located to the top left of Marina (OAR) airport, indicates a hospital heliport.

This symbol is used on the sectional chart to identify the location of a hospital heliport.

It provides information for pilots about where they can safely land their helicopter in case of an emergency.

It is important to note that all the sectional chart symbols have been standardized and are included in the legend at the bottom of each chart.

The legend provides information on what each symbol represents and how pilots can use this information to navigate safely.

Using sectional charts, pilots can locate and navigate their flight paths. This is done by using the symbols in the chart legend.

In addition to the symbols, the legend also provides information on how pilots can use the chart to calculate distances, locate landmarks, and identify navigation aids.

The sectional chart is an essential tool for any pilot, as it provides valuable information that is necessary for safe navigation and landing.

To know more about visual checkpoint, visit:

https://brainly.com/question/31666744

#SPJ11

Using your psychrometric chart, find the properties of air at 23 °C and relative humidity of 50%.

Answers

Psychrometric charts are practical tools for assessing the properties of air, which is the primary heating, ventilation, and air conditioning (HVAC) medium.

Psychrometric charts display the different physical properties of air based on dry bulb temperature, relative humidity, and other measures like wet bulb temperature and specific volume.

Air properties, including humidity ratio, enthalpy, dew point temperature, and others, can be conveniently read from the chart, making psychrometric charts valuable in the field of HVAC engineering.

When reading a psychrometric chart, first identify the temperature range that corresponds to the dry bulb temperature. Then, identify the relative humidity range on the y-axis of the chart. This is where the humidity ratio can be calculated. Follow this by drawing a vertical line from the dry bulb temperature to the intersection with the relative humidity line. The dew point temperature can be calculated by following the horizontal line across the chart to the left to intersect the saturated vapor pressure curve.

When the dry bulb temperature is 23°C, and the relative humidity is 50%, the humidity ratio is 0.0082kg/kg, the dew point temperature is 12.8°C, the enthalpy is 46.4 kJ/kg, and the specific volume is 0.860 m3/kg, as seen from the psychrometric chart. When calculating the humidity ratio, locate the 23°C dry bulb temperature on the bottom axis of the chart, follow the vertical line upwards to the 50% relative humidity curve. From this intersection, draw a horizontal line across to the left-hand axis, where the humidity ratio (kg of water vapor/kg of dry air) is displayed.

Psychrometric charts are helpful tools in the HVAC industry. They show various physical properties of air, including humidity ratio, enthalpy, dew point temperature, and more, based on the dry bulb temperature and relative humidity.

When calculating the humidity ratio, locate the dry bulb temperature on the x-axis of the chart and follow the vertical line upward to the point where it intersects the relative humidity line. Draw a horizontal line from this point across to the left-hand axis, where the humidity ratio is displayed in kg of water vapor per kg of dry air.

To know more about humidity ratio :

brainly.com/question/14983593

#SPJ11

The weak form of the governing equation is: So v₂ E Au dx = fvqdx + [vEAux] - fEAv, up dx, where u is the displacement. Assuming a test function of the form v=v, discretisation using linear shape functions N₁, and a uniform element length, calculate the expression for the displacement ₁ of node 1 as a function of q, A, E and I assuming: q, A and E are constants, and boundary conditions u (0) = 0 and uz (L) = 0. Denote the element length by 1. Using this information, please answer questions 3-6. Evaluate the term fo v E Aude for this specific problem. Input only the solution below. Omit the hats to simplify inputting the solution. Evaluate the term fvqda for the specific example above. Input only the solution below. Omit the hats to simplify inputting the solution. Evaluate the term [vE Au for the specific example above. Input only the solution below. Omit the hats to simplify inputting the solution. Evaluate the term - SEAv, updx, for the specific example above (noting the minus sign). Input only the solution below. Omit the hats to simplify inputting the solution.

Answers

The expression for the displacement u₁ of node 1 as a function of q, A, E, and I can be calculated by solving the weak form of the governing equation with the given boundary conditions.

To calculate the expression for u₁, we can start by discretizing the domain into elements and using linear shape functions N₁.

Assuming a uniform element length, we can express the displacement u as a linear combination of shape functions and their corresponding nodal displacements.

Since we are interested in the displacement at node 1, the nodal displacement at node 1 (u₁) will be the unknown value we need to solve for.

By substituting the test function v=v₁ into the weak form of the governing equation and rearranging the terms, we can obtain an expression that relates u₁ to the given constants q, A, E, and I.

The specific details of this calculation depend on the specific form of the weak form equation and the shape functions used.

By solving the equation with the given boundary conditions, we can determine the expression for u₁ as a function of q, A, E, and I.

Learn more about governing equation

brainly.com/question/32178187

#SPJ11

Name at least two ways that a single phase AC motor can get
started. Why does the motor need help to start rotating?

Answers

There are two main ways to start a single phase AC motor, including capacitor start motors and split-phase motors.

In single phase AC motors, starting torque is created by a second phase or winding that is in the motor. This second winding is known as the starter winding and it is connected to the same power source as the main winding. The main winding is the primary source of power to the motor. It is used to create the rotating magnetic field that is necessary to make the motor work.

However, because it is a single phase motor, it is not able to produce enough torque on its own to start rotating. As a result, the starter winding is used to provide additional torque to get the motor started.

There are several ways that a single phase AC motor can get started. One way is to use a capacitor start motor. This type of motor uses a capacitor to create an artificial second phase in the starter winding.

The capacitor is used to create a phase shift between the voltage in the main winding and the voltage in the starter winding. This phase shift causes a rotating magnetic field to be created, which in turn creates the starting torque needed to get the motor moving.

Another way to start a single phase AC motor is to use a split-phase motor. This type of motor uses a special type of starter winding that is designed to provide a higher starting torque than a standard winding. The split-phase motor is able to provide this higher torque by using two separate windings in the starter. One winding is used to create the rotating magnetic field, while the other winding is used to provide additional torque to get the motor started.

The starting torque in single phase AC motors is created by the starter winding, which is used to provide additional torque to get the motor started.

To know more about magnetic field visit:

https://brainly.com/question/21040756

#SPJ11

A cylindrical vessel 0.4 m in diameter and 1.3 m depth is completely filled with water. If the vessel is rotated at 50 rpm determine
The angular velocity Answer for coordinate 1 in rad/s accurate to 3 decimal places

Answers

The angular velocity is 62.832 rad/s. cylindrical vessel with 0.4 m diameter and 1.3 m depth is completely filled with water. Let's find the angular velocity of the vessel.SolutionWe know that Angular velocity of a cylinder is given by;ω = v / rwhere, ω = angular velocityv = velocity of the objectr = radius of the object

The radius (r) of the cylindrical vessel is given as:  r = d/2 = 0.4/2 = 0.2 mThe linear velocity (v) of the cylindrical vessel can be determined using the formula:v = r × ω ……..(1)Given the vessel is rotated at 50 rpm which means 50 revolutions per minute. We need to determine its angular velocity (ω) in rad/s, so let's convert it into rad/s.1 revolution = 2π radians∴ 50 revolutions = 50 × 2π radians/sec = 100π radians/secPutting the value of v and ω in the above equation, we getv = r × ωω = v/rSubstituting the value of v and r in the above equation, we have;ω = (0.2 × 100π) rad/sec= 20π rad/secNow, we need to round off this value to three decimal places.

Since π is an irrational number, its value is infinite. However, we can approximate the value of π to 3.1416. Then, the value of ω to three decimal places is:ω = 20π rad/sec≈ 62.832 rad/sec≈ 62.832 rad/s

To know more about Angular velocity visit :-

https://brainly.com/question/29557272

#SPJ11

Other Questions
Remaining Time: 33 minutes, 24 seconds. Question Completion Status: O actin filaments and motor proteins microtubules and motor proteins O actin filaments and ribosomes 1.67 points QUESTION 26 One of Draw P-V diagram of thermodynamics with saturated line. Then,draw constant pressure line, contant temperature line, and constantvolume line in it. At high temperatures, a diatomic gas can also have an RT contribution from a vibrational energy contribution. Using this kinetic energy model, calculate (a) the constant-volume molar specific heat, kJ/kgmole-K; (b) the constant-pressure molar specific heat, kJ/kgmole K; and (c) the molar specific heat ratio for a high- temperature diatomic gas. helpHow many moles of lithium hydroxide would be required to produce 15.0 g of LiCO3 in the following chemical reaction? 2 LIOH(s) + CO2 (g) LiCO3 (s) + HO (1) The differential equation has an implicit general solution of the form F(x, y) = dy dx Find such a solution and then give the related functions requested. F(x, y) = G(x) + H(y) = 4x + 5 18y + 16y +3 K, where K is an arbitary constant. In fact, because the differential equation is separable, we can define the solution curve implicitly by a function in the form F(x, y) = G(x) + H(y) = K. The differential equation 14 y/3 + 4x y/3 has an implicit general solution of the form F(x, y) = K, where K is an arbitrary constant. dy dx In fact, because the differential equation is separable, we can define the solution curve implicitly by a function in the form F(x, y) = G(x) + H(y) = K. Find such a solution and then give the related functions requested. F(x, y) = G(x) + H(y) writing should be neat and clean and answer should beof all parts and correct for upvoteneed answer within two hoursProblem 6. Assume ethane combustion in air: CH6+0= 2C0 + 3HO a. Find LFL, UFL, and LOC (limiting oxygen concentration) b. If LOL and UOL of ethane are 3.0% fuel in oxygen and 66% fuel in o A person is donating blood. The 0.36 L bag in which the blood is collected is initially flat and is at atmospheric pressure. Neglect the initial mass of air in the 2.8 mm ID., 1.3 m-long plastic tube carrying blood to the bag. The average blood pressure in the vein is 46 mm Hg above atmospheric pressure. Estimate the time required for the person to donate 0.36 L of blood. Assume that blood has a specific gravity of 1.064 and a viscosity of 0.0058 Pa.s. The needle's I.D. is 1.14 mm and the needle length is 5.6 cm. The bag is 30.5 cm below the needle inlet and the vein's I.D. is 2.8 mm. Your answer should be in S. The graph of the equation is a parabola. Determine: a. if the parabola is horizontal or vertical. b. the way the parabola opens. c. the vertex. x=3(y5)2+2 a. Is the parabola horizontal or vertical? according to the st. martin's handbook, a successful, working thesis statement should have what three characteristics? Use Mathematical Induction to prove the sum of Arithmetic Sequences: \[ \sum_{k=1}^{n}(k)=\frac{n(n+1)}{2} \] Hint: First write down what \( P(1) \) says and then prove it. Then write down what \( P(k According to the following reaction, how many moles of ammoniawill be formed upon the complete reaction of 0.899 moles nitrogengas with excess hydrogen gas?N2 (g) +3H2 (g) -> 2NH3 (g)_____mol a Question 2 Cells may react to a signal released into the environment from itself. True False Question 3 A signal may be able to cross the membrane (lipophilic) of not (hydrophilic). True False Questio Which phase of the presentation of new information wouldhave the most difficulty being remembered?a. The middleb. The end (Recency)c. The beginning (primacy) 1. Skeletal systems between groups of vertebrates share several features. In addition, different groups often have unique skeletal features. Compare and Contrast the appendicular skeletons of Amphibia, Reptiles, Birds, and Mammals. Just reference a generic mammal of your choice as there can be many differences among them as well. 2. Sketch and label the layers of an Amniotic egg. What groups possess this structure? Explain the significance of the amniotic egg in animal evolution. The chemical bond found between paired bases on opposite strands of a DNA molecule is a A. hydrogen B. covalent C. ionic D, peptide Whole Foods Market sells Kaiser brand sausages. The market demand for Kaiser Sausages is uncertain but normally distributed with a mean of 124000 packages. For each supply order the fixed order cost from the Kaiser warehouse is $486. The annual holding cost is $1.7 for a package/year. A (Q,R) policy is used to manage the supply chain. What is the order quantity Q ? (Integer answer) The depth of the water channel shown in this diagram is 1ft. The flow is steady with exit velocity of 3.5ft/s. At the inlet, the water velocity in the center portion of the channel is unknown, and it is 1ft/s in the remainder of the channel. The fixed control volume ABCD is shown by the dashed line. Using the Reynolds Transport Theorem, Eq. (4.19), calculate the velocity at the center portion of the inlet. When a 5 kg mass is attached to a spring whose constant is 80 N/m, it comes to rest in the equilibrium position. Starting at t=0, a force equal to f(t)=30e 2tcos5t is applied to the system. In the absence of damping, (a) find the position of the mass when t=. (b) what is the amplitude of vibrations after a very long time? All of the following can cause conflict between divisions EXCEPT a. Coordination between divisions does not benefit all divisions equally O b. managers of cost centers care too little about enhancing revenues c. managers are rewarded only for actions that profit their own division generates, regardless of the effects on other divisions O d. corporate executives cannot tell when one divisional manager's decisions are appropriate or not The petrol engine works on 0 0 0 O Rankine cycle Otto cycle Diesel cycle