A volleyball player spiking is it kinetic or potential
Answer:
It is kinetic energy.
Explanation:
The kinetic energy of an object is the energy that it possesses due to its motion. It is defined as the work needed to accelerate the volleyball from rest to its stated velocity. Having gained this energy from the player spiking it during its acceleration, the body maintains this kinetic energy unless its speed changes.
I need help with this, I can't figure it out.
Here is the link:
https://platform.breakoutedu.com/game/play/fun-in-the-sun-140559-XMWCQF1LPL
Answer:
Star, Triangle, Circle, Rhombus, Square.Left, Down, Right, Down, Up.2,3,2,4.L,O,O,K,I,N,G,F,L,Y.Explanation: You're welcome ✓
A person is standing on a level floor. His head, upper torso, arms, and hands together weigh 458 N and have a center of gravity that is 1.34 m above the floor. His upper legs weigh 120 N and have a center of gravity that is 0.766 m above the floor. Finally, his lower legs and feet together weigh 89.8 N and have a center of gravity that is 0.204 m above the floor. Relative to the floor, find the location of the center of gravity for the entire body.
Answer:
the location of the center of gravity for the entire body is 1.08 m
Explanation:
Given the data in the question;
w1 = 458 N, y1 = 1.34 m
w2 = 120 N, y2 = 0.766 m
w3 = 89.8 N, y2 = 0.204 m
The location arrangement of the body part is vertical, locate the overall centre of gravity by simply replacing the horizontal position x by the vertical position y as measured relative to the floor.
so,
[tex]Y_{centre of gravity}[/tex] = (w1y1 + w2y2 + w3y3 ) / ( w1 + w2 + w3 )
so we substitute in our values
[tex]Y_{centre of gravity}[/tex] = (458×1.34 + 120×0.766 + 89.8×0.204 ) / ( 458 + 120 + 89.8 )
[tex]Y_{centre of gravity}[/tex] = 723.9592 / 667.8
[tex]Y_{centre of gravity}[/tex] = 1.08 m
Therefore, the location of the center of gravity for the entire body is 1.08 m
What is the frequency of a wave that has a wavelength of 0.20 m and a speed of 22 m/s
Answer:
The frequency of the wave would come out to be 110 Hz.
Frequency is the number of completed wave cycles per second. By using the simplest frequency equation, f = 1 / T, you get the answer I provided above.