Answer:
Femoroacetabular impingement
It occurs when an area of your hip joint becomes pinched when you move in certain directions. :)
Even after the body stops moving in a collision, the internal organs are still moving.
Answer:
True
Explanation:
The bodies internal organs move around, even after a collision that may impact your skeletal system.
When a collision occurs and the body comes to a sudden stop, the internal organs can continue to move due to their inertia. Yes, that statement is generally true.
Inertia is the property of an object that resists changes in its state of motion. The internal organs of the body, such as the heart, lungs, liver, and others, are not directly attached to the skeletal structure and are instead supported by connective tissues and surrounded by fluids.
During a collision, the body experiences a rapid deceleration or change in velocity. While the external motion of the body may come to a stop, the internal organs, due to their inertia, continue to move forward momentarily until they are acted upon by internal forces. This phenomenon is known as "organ motion" or "organ inertia."
In situations where high-impact collisions occur, such as in car accidents or contact sports, the continued motion of internal organs can result in serious injuries, even when external signs of trauma may be minimal.
To know more about the moment of inertia:
https://brainly.com/question/30051108
#SPJ6
A ball has a mass of 0.25 kg and is moving to the right at 1.0 m/s. It hits a ball of mass 0.15 kg that is initially at rest. After the collision, the 0.15 kg ball moves off to the right with a velocity of 0.75 m/s. What is the final velocity of the 0.25 kg ball? 0.42 m/s to the right 0.42 m/s to the left 0.55 m/s to the right 0.55 m/s to the left
Answer:
C-0.55 m/s to the right
Explanation:
edg
Answer:
0.55 to the right
Explanation:
The magnitude of the electric potential depends on which factors?
O A. Mass and amount of charge
O B. Mass and distance
O C. Distance and amount of charge
O D. Density and amount of charge
Answer:
C
Explanation:
It is directly propotional to the amount of charge and inversly propotional to distance.
Answer:
C. Distance and amount of charge
Explanation:
The magnitude of the electric potential depends on which factors?
Distance and amount of charge
A ball is being rolled by a normal push of 180N. It is opposed by friction which has a force of 61N and air resistance which has a force of 23N. Calculate the resultant force.
Resultant force is basically the force left after everything is added.
if a ball is being pushed one one side with 180N, and being pushed on teh opposite side with 84N (I added friction and air resistance since they're acting on the same side), then the resultant force would be:
180N - 84N = 96N (you can determine whether it's positive or negative based on the direction of the vector)
As a motorcycle takes a sharp turn, the type of motion that occurs is called _______________ motion.
Answer:
circular motion
Explanation:
As a motorcycle takes a sharp turn, the type of motion that occurs is called circular motion.
Circular motion is a movement of an object along a circular path. As this motorcycle makes the sharp turn, it is acted upon by a centripetal force which directs the motorcycle towards the center.
Therefore, circular motion is the correct answer to the question.
Answer:
Circular Motion
Choose the friction which opposes the relative motion between surfaces in motion a.Static friction b.Kinetic friction c.Sliding friction d.Both kinetic and sliding friction
Answer:
d. Both kinetic and sliding friction
Explanation:
Kinetic friction, commonly known as sliding friction, happens when a body with its surfaces in contact is in relative motion with another. It's the frictional force slowing it down, and finally stopping a moving body. One can describe sliding friction as the resistance any two objects create while sliding against each other. It is often documented as the force required to hold a surface moving along another surface. It is determined by two variables- one is material of the object and another is its weight.
Which statement accurately describes this atomic spectrum? There is a horizontal rectangle with the colors of the rainbow from violet to red. There are lines in purple, blue, green and orange. The black lines represent the energy emitted by the electrons. The black lines represent the energy absorbed by the electrons. The colored lines represent the energy emitted by the electrons. The colored lines represent the energy absorbed by the electrons.
Answer:
The black lines represent the energy absorbed by the electrons.
Explanation:
Atoms emit lights when they are excited. These lights are of particular wavelengths that match with different colors. A series of colored lines appear along with spaces in the middle of the two colors. The middle of the colors is filled with dark spaces. Each spectral line of an element represents a specific characteristic of the element. These colored lines appearing in the form of series are termed to be the atomic spectrum of the element. Identification of the elements is done through the line of the spectrum they possess.
Answer:
(B) The black lines represent the energy absorbed by the electrons.
Explanation:
What can happen if a body moves through speed of light
As waves travel into the denser medium, they slow down and wavelength decreases.
Explanation:
The denser the medium the slower the waves (speed of light) travels.
◦•●◉✿When the body approaches the speed of light, the body's length appears to contract in the direction of travel, and its mass appears to increase from the point of view of a stationary observer. Only photons move to light velocity. They don´t have length.✿◉●•◦
Danny lowers the sails on his boat. He paddles upstream at 19 km/hr. The current is still running downstream at 15 km/hr. What is the actual velocity of the boat?
Answer:
4 km/hr
Explanation:
The computation of the actual velocity is shown below:
Because the path of its paddles is opposed to the current direction, the real velocity can be determined by deducting the current velocity to its velocity while paddling
So, the actual velocity is
= Upstream - downstream
= 19 km/hr - 15 km/hr
= 4 km/hr
As we can see it is in positive, so it is an upstream direction
Answer:
since the direction of his paddles is opposite of the the direction of the current, so the actual velocity can be calculated by subtracting the velocity of current to to his velocity when paddling
v = 19 - 15
v = 4 since the answer is positive, then the direction is upstream
Explanation:
I NEEED HELP!!!!! Upon using Thomas Young’s double-slit experiment to obtain measurements, the following data were obtained. Use these data to determine the wavelength of light being used to create the interference pattern.
Do this using three different methods.
The angle to the eighth maximum is 1.12°.
The distance from the slits to the screen is 302.0 cm.
The distance from the central maximum to the fifth minimum is 3.33cm.
The distance between the slits is 0.000250 m
Answer:
The wavelength is approximately 611 nm
Explanation:
We can use the formula for the condition of maximum of interference given by:
[tex]d\,sin(\theta)=m\,\lambda\\(0.000250\,\,m)\,\,sin(1.12^o)=8\,\lambda\\\lambda=\frac{1}{8} \,(0.000250\,\,m)\,\,sin(1.12^o)\\\lambda \approx 610.8\,\,nm[/tex]
We can also use the formula for the distance from the central maximum to the 5th minimum by first finding the tangent of the angle to that fifth minimum:
[tex]tan(\theta)=\frac{y}{D}\\ tan(\theta)=\frac{0.0333}{3.02} =0.011026[/tex]
and now using it in the general formula for minimum:
[tex]d\,sin(\theta)\approx d\,tan(\theta)=(m-\frac{1}{2} )\,\lambda\\\lambda\approx 0.00025\,(0.011026)/(4.5)\,\,m\\\lambda\approx 612.55\,\,nm[/tex]
Answer:
The correct answer is [tex]6.1\times10^{-7}\:m[/tex]
Explanation:
The distance from the central maxima to 5th minimum is:
[tex]x_{5n}-x_{0} =3.33\:cm=0.033\:m[/tex]
The distance between the slits and the screen:
[tex]L = 302\:cm = 3.02\:m[/tex]
Distance between 2 slits: [tex]d = 0.00025\:m[/tex]
[tex](n-\frac{1}{2})\lambda=\frac{d(x_n)}{L}[/tex]
For fifth minima, n = 5... so we have:
[tex]x_{5n}=\frac{9\lambda L}{2d}[/tex]
For central maxima, n = 0... so we have:
[tex]x_{0}=\frac{n\lambda L}{d}=0[/tex]
So the distance from central maxima to 5th minimum is:
[tex]\frac{9\lambda \:L}{2d}-0=0.033[/tex] (Putting the values, we get):
[tex]\Rightarrow \lambda = 6.1\times 10^{-7}\:m[/tex]
Best Regards!
Guys I'm in kind of a PICKLE!!!!!! I know people say it a lot but I will give Brainiest to the best explained answer. Determine the net force charge acting at q1 (+ 2.0 × 10^-5C), caused by q2 (-4.0 × 10-5 C) and q3 (-4.0 × 10^-5C). They create a right angles triangle, where q1 is at the 90° corner
Determine the net electric field acting at q1
Answer:
E≅1.2×10^7 N/C
Explanation:
First off I'd like to say that I'm taking "net electric field" to mean that they don't want this answer to be put into vector component form and instead want magnitudes. Sometimes the wording of these questions throws me off, so sorry ahead of time if that's what they want from you!
Edit: I ended up adding it anyways ;P
Since we are observing the net electric field acting at q1, we need to use the formula: [tex]E=k\frac{q}{r^{2} }[/tex]
And since we are observing the effects of multiple charges at once...
E=ΣE, which just means wee need to add all the observed electric fields together:
ΣE= [tex]k\frac{q2}{r^{2} } +k\frac{q3}{r^{2} }[/tex]
Since we are observing [static] electric fields here, we don't actually need q1's charge. (Though if you wanted to find the net force you would.) Now, before we start plugging values in, let's acknowledge what we know. We know that:
q2=q3they are the same distance from q1These are actually really nice to have, because now we can simplify our expression to:
[tex]E=k\frac{2q}{r^{2} }[/tex]
Now let's plug in our values and get an answer out.
E= 2(8.99×10^9)(4×10^-5)/(0.24)
Plugging all that in, I get:
E≅1.2×10^7 N/C
If you end up needing the net force, F=(q1)(E). That is, you just multiply the electric field by the value of q1. And again, if your teacher wants the answer in vector component form, then the answer will look different.
Let me know what doesn't make sense, or if I got something wrong. Good luck with AP Phy.!
Edit: I put the component form for my answer in the attachment. I also noticed a small calculator related error in my original answer. I updated that to match the new one.
when a 0.622kg basketbll hits the floor its velocit changes from 4.23m/s down to 3.85m/s up. if the averge force was 72.9N how much time was it in contact with the floor?
Answer:
Time, t = 3.2 ms
Explanation:
It is given that,
Mass of basketball, m = 0.622 kg
Initial velocity, u = 4.23 m/s
Final velocity, v = 3.85 m/s
Average force acting on the ball, F = 72.9 N
We need to find the time of contact of the ball with the floor. Let t is the time of contact. So,
[tex]F=ma\\\\F=\dfrac{m(v-u)}{t}\\\\t=\dfrac{m(v-u)}{F}\\\\t=\dfrac{0.622\times (3.85-4.23)}{72.9}\\\\t=0.0032\ s\\\\\text{or}\\\\t=3.2\ ms[/tex]
So, the ball is in contact with the floor for 3.2 ms.
the value of MA in the third class lever is alaways less than one,why
Answer:
It is always less than 1 because the load arm is always longer than effort arm.
Explanation:
In the formula, MA= effort divided by load which makes it less than 1.
This helps by reducing the applied force(effort). It is a speed multiplier.
Hope it helps.
Can someone please help me with this ? Neon gas in a container was heated from 20°C to 120°C. It's new volume is 150ml. What was the original volume ?
Answer:
110 mL
Explanation:
Ideal gas law:
PV = nRT
Assuming the container isn't rigid, and the pressure is constant, then:
V/T = V/T
Plug in values (remember to use absolute temperature).
V / 293 K = 150 mL / 393 K
V = 110 mL
Describe the method you would use to measure the cicrumfrence of a cylinder using a thread and a meter
rule(4mk)
0)
Answer:
I take the thread and wrap it round the cylinder until it goes round the circumference of the cylinder.
Explanation:
I take the thread and wrap it round the cylinder until it goes round the circumference of the cylinder.
I then cut the thread at this length and extend it out on a table or floor.
I then place the length of the thread along the meter rule and mark of the position of its tip and bottom along the meter rule.
The difference between the bottom and top points is the circumference of the cylinder.
If the thread is longer than the meter rule, i mark off where the the length of the meter rule stops along the thread and then place the meter rule at that point and then mark off where the length of the thread stops.
The circumference of the cylinder is then 1 meter plus the extra measurement along the meter rule.
a student pushed a 100 N bicycle over a distance of 15 m in 5 s. calculate the power generated.
The catch in this one is: We don't know how much force the student used to push the bike.
It wasn't necessarily the 100N. That's just the weight of the bike. But you know that you can push a car, a wagon, or a bicycle hard, you can push it not so hard, you can give it a little push, you can give it a big push, you can push it strong, you can push it weak, you can push it medium. The harder you push, the more it'll accelerate, but it's completely up to you how hard you want to push. That's what's so great about wheels ! That's why they were such a great invention ! This is where I made my biggest mistake. This guy came into my store one day and said he's got this great invention, it's definitely going to take off, it'll be a winner for sure, he called it a "wheel". I looked at it, I turned it over and I looked on all sides. I thought it was too simple. I didn't know then it was elegant. I threw him out. I was so dumb. I could have invested money in that guy, today I would have probably more than a hundred dollars.
Anyway, can we figure out how much force the student used to push with ? Stay tuned:
-- The bike covered 15 meters in 5 seconds. Its average speed during the whole push was (15m/5s) = 3 meters/sec.
-- If the bike started out with no speed, and its average speed was 3 m/s, then it must have been moving at 6 m/s at the end of the push.
-- If its speed increased from zero to 6 m/s in 5 seconds, then its acceleration was (6m/s / 5 sec) = 1.2 m/s²
-- The bike's weight is 100N.
(mass) x (gravity) = 100N
Bikemass = (100N) / (9.8 m/s²)
Bikemass = 10.2 kilograms
-- F = m A
Force = (mass) x (acceleration)
Force = (10.2 kg) x (1.2 m/s²)
Force = 12.24 N
-- Work = (force) x (distance)
Work = (12.24 N) x (15 m)
Work = 183.67 Joules
-- Power = (work done) / (time to do the work)
Power = (183.67 joules) / (5 seconds)
Power = 36.73 watts
A pendulum at position A is released and swings through position B to position Con the other side.
B
1. Describe the total mechanical energy at each of the following positions. (3)
A.
B.
C
Explanation:
Given the conditions A,B and C when the pendulum is released, at point A the initial velocity of the pendulum is zero(0), the potential energy stored is maximum(P.E= max),
the conditions can be summarized bellow
point A
initial velocity= 0
final velocity=0
P.E= Max
K.E= 0
point B
initial velocity= maximum
final velocity=maximum
P.E=K.E
point C
initial velocity= min
final velocity=min
P.E= 0
K.E= max
a Porsche 911 accelerates from rest to 27 metre per second due north in 5.8 seconds the mass of the car is 1400 kg what is the magnitude and direction of the average net force
Answer:
The average force has a magnitude 6524 N due north.
Explanation:
The average net force F = ma where m = mass of car = 1400 kg and a = acceleration.
a = (v - u)/t where u = initial velocity of car = 0 m/s (since it starts from rest)
v = final velocity of car = 27 m/s due north and t = time of motion = 5.8 s
a = (27 m/s - 0 m/s)/5.8 s = 27 m/s ÷ 5.8 s = 4.66 m/s
Since the direction of the velocity change is the direction of the acceleration, the acceleration is 4.66 m/s due north.
The average force, F = ma = 1400 kg × 4.66 m/s = 6524 N
Since the acceleration is due north, the average force takes the direction of the acceleration.
So the direction of the average force is due north
The average force has a magnitude 6524 N due north.
coma Narrows Bridge across the Puget Sound collapsed. The bridge was a suspension bridge. The wind blowing through the narrows matched the natural frequency of the bridge. This resulted in a large movement of roadway, which eventually caused the bridge to fail. What characteristic of waves caused the bridge to collapse
Answer:
amplitude
Explanation:
Amplitude is the characteristic of waves which caused the bridge to collapse. Amplitude of a wave is the maximum amount of displacement of a particle occurs in the medium from its rest position. When the frequency of a wave reaches the natural frequency of the bridge, the oscillation of the bridge produce an amplitude where it causing the destruction of the bridge which is called Resonance. So we can say that amplitude is the characteristic of waves which is responsible for the collapse of the bridge.
Answer: C.interference, because constructive interference occurred when the wind frequency matched the natural frequency of the bridge
Explanation:
A transformer is used to light a lamp rated 40w, 240v from a 400v A.C supply. Calculate:
A. The ratio of the number of turns of the primary to the secondary coil.
B. Current drawn from the main circuit if the efficiency of the transformer is 90%.
Answer:1.81
(a) Explanation:the turn ratio= input voltage÷output voltage.
400÷220=1.81.
Don't know how to solve b part...
21. When air is blown into a balloon, it expands equally in all directions. The best explanation for this is (circle the correct answer): A - The gas molecules in the balloon are expanding B - Internal air pressure acts at right angles to the balloon surface. C - As more air is blown in, the temperature increases causing the balloon to expand.
Answer:
C
Explanation:
I would have said B but air pressure acts at ALL angles(directions). C makes sense because the increase in the temperature would cause the molecules to bounce off the walls of the balloon and each other which exerts pressure.
Answer:
C c hagwguawnjaahwbhanwbhsqn2nusbwvwf
1. Find the energy required to melt 255g of ice at 0°C into water at 0°C
Answer:
E = 85170 J (/ 85.2 kJ)
Explanation:
Take the latent heat of fusion of water be 334J / g.
From the equation E = ml,
E = energy required (unknown),
mass m = 255g,
latent heat of fusion l = 334J / g,
E = 255 x 334
E = 85170 J (/ 85.2 kJ)
A student throws a 120 g snowball at 7.5 m/s at the side of the schoolhouse, where it hits and sticks. What is the magnitude of the average force on the wall if the duration of the collision is 0.15 s
Answer:
The magnitude of the average force on the wall during the collision is 6 N.
Explanation:
Given;
mass of snowball, m = 120 g = 0.12 kg
velocity of the snowball, v = 7.5 m/s
duration of the collision between the snowball and the wall, t = 0.15 s
Magnitude of the average force can be calculated by applying Newton's second law of motion;
F = ma
where;
a is acceleration = v / t
a = 7.5 / 0.15
a = 50 m/s²
F = ma
F = 0.12 x 50
F = 6 N
Therefore, the magnitude of the average force on the wall during the collision is 6 N.
What kind of substance can you pour from one container into another without a change in volume
Answer:
Liquids
Explanation:
Liquids take up the shape of the container it is poured into but will never change its volume.
10 advantages of friction
Answer:
1. it helps to change the direction.
2. it helps us to walk on ground.
3. it helps the vechils to break while moving.
4. helps in changing one form of enegry to another form. eg when we rub our hands we feel heat energy.
5. it opposites the force.
6. it helps us to change shape of objects.eg we roll the dough to make it roti.
7. it changes the state of body from rest motion.eg when we push any obj from inclined plane it moves.
i all know is just 7..
Answer the following questions regarding the equation:
N₂ + 3H₂ → 2NH₃
1) indicates what type of reaction is
2) what represents the coefficients 3 and 2 in the previous reaction is done for
3) What would be missing in the previous equation to make it more accurate is
Explanation:
1) This is a synthesis reaction (two or more reactants combine to form a single product).
2) The coefficients are added to balance the reaction.
3) Adding the states of matter (solid, liquid, gas) will make the reaction more precise.
What is the last step in creating an argumentative essay?
outlining
prewriting
researching
revising
Answer:
The answer is Revising
Answer:
D
Explanation:
Revising
An electron moving with a velocity of 5 × 104 m s -1 enters into a uniform electric field and acquires a uniform acceleration of 104 m s -2 in the direction of its initial motion. (i) Calculate the time in which the electron would acquire a velocity double of its initial velocity. (ii) How much distance the electron would cover in this tim
Answer:
(i) t = 5s
(ii) x = 3.75*10^5 m
Explanation:
(i) To calculate the time that the electron takes to reach twice the value of its initial velocity, you use the following formula:
[tex]v=v_o+at[/tex] (1)
vo: initial velocity of the electron = 5*10^4 m/s
v: final velocity of the electron = 2vo = 1*10^5 m/s
a: acceleration of the electron = 1*10^4 m/s^2
You solve the equation (1) for t, and replace the values of the parameters:
[tex]t=\frac{v-v_o}{a}=\frac{1*10^5m/s-5*10^4m/s}{1*10^4m/s^2}=5s[/tex]
The electron takes 5s to reach twice its initial velocity.
(ii) The distance traveled by the electron in such a time is:
[tex]x=v_ot+\frac{1}{2}at^2[/tex] (2)
you replace the values of the parameters in the equation (2):
[tex]x=(5*10^4m/s)(5s)+\frac{1}{2}(1*10^4m/s^2)(5s)^2\\\\x=3.75*10^5m[/tex]
The distance traveled by the electron is 3.75*10^3m/s
Answer part (d) please
Answer:
MARK me brainliest please and follow my page
Explanation:
All you have to do to get the average speed is to calculate the total distance covered and divide it by the total time taken
= 16/18 = 0.88m/s
Average speed = (distance covered) / (time to cover the distance)
For the full 18 seconds described by the graph . . .
Average speed = (16 meters) / (18 seconds)
Average speed = (16 / 18) m/s
Average speed = 0.89 m/s
identify units for volts
Answer:
Volts itself is SI Unit of Electric Potential.
Explanation: