Answer:
The classification is mentioned below for the particular topic.
Explanation:
Whether we position 2 different beakers in such a single beaker through one clean edge of zinc-containing H₃Po₄ and another one with unflushed zinc. The zinc that was washed set to release hydrogen gas way quicker, unlike unventilated zinc.⇒ [tex]3Zn+2H_{3}Po_{4}\rightarrow Zn_{3}(Po_{4})_{2}+3H_{2}[/tex]
Since fresh zinc complicates the cycle since, as a comparison to polluted zinc, there was little contact with either the reaction.Consider the combustion reaction for octane (C8H18), which is a primary component of gasoline.
2C8H18+25O2⟶16CO2+18H2O
How many moles of CO2 are emitted into the atmosphere when 27.6 g C8H18 is burned?
Answer:
[tex]n_{CO_2}=1.93 gCO_2[/tex]
Explanation:
Hello,
In this case, considering the given chemical reaction, we can use the molar mass of octane (114.23 g/mol) and the 2:16 molar ratio with carbon dioxide to compute the emitted moles of CO2 to the atmosphere via the following stoichiometric procedure:
[tex]n_{CO2}=27.6gC_8H_{18}*\frac{1molC_8H_{18}}{114.23gC_8H_{18}} *\frac{16molCO_2}{2molC_8H_{18}} \\\\n_{CO_2}=1.93 gCO_2[/tex]
Which also corresponds to the following mass:
[tex]m_{CO_2}=1.93molCO_2*\frac{44gCO_2}{1molCO_2} \\\\m_{CO_2}=85.0gCO_2[/tex]
Best regards.
The cylinder shown contains 0.79 moles of nitrogen, 0.19 moles of oxygen and 0.02 moles carbon dioxide, a total of 1.00 mole of molecules in the approximate proportion in which they are present in air. Of the three gases, only carbon dioxide is appreciably soluble in the water in the well at the bottom. Assume an equilibrium between dissolved and undissolved carbon dioxide at the beginning and sufficient time lapse to reestablish that equilibrium after the change described. If 0.02 mole of carbon dioxide is forced into the cylinder, the solubility of carbon dioxide ... a) increases by a factor of about 50. b) increases by a factor of about 2. c) increases by 2%. d) remains unchanged. e) decreases.
Answer:
b) increases by a factor of about 2.
Explanation:
Ignore the nitrogen and oxygen. Each gas acts independently of the others.
You have 0.02 mol of CO₂ gas at some pressure in equilibrium with the CO₂ in solution.
According to Graham's Law,
S = kp
That is, the solubility of a gas in a liquid is directly proportional to its partial pressure above the liquid.
If you add another 0.02 mol of CO₂, you have doubled the number of moles.
According to Avogadro's Law, doubling the number of moles doubles the pressure.
According to Graham's Law, doubling the pressure doubles the solubility.
The solubility of CO₂ increases by a factor of two.
Homolysis, or homolytic bond dissociation, produces a very specific type of product under certain reaction conditions. In Part 1, select all the products (in formulae and general chemical terms) that could result from homolysis. In Part 2, select the reaction conditions that are most likely to promote homolysis.
Part 1. Choose all that may occur as possible products of a homolysis reaction.
Choose one or more:_______.
a. hydride ion
b. R3CO
c. Br2
d. H
e. a carbocation
f. H3C
g. H3CO-
h. hydrogen ion
i. a carbon free radical
Part 2. Choose the conditions under which homolysis is likely to occur.
Choose one or more:_______.
a. strong base
b. ultraviolet irradiation
c. high temperature
d. strong acid
e. infrared irradiation
f. low temperature
Answer:
1) R₃CO , H, H₃C, a carbon free radical
2) high temperature, ultraviolet irradiation
Explanation:
1) Homolysis leads to the formation of free radicals (species having a free electron). Thus, answer is :
R₃CO
H
H₃C
a carbon free radical
2) Homolysis require high temperature, ultraviolet irradiation.
Which of the following is NOT one of the types of bonds? A. Ionic B. Metallic C. Covalent D. Valence
Considering the definition of bond and the different type of bonds, valence is not one of the types of bonds.
What is a chemical bondA chemical bond is defined as the force by which the atoms of a compound are held together. These are electromagnetic forces that give rise to different types of chemical bonds.
In other words, a chemical bond is the force that joins atoms to form chemical compounds and confers stability to the resulting compound.
Covalent bondThe covalent bond is the chemical bond between atoms where electrons are shared, forming a molecule. Covalent bonds are established between non-metallic elements, such as hydrogen H, oxygen O and chlorine Cl. These elements have many electrons in their outermost level (valence electrons) and have a tendency to gain electrons to acquire the stability of the electronic structure of noble gas. The shared electron pair is common to the two atoms and holds them together.
Ionic bondAn ionic bond is produced between metallic and non-metallic atoms, where electrons are completely transferred from one atom to another. During this process, one atom loses electrons and another one gains them, forming ions.
Metallic bondMetallic bonds are a type of chemical bond that occurs only between atoms of the same metallic element. In this way, metals achieve extremely compact, solid and resistant molecular structures, since the atoms that share their valence electrons.
SummaryIn summary, valence is not one of the types of bonds. The types of bonds are covalent, ionic and metallic.
Learn more about chemical bonds:
https://brainly.com/question/25385832
https://brainly.com/question/13178368
#SPJ1
The percent errors of your experimental values of the specific heats may be quite large. Identify several sources of experimental error.
Answer:
The various sources of such errors are given below.
Explanation:
Sources of uncertainty or error could include necessary splattering of water leading to reduced cold water density as well as elevated temperatures of equilibration.The temperature might not have been reasonably stable when developers evaluated at every phase of the investigation or research.So that the percentage of someone specific produces heat exploratory value systems inaccuracies can be somewhat massive.
Which example involves a phase change in which heat energy is released by the substance?
Ofreezing ice cream
O cooking a pot of soup
O melting ice under sunlight
O watching frost disappear into air
Answer:
Cooking a pot of soup
Explanation:
id say that because when you freeze ice cream, its already frozen, so no heat is being released. melting ice wouldn't be the answer because, once again, it is already frozen, and no heat is being released.
Answer:
the correct answer is freezing ice cream
Explanation:
i took the test & got this question correct. also, heat energy is released when freezing because there is no heat energy involved.
Use the balanced combustion reaction above to calculate the enthalpy of combustion for C8H16. C8H16(1)= -174.5kJ/mol. I have no clue how to start this question and need help including the formulas so I know how to do it and some step by step commentary.
Answer:
Explanation:
C₈H₁₆ + 12O₂ = 8 CO₂ + 8H₂O.
a )
Heat of formation of C₈H₁₆
[tex]\triangle H_f (C_6H_{16})=-174.5 kJ[/tex]
[tex]\triangle H_f (CO_2)=-393.5 kJ[/tex]
[tex]\triangle H_f (O_2)= 0[/tex]
[tex]\triangle H_f (H_2O)=-285.82 kJ[/tex]
[tex]\triangle H_{reaction} =[/tex] 8 x - 393.5 - 8 x 285.82 + 174.5x 1
= - 5260.06 kJ
b ) Energy required = 2.905 x 10¹⁵kJ
moles of C₈H₁₆ require to be burnt
= 2.905 x 10¹⁵ / 5260.06
= 55.23 x 10¹⁰ moles
= 55.23 x 10¹⁰ x mol weight of C₈H₁₆ g
= 55.23 x 10¹⁰ x 112 g
= 6185.5 x 10¹⁰ g
= 6185.5 x 10⁷ kg
c )
No of litres of CO₂ produced at NTP = 8 x 22.4 x 55.23 x 10¹⁰ L
= 9897.22 x 10¹⁰ L
At 1520 mm of Hg pressure and 250°C
volume of CO₂
= 9897.22 x 10¹⁰ x 760 x ( 273 + 250) / ( 1520 x 273 )
= 9480.3 x 10¹⁰ L .
A 0.4647-g sample of a compound known to contain only carbon, hydrogen, and oxygen was burned in oxygen to yield 0.01962 mol of CO2 and 0.01961 mol of H2O. The empirical formula of the compound was found to be C3H6O2. Show how this was calculated.
What does the empirical formula tell you about the compound?
The molar mass of the actual compound was found to be 222.27g/mol. Find the molecular formula of this compound. What does the molecular formula tell you about the compound?
Can you see what type of functional group this compound could have?
Answer:
See explanation.
Explanation:
Hello,
In this case, we can show how the empirical formula is found by following the shown below procedure:
1. Compute the moles of carbon in carbon dioxide as the only source of carbon at the products:
[tex]n_C=0.01962molCO_2*\frac{1molC}{1molCO_2} =0.01962molC[/tex]
2. Compute the moles of hydrogen in water as the only source of hydrogen at the products:
[tex]n_H=0.01961molH_2O*\frac{2molH}{1molH_2O}=0.03922molH[/tex]
3. Compute the mass of oxygen by subtracting the mass of both carbon and hydrogen from the 0.4647-g sample:
[tex]m_O=0.4647g-0.01962molC*\frac{12gC}{1molC}-0.03922molH*\frac{1gH}{1molH} =0.1900gO[/tex]
4. Compute the moles of oxygen by using its molar mass:
[tex]n_O=0.1900gO*\frac{1molO}{16gO}=0.01188molO[/tex]
5. Divide the moles of carbon, hydrogen and oxygen by the moles of oxygen (smallest one) to find the subscripts in the empirical formula:
[tex]C=\frac{0.01962}{0.01188}=1.65\\ \\H=\frac{0.03922}{0.01188} =3.3\\\\O=\frac{0.01188}{0.01188} =1[/tex]
6. Search for the closest whole number (in this case multiply by 2):
[tex]C_3H_6O_2[/tex]
Moreover, the empirical formula suggests this compound could be carboxylic acid since it has two oxygen atoms, nevertheless, this is not true since the molar mass is 222.27 g/mol, therefore, we should compute the molar mass of the empirical formula, that is:
[tex]M=12*3+1*6+16*2=74g/mol[/tex]
Which is about three times in the molecular formula, for that reason, the actual formula is:
[tex]C_9H_{18}O_6[/tex]
It suggest that the compound has a highly oxidizing character due to the presence of oxygen, therefore, we cannot predict the distribution of the functional groups as it could contain, carboxyl, carbonyl, hydroxyl or even peroxi.
Best regards.
If you start with 512 grams of aluminum and 1147 grams of copper chloride to make aluminum chloride and copper, what is the limiting reagent? 2Al + 3CuCl -> 2AlCl3 + 3Cu
Answer:
Copper (II) chloride.
Explanation:
Hello,
In this case, considering the described reaction which is also given as:
[tex]2Al + 3CuCl_2 \rightarrow 2AlCl_3 + 3Cu[/tex]
For us to identify the limiting reactant we first compute the available moles of aluminium:
[tex]n_{Al}=512gAl*\frac{1molAl}{27gAl}=19.0molAl[/tex]
Next, we compute the consumed moles of aluminium by the 1147 grams of copper (II) chloride by using their 2:3 molar ratio:
[tex]n_{Al}^{consumed}=1147gCuCl_2*\frac{1molCuCl_2}{134.45gCuCl_2}*\frac{2molAl}{3molCuCl_2} =5.69molAl[/tex]
Thereby, we can infer aluminium is in excess since less moles are consumed than available whereas the copper (II) chloride is the limiting reactant.
Best regards.
a solution of unknown molecular substance is prepared by dissolving 0.50g of the unknown in 8.0g of benzene. the solution freezes at 3.9. determine the molar mass of the unknown
Answer:
THE MOLAR MASS OF THE UNKNOWN MOLECULAR SUBSTANCE IS 200 G/MOL.
Explanation:
Mass of the unknown substance = 0.50 g
Freezing point of the solution = 3.9 °C
Freezing point of pure benzene = 5.5 °C
Freezing point dissociation constant Kf = 5.12°C/m
First, calculate the temperature difference between the freezing point of pure benzene and the final solution freezing point.
Change in temperature = 5.5 -3.9 = 1.6 °C
Next is to calculate the number of moles or molarity of the compound that dissolved.
Using the formula:
Δt = i Kf m
Assume i = 1
So,
1.6 °C = 1 * 5.12 * x/ 0.005 kg of benzene
x = 1.6 * 0.008 / 5.12
x = 0.0128 / 5.12
x = 0.0025 moles.
Next is to calculate the molar mass using the formula, molarity = mass / molar mass
Molar mass = mass / molarity
Molar mass = 0.50 g /0.0025
Molar mass = 200 g/mol
Hence, the molar mass of the unknown compound is 200 g/mol
Select the correct answer
What determines the average kinetic energy of the particles in a gas?
ОА
the number of collisions
OB.
the number of particles
OC. the size of the particles
OD. the temperature
Answer:
Temperature
Explanation:
Kinetic energy of gass molecules is directly propotional to the temperature.
Hydrogen bonding between polyamide chains plays an important role in determining the properties of a nylon such as nylon 6,6. Draw the structural formulas for two adjacent chains of nylon 6,6, and show where hydrogen-bonding interactions could occur between them.
Answer:
See figure 1
Explanation:
In the structure of nylon 6,6 we have amide groups. In this functional group, We have a nitrogen bond to hydrogen, so in this bond, we will have a dipole, due to the electronegativity difference. Nitrogen has more electronegativity than hydrogen, therefore a positive dipole would be generated in the hydrogen atom. Additionally, in the carbonyl group (C=O) due to the oxygen, we will have also a dipole, in this case, a negative dipole because the oxygen atom has more electronegativity (compare with carbon).
When we put two strings of nylon 6,6 the positive dipole will interact with the negative dipole and vice-versa and we will obtain the "hydrogen bonds".
See figure 1
I hope it helps!
How did Ernest Rutherford change the atomic model?
A. He showed that the atom could be divided into smaller particles.
B. He showed that electrons were located within an atom's nucleus.
C. He showed that the atom contained both positive and negative
charges
D. He showed that most of an atom's mass was located in the atom's
nucleus.
Answer:
D. He showed that most of an atom's mass was located in the atom's
nucleus.
Explanation:
Ernest Rutherford changed the atomic model because of his experiment which was the gold foil experiment. A beam of alpha particles was aimed at a piece of gold foil, most particles passed through but some were scattered backward which showed that the middle of an atom (nucleus) is the where most of the mass is located.
Rutherford's model of atoms is the improved version of Thomson's model. In the model, it is stated that most of an atom's mass is located in the nucleus. Thus, option D is correct.
What is Rutherford's model?Ernest Rutherford gave the improved atomic model that postulated the failure of Thomson's model. Rutherford's model described the atom to consist of a sub-atomic particle with a positively charged nucleus.
The nucleus is in the center of the atom and had nearly all mass concentrated in it due to the presence of the protons and neutrons. The electrons were called negatively charged species that were present in the shells around the nucleus like the planets around the Sun.
Therefore, Rutherford's model showed mass concentrated in the center of the nucleus.
Learn more about Rutherford's model here:
https://brainly.com/question/11847851
#SPJ5
If the vinegar were measured volumetrically (e.g., a pipet), what additional piece of data would be needed to complete the calculations for the experiment?
Answer:
the density if vinegar will also be needed
Explanation:
Because this is an experiment of volumetric analysis
Write the balanced equation for the half reaction for the single replacement
reaction involving iron. This equation considers only the iron cations and the
elemental iron, and it shows how the iron cation (Fe3+) is reduced to become
elemental iron (Fe). How many electrons are represented in this equation? How
does this number of electrons help show a balance of charge on both sides of the
equation? (3 points)
Answer:
Explanation:
The half reaction required
Fe⁺³ + 3 e = Fe
This is a balanced equation
No of atom of Fe on both side = 1
Total charge on the left side = + 3 - 3 = 0
Total charge on the right = 0
three electrons will be required to neutralise +3 charge on the single iron ion .
merits of modern periodic table?
Answer:
Merits of modern periodic table:The wrong position of some elements like argon, potassium, cobalt and nickel due to atomic weights have been solved by arranging the elements in the order of increasing atomic number without changing their own places.The isotopes of some element have the same atomic numbers. Therefore, they find the same position in periodic table.It separates metals from non-metals.The groups of the table are divided into sub groups A and B due to their dissimilar properties which make the study of elements specific and easier.The representative and transition elements have been separated.Hope this helps...
Good luck on your assignment...
Identify each of the following half-reactions as either an oxidation half-reaction or a reduction half-reaction.
H2(g) → 2H+(aq) + 2e- oxidation
Cu2+(aq) → + 2e-Cu(s) reduction
Write a balanced equation for the overall redox reaction. Use smallest possible integer coefficients.
Answer:
H₂(g) + Cu²⁺(aq) → 2H⁺(aq) + Cu(s)
Explanation:
In a redox reaction, one half-reaction is the oxidation (where the atom loss electrons) whereas the other reaction is the reduction (Where the atom is gaining electrons.
In the reactions:
H₂(g) → 2H⁺(aq) + 2e⁻ oxidation
Here, the reaction is written as the oxidation because the hydrogen H₂ is in oxidation state 0 and H⁺ in +1. That means each atom is loosing one electron.
Cu²⁺(aq) + 2e⁻ → Cu(s) reduction
And here, the Cu²⁺ is in +2 oxidation state and after the reaction is in Cu(s) 0 state. Thus, each atom is gaining 2 electrons.
The sum of both reactions is:
H₂(g) + Cu²⁺(aq) + 2e⁻ → 2H⁺(aq) + 2e⁻ + Cu(s)
Subtracting the electrons in both sides of the reaction:
H₂(g) + Cu²⁺(aq) → 2H⁺(aq) + Cu(s)Dry ice is solid carbon dioxide. A 0.050-g sample of dry ice is placed in an evacuated 4.6-L vessel at 30 °C. Calculate the pressure inside the vessel after all the dry ice has been converted to CO2 gas.
The answer is 6.1*10^-3 atm.
The pictures and explanations are there.
Ideal gas law is valid only for ideal gas not for vanderwaal gas. The equation used to solve this is PV=nRT. Therefore the pressure of carbon dioxide gas is 0.005 atm.
What is ideal gas equation?Ideal gas equation is the mathematical expression that relates pressure volume and temperature.
Mathematically the relation between Pressure, volume and temperature can be given as
PV=nRT
where,
P = pressure of carbon dioxide gas=?
V= volume of carbon dioxide gas=4.6L
n =number of moles of carbon dioxide gas = given mass ÷Molar mass
=0.050g÷44g/mol
=0.001mole
T =temperature of carbon dioxide gas=303K
R = Gas constant = 0.0821 L.atm/K.mol
substituting the given values, we get
P×4.6L=0.001×0.0821×303
=0.005 atm
Therefore the pressure of carbon dioxide gas is 0.005 atm.
To learn more about ideal gas equation, here:
https://brainly.com/question/14826347
#SPJ5
A 10.0 mL sample of calcium hydroxide solution required 26.85 mL of 0.225 M hydrochloric acid for neutralization. The balanced equation is:
Answer:
[tex]C_{base}=0.302M[/tex]
Explanation:
Hello,
In this case, we can evidence that when calcium hydroxide solution reacts with hydrochloric acid solution, the balanced neutralization reaction turns out:
[tex]2HCl(aq)+Ca(OH)_2\rightarrow CaCl_2(aq)+2H_2O(l)[/tex]
Moreover, the concentration of neutralized calcium hydroxide can be computed by using the 2:1 mole ratio between the base and the acid:
[tex]C_{acid}V_{acid}=2*C_{base}V_{base}\\\\C_{base}=\frac{C_{acid}V_{acid}}{2*V_{base}} =\frac{0.225M*26.85mL}{2*10.0mL}\\ \\C_{base}=0.302M[/tex]
Regards.
If 3.10 moles of P4010 reacted with excess water, how many grams of H3PO4
would be produced?
P4010 +6H20 + 4H3PO4
You Answered
126 g
0 0.007918
Correct Answer
O 1220 g
0.1278
75.98
Answer:
1.22 × 10³ g
Explanation:
Step 1: Write the balanced equation
P₄O₁₀ + 6 H₂O ⇒ 4 H₃PO₄
Step 2: Calculate the moles of H₃PO₄ produced by 3.10 moles of P₄O₁₀
The molar ratio of P₄O₁₀ to H₃PO₄ is 1:4. The moles of H₃PO₄ produced are 4/1 × 3.10 mol = 12.4 mol
Step 3: Calculate the mass corresponding to 12.4 moles of H₃PO₄
The molar mass of H₃PO₄ is 97.99 g/mol.
[tex]12.4 mol \times \frac{97.99g}{mol} = 1.22 \times 10^{3} g[/tex]
4Ga + 3S2 → 2Ga2S3
1. How many grams of Gallium burned if 200.0 grams of Gallium(III)Sulfide formed?
Answer:
118.4 g
Explanation:
4 Ga + 3 S₂ → 2 Ga₂S₃
According to the equation, for every 4 moles of gallium burned, 2 moles of gallium(III) sulfide.
First, convert grams of Ga₂S₃ to moles. The molar mass is 235.641 g/mol.
(200.0 g)/(235.641 g/mol) = 0.8487 mol
Use the relationship above to convert moles of Ga₂S₃ to moles of Ga.
(0.8487 mol Ga₂S₃) × (4 mol Ga)/(2 mol Ga₂S₃) = 1.697 mol Ga
Convert moles of Ga to grams. The molar mass is 69.723 g/mol.
(1.697 mol Ga) × (69.723 g/mol) = 118.4 g
What is a ‘control’ in an experiment?
A. A version of the experiment that is unchanged to make sure the experimental data is not due to chance.
B. A person who oversees the experiment to make sure it is following proper procedures.
C. The variable controlled by the scientist to affect the dependent variable.
D. The name for the set of independent and dependent variables that will be controlled by the scientist.
need help asap got 1 minute
D. The name for the set of independent and dependent variables that will be controlled by the scientist.
The statement, that describes the ‘control’ in an experiment is "the name for the set of independent and dependent variables that will be controlled by the scientist."
What is a control in experiment?A control is an element in an experiment that remains intact or unaffected by other variables. An experiment or observation aiming to minimise the influence of variables other than the independent variable is referred to as a scientific control. It serves as a standard or point of reference against which other test findings are measured.
In a scientific experiment, an independent variable is the variable that is modified or manipulated in order to assess the effects on the dependent variable. In a scientific experiment, the dependent variable is the variable that is being tested and measured. The designation given to the set of independent and dependent variables that the scientist will regulate.
Hence the correct option is D.
Learn more about control in an experiment here
https://brainly.in/question/19374703
#SJP3
Chemistry question. Image attached.
Answer:
The answer to your question is given below
Explanation:
The balanced equation for the reaction is given below:
CaO(s) + CH4(g) + 2H2O(g) <=> CaCO3(s) + 4H2(g)
1. Writing an expression for the equilibrium constant, K.
The equilibrium constant, K for a reaction is simply the ratio of the concentration of the products raised to their coefficient to the concentration of the reactants raised to their coefficient.
Thus, we can write the equilibrium constant, K for the reaction as follow:
CaO(s) + CH4(g) + 2H2O(g) <=> CaCO3(s) + 4H2(g)
K = [CaCO3] [H2]⁴ / [CaO] [CH4] [H2O]²
2. Based on the value of K, more products will be in the equilibrium mixture since the value of K is a positive large number.
Answer these questions, please.
Answer:
1a. 0.89 gcm¯³
1b. Yes.
1c. Tetrahydrofuran.
2. 0.54 g/mL
Explanation:
1. Data obtained from the question include:
Volume = 0.988 L = 988 cm³
Mass = 879 g
1a. Determination of the density
Density = mass /volume
Density = 879/ 988
Density = 0.89 gcm¯³
Therefore, the density of the liquid is 0.89 gcm¯³
1b. From the given data, it is possible to determine the identity of the liquid.
1c. The density of the liquid is 0.89 gcm¯³. Comparing the density of the liquid obtained with those given in the table, the liquid is tetrahydrofuran
2. Data obtained from the question include:
Mass of empty cylinder = 5.25 g
Mass of cylinder and sodium thiosulfate = 75.82 g
Volume = 130.63 mL
Next, we shall determine the mass of sodium thiosulfate. This can be obtain as follow:
Mass of empty cylinder = 5.25 g
Mass of cylinder and sodium thiosulfate = 75.82 g
Mass of sodium thiosulfate =.?
Mass of sodium thiosulfate = Mass of cylinder and sodium thiosulfate – Mass of empty cylinder
Mass of sodium thiosulfate = 75.82 – 5.25
Mass of sodium thiosulfate = 70.57 g
Finally, we shall determine the concentration of the sodium thiosulfate as follow:
Mass = 70.57 g
Volume = 130.63 mL
Concentration =?
Concentration = mass /volume
Concentration = 70.57/130.63
Concentration = 0.54 g/mL
The concentration of the solution is 0.54 g/mL
Why is the separation of mixtures into pure or relatively pure substances so important when performing a chemical analysis?
Answer:
It is important to separate mixture into pure or relatively pure substances when performing a chemical analysis SO AS TO KNOW THE PROPERTIES COMING FROM EACH PART MIXTURE WHICH MAY INTERFERE WITH THE SEPARATION.
Explanation:
In chemistry, Mixture is the combination of two or more substances which are not combine chemically.
Mixture contain different substances with different physical and chemical properties.
It is important to purify the substances in a mixture so as to identify what properties are coming from each mixture and also some part of the mixture can interfere with the properties of other mixture present for skewing analysis.
When silver nitrate is added to the Fe/SCN equilibrium, why is the colorless intense and a precipitate forms?
Answer:
Here's what I get
Explanation:
You have an equilibrium reaction between Fe³⁺/ SCN⁻ and FeSCN²⁺.
[tex]\underbrace{\hbox{Fe$^{3+}$}}_{\text{pale yellow-green}} +\underbrace{\hbox{SCN$^{-}$}}_{\text{colourless}} \, \rightleftharpoons \, \underbrace{\hbox{Fe(SCN)$^{2+}$}}_{\text{deep blood red}} \\[/tex]
When you add AgNO₃, the Ag⁺ reacts with the SCN⁻. It forms a colourless precipitate of Ag(SCN).
Ag⁺(aq) + SCN⁻(aq) ⟶ AcSCN(s)
According to Le Châtelier's Principle, when we apply a stress to a system at equilibrium, the system will respond in a way that tends to relieve the stress.
If you add Ag⁺ to the equilibrium solution, it removes the SCN⁻ [as an Ag(SCN) precipitate].
The system responds by trying to replace the missing SCN⁻:
The Fe(SCN)²⁺ dissociates to form SCN⁻, so the position of equilibrium shifts to the left,
You now have more Fe³⁺ and SCN⁻ and less of the highly coloured Fe(SCN)²⁺ at the new equilibrium.
The deep red colour becomes less intense.
When silver nitrate is added to the Fe/SCN equilibrium, the colourless intense and precipitate forms because it settles at the bottom.
What is chemical equilibrium?Chemical equilibrium is the condition in the course of a reversible chemical reaction in which no net change in the amounts of reactants and products occurs.
The added silver nitrate, [tex]AgNO_3[/tex] , effectively removes thiocyanate ions, [tex]SCN^{-1}[/tex], from the equilibrium system via a precipitation reaction when the [tex]Ag^{+1}[/tex] combines with [tex]SCN^{-1}[/tex] to produce insoluble silver thiocyanate, AgSCN, which settles to the bottom of the test tube.
Ag⁺(aq) + SCN⁻(aq) ⟶ AcSCN(s)
According to Principle, when we apply stress to a system at equilibrium, the system will respond in a way that tends to relieve the stress.
Adding Ag⁺ to the equilibrium solution, it removes the SCN⁻ [as an Ag(SCN) precipitate].
The system responds by trying to replace the missing SCN⁻:
The Fe(SCN)²⁺ dissociates to form SCN⁻, so the position of equilibrium shifts to the left,
You now have more Fe³⁺ and SCN⁻ and less of the highly coloured Fe(SCN)²⁺ at the new equilibrium.
The deep red colour becomes less intense.
Learn more about chemical equilibrium here:
https://brainly.com/question/4289021
#SPJ5
Erbium metal (Er) can be prepared by reacting erbium(III) fluoride with magnesium; the other product is magnesium fluoride. Write and balance the equation.
Answer:
2ErF3 + 3Mg → 2Er + 3MgF2
Explanation:
Erbium metal is a member of the lanthaniod series. It reacts with halogens directly to yield erbium III halides such as erbium III chloride, Erbium III fluoride etc.
Erbium metal (Er) can be prepared by reacting erbium(III) fluoride with magnesium; the products are erbium metal and magnesium fluoride. This is a normal redox process in which the Erbium metal is reduced while the magnesium is oxidized. The balanced reaction equation of this process is; 2ErF3 + 3Mg → 2Er + 3MgF2
What is the Percent composition of a pure substance that contains 7.22g of nickel, 2.53g of phosphorus and 5.25 g oxygen
Answer:
Explanation:
Total mass of substance = 7.22 + 2.53 + 5.25 g
= 15 g
percentage of nickel = 7.22 x 100 / 15
= 48.13
= 48.1 %
percentage of phosphorus = 2.53 x 100 / 15
= 16.87%
= 16.9%
percentage of oxygen = 5.25 x 100 / 15
= 35 %
The percent composition of the pure substance should be 48.1%, 16.9%, and 35%.
Calculation of the percent composition:
Total mass of substance = 7.22 + 2.53 + 5.25 g
= 15 g
Now
percentage of nickel = 7.22 x 100 / 15
= 48.13
= 48.1 %
And,
percentage of phosphorus = 2.53 x 100 / 15
= 16.87%
= 16.9%
And, finally
percentage of oxygen = 5.25 x 100 / 15
= 35 %
learn more about oxygen here: https://brainly.com/question/11820632
The density of a pure substance is its mass per unit volume. The density of cresol has been measured to be 1024 g/L . Calculate the mass of 405mL of cresol.
Answer: The mass of 405 ml of cresol is 415 grams
Explanation:
Density is defined as the mass contained per unit volume.
[tex]Density=\frac{mass}{volume}[/tex]
Given : Density of cresol = 1024 g/L
Volume of cresol = 405 ml = 0.405 L ( 1L=1000ml)
Putting in the values we get:
[tex]1024g/L=\frac{mass}{0.405L}[/tex]
[tex]mass=1024g/L\times 0.405L=415g[/tex]
Thus mass of 405 ml of cresol is 415 grams
The half-life of element X is 500 years. If there are initially 8 g of X, how much will remain after 1500 years
Answer:
1 g
Explanation:
From the formula;
N/No = (1/2)^t/t1/2
Where;
N= mass of radioactive element left after a time t = the unknown
No= mass of radioactive element originally present in the sample = 8g
t= time taken for N mass of the sample to remain = 1500
t1/2= half-life of the radioactive element = 500 years
Substituting values, we have;
N/8 = (1/2)^1500/500
N/8 = (1/2)^3
N/8 = 1/8
N= 1/8 ×8
N= 1 g
Therefore; mass of radioactive element left after 1500 years is 1 g