Answer:
Ions are formed when the number of protons in an atom does not equal the number of electrons. If more protons are present, the ion is positive and is known as a cation; if more electrons are present, the ion is negative and referred to as an anion. Ions are highly reactive species.
Explanation:
Answer:
An atom becomes charged when the number of protons does not equal the number of electrons. For example, if an element has six protons but only five electrons, the net charge of the element is +1. Conversely, if an element has six protons but seven electrons, then the net charge of the element is -1.
Explanation:
Iron and vanadium both have the BCC crystal structure and V forms a substitutional solid solution in Fe for concentrations up to approximately 20 wt.% V at room temperature. Determine the concentration in weight percent of V that must be added to iron to yield a unit cell edge length of 0.289 nm.
Answer:
Explanation:
To find the concentration; let's first compute the average density and the average atomic weight.
For the average density [tex]\rho_{avg}[/tex]; we have:
[tex]\rho_{avg} = \dfrac{100}{ \dfrac{C_{Fe} }{\rho_{Fe}} + \dfrac{C_v}{\rho_v} }[/tex]
The average atomic weight is:
[tex]A_{avg} = \dfrac{100}{ \dfrac{C_{Fe} }{A_{Fe}} + \dfrac{C_v}{A_v} }[/tex]
So; in terms of vanadium, the Concentration of iron is:
[tex]C_{Fe} = 100 - C_v[/tex]
From a unit cell volume [tex]V_c[/tex]
[tex]V_c = \dfrac{n A_{avc}}{\rho_{avc} N_A}[/tex]
where;
[tex]N_A[/tex] = number of Avogadro constant.
SO; replacing [tex]V_c[/tex] with [tex]a^3[/tex] ; [tex]\rho_{avg}[/tex] with [tex]\dfrac{100}{ \dfrac{C_{Fe} }{\rho_{Fe}} + \dfrac{C_v}{\rho_v} }[/tex] ; [tex]A_{avg}[/tex] with [tex]\dfrac{100}{ \dfrac{C_{Fe} }{A_{Fe}} + \dfrac{C_v}{A_v} }[/tex] and
[tex]C_{Fe}[/tex] with [tex]100-C_v[/tex]
Then:
[tex]a^3 = \dfrac { n \Big (\dfrac{100}{[(100-C_v)/A_{Fe} ] + [C_v/A_v]} \Big) } {N_A\Big (\dfrac{100}{[(100-C_v)/\rho_{Fe} ] + [C_v/\rho_v]} \Big) }[/tex]
[tex]a^3 = \dfrac { n \Big (\dfrac{100 \times A_{Fe} \times A_v}{[(100-C_v)A_{v} ] + [C_v/A_Fe]} \Big) } {N_A \Big (\dfrac{100 \times \rho_{Fe} \times \rho_v }{[(100-C_v)/\rho_{v} ] + [C_v \rho_{Fe}]} \Big) }[/tex]
[tex]a^3 = \dfrac { n \Big (\dfrac{100 \times A_{Fe} \times A_v}{[(100A_{v}-C_vA_{v}) ] + [C_vA_Fe]} \Big) } {N_A \Big (\dfrac{100 \times \rho_{Fe} \times \rho_v }{[(100\rho_{v} - C_v \rho_{v}) ] + [C_v \rho_{Fe}]} \Big) }[/tex]
Replacing the values; we have:
[tex](0.289 \times 10^{-7} \ cm)^3 = \dfrac{2 \ atoms/unit \ cell}{6.023 \times 10^{23}} \dfrac{ \dfrac{100 (50.94 \g/mol) (55.84(g/mol)} { 100(50.94 \ g/mol) - C_v(50.94 \ g/mol) + C_v (55.84 \ g/mol) } }{ \dfrac{100 (7.84 \ g/cm^3) (6.0 \ g/cm^3 } { 100(6.0 \ g/cm^3) - C_v(6.0 \ g/cm^3) + C_v (7.84 \ g/cm^3) } }[/tex]
[tex]2.41 \times 10^{-23} = \dfrac{2}{6.023 \times 10^{23} } \dfrac{ \dfrac{100 *50*55.84}{100*50.94 -50.94 C_v +55.84 C_v} }{\dfrac{100 * 7.84 *6}{600-6C_v +7.84 C_v} }[/tex]
[tex]2.41 \times 10^{-23} (\dfrac{4704}{600+1.84 C_v})=3.2 \times 10^{-24} ( \dfrac{284448.96}{5094 +4.9 C_v})[/tex]
[tex]\mathbf{C_v = 9.1 \ wt\%}[/tex]
In addition to liquid precipitation, which are present when freezing rain occurs?
ice pellets
snowflakes
cold surfaces
warm temperatures
Answer:
I believe the correct answer is cold surfaces.
Explanation:
Answer:
C
Explanation:
A student dissolves of aniline in of a solvent with a density of . The student notices that the volume of the solvent does not change when the aniline dissolves in it. Calculate the molarity and molality of the student's solution. Be sure each of your answer entries has the correct number of significant digits.
Answer:
Molarity: 0.21M
Molality: 0.20m
Explanation:
...dissolves 3.9g of aniline (C6H5NH2) in 200.mL of a solvent with a density of 1.05 g/mL...
To solve this question, we need to find the moles of aniline in 3.9g using its molar mass. Then, we need to find the kg and Liters of solution in order to find molarity (Moles/L solution) and molality (Moles/kg of solvent):
Moles aniline:
Molar mass:
6C: 6* 12.01g/mol = 72.06g/mol
7H: 7*1.008g/mol = 7.056g/mol
N: 1*14.007g/mol = 14.007g/mol
72.06g/mol+7.056g/mol+14.007g/mol = 93.123g/mol
Moles of 3.9g: 3.9g * (1mol / 93.123g) = 0.04188moles
Liters solution:
200mL * (1L / 1000mL) = 0.200L
kg solvent:
200mL * (1.05g/mL) * (1kg/1000g) = 0.210L
Molarity:
0.04188mol / 0.200L = 0.21M
Molality:
0.04188mol / 0.210L =0.20m
If 9.5 × 10²⁵ molecules of CO₂ are produced in a combustion reaction, what is the mass in kg of CO₂ that is produced?
Answer:
6.9428 kg of CO2
Explanation:
1) Use Avogadro's number that states 1 mole = 6.022 x 10^23 particles. Convert 9.5 x 10^25 molecules into moles.
9.5 x 10^25 CO2 molecules[tex]x\frac{1 mole CO2}{6.022 x 10^23}[/tex] = 157.75 moles CO2
2) Convert 157.75 moles of CO2 into grams. CO2's molar mass is 44.01g.
[tex]157.75moles CO2[/tex] [tex]x \frac{44.01g/mol}{1 mole CO2}[/tex] = 6942.79g
3) Convert 6942.79 grams into kilograms (divide by 1000):
6.9428 kg
A chemist adds 0.60L of a 0.20/molL sodium thiosulfate Na2S2O3 solution to a reaction flask. Calculate the millimoles of sodium thiosulfate the chemist has added to the flask. Round your answer to 2 significant digits. (in mmol)
Answer:
1.2×10² mmole of Na₂S₂O₃
Explanation:
From the question given above, the following data were obtained:
Volume = 0.6 L
Molarity = 0.2 mol/L
Mole of Na₂S₂O₃ =?
Molarity is simply defined as the mole of solute per unit litre of water. Mathematically, it is expressed as:
Molarity = mole /Volume
With the above formula, we can obtain the number of mole of Na₂S₂O₃ in the solution as illustrated below:
Volume = 0.6 L
Molarity = 0.2 mol/L
Mole of Na₂S₂O₃ =?
Molarity = mole /Volume
0.2 = Mole of Na₂S₂O₃ / 0.6
Cross multiply
Mole of Na₂S₂O₃ = 0.2 × 0.6
Mole of Na₂S₂O₃ = 0.12 mole
Finally, we shall convert 0.12 mole to millimole (mmol). This can be obtained as follow:
1 mole = 1000 mmol
Therefore,
0.12 mole = 0.12 mole × 1000 mmol / 1 mole
0.12 mole = 120 = 1.2×10² mmole
Thus, the chemist added 1.2×10² mmole of Na₂S₂O₃
Calculate the molarity (M) if 3.35g of H3PO4 is dissolved in water to give a total volume of 200mL
Answer:
0.171 M
Explanation:
Step 1: Given data
Mass of H₃PO₄ (solute): 3.35 gVolume of solution (V): 200 mLStep 2: Calculate the moles of solute
The molar mass of H₃PO₄ is 97.99 g/mol.
3.35 g × 1 mol/97.99 g = 0.0342 mol
Step 3: Convert "V" to liters
We will use the conversion factor 1 L = 1000 mL.
200 mL × 1 L/1000 mL = 0.200 L
Step 4: Calculate the molarity of the solution
We will use the definition of molarity.
M = moles of solute / liters of solution
M = 0.0342 mol/0.200 L = 0.171 M
A container holds 100.0 mL of nitrogen at 21° C and a pressure of 736 mm Hg. What will be its volume if the temperature increases by 35° C?
Answer:
V₂ = 104.76 mL
Explanation:
Given data:
Initial volume = 100.0 mL
Initial temperature = 21°C (21 + 273.15 K = 294.15 K)
Final temperature = 35°C (35 + 273.15 K = 308.15 k)
Final volume = ?
Solution:
Charles Law:
According to this law, The volume of given amount of a gas is directly proportional to its temperature at constant number of moles and pressure.
Mathematical expression:
V₁/T₁ = V₂/T₂
V₁ = Initial volume
T₁ = Initial temperature
V₂ = Final volume
T₂ = Final temperature
Now we will put the values in formula.
V₁/T₁ = V₂/T₂
V₂ = V₁T₂/T₁
V₂ =100.0 mL × 308.15 K / 294.15 K
V₂ = 30815 mL.K /294.15 K
V₂ = 104.76 mL
identify which element is oxidized and which element is reduced.
PLZ HELPP...
Photosynthesizing organisms use ____
to produce glucose.
Answer: Photosynthesizing organisms use carbon dioxide and water to produce glucose.
Explanation:
Photosynthesis is a phenomenon in which green plants containing chlorophyll use sunlight as a source of energy to convert carbon dioxide and water to form glucose and oxygen.
Photosynthesis is the process used by plants, algae and certain bacteria to convert energy from sunlight and turn it into chemical energy in the form of glucose which is used a s a source of energy by many organisms.
[tex]6CO_2+6H_2O\overset{sunlight}\rightarrow C_6H_{12}O_6+6O_2[/tex]
The gas carbon dioxide is a pure substance. Which of the following is true about carbon dioxide? (5 points)
Select one:
a. Carbon and oxygen are chemically bonded in it.
b. Carbon and oxygen retain their original identity in it.
c. It can be separated into carbon and oxygen using physical methods.
d. The proportion of carbon and oxygen is different in different samples of the gas.
Answer:
Carbon and oxygen are chemically bonded in it.
Explanation:
The other answer choices do not apply for compounds, but rather for mixtures instead.
Use this equation for the next question:
2NaOH + H2SO4 ® Na2SO4 + 2H20
If a reaction produces 0.75 moles Na2SO4, how many moles of NaOH were used?
0.75 moles NaOH
2 moles NaOH
.375 moles NaOH
1.5 moles NaOH
helpppp nowww plssss nowww!!
Problem 3 A sample of 2.37 moles of an ideal diatomic gas experiences a temperature increase of 65.2 K at constant volume. (a) Find the increase in internal energy if only translational and rotational motions are possible. (b) Find the increase in internal energy if translational, rotational, and vibrational motions are possible. (c) How much of the energy calculated in (a) and (b) is translational kinetic energy?
Answer:
a) the increase in internal energy is 3211.78 J
b) dU = 3854.14 J
c) dU[tex]_{T}[/tex] = 1927.06 J
Explanation:
Given the data in question;
Foe a diatomic gas, the degree of freedom are as follow;
lets consider the positional degree of freedom
transitional df = 3
rotational df = 2
vibrational ff = 1
now, the internal energy given by;
U = Nf × 1/2NKT = Nf×1/2×nRT
where Nf is the number of degree of freedom
N is Number of atoms or molecules
n = number of molecules
L is Boltzmann constant
R is universal gas constant
so change in internal energy , change in T is given by
dU = Nf × 1/2 × nT dT
n = 2.37 moles
dT = 65.2 K
R = 8.314 J/mol.J
a)
Find the increase in internal energy if only translational and rotational motions are possible
since rotational and transitional motion are involved ;
Nf = 3(trasitional) + 2(rotational) = 5
so,
dU = 5 × 1/2 × nRdT
we substitute
dU = 5 × 0.5 × 2.37 × 8.314 × 65.2
dU = 3211.78 J
Therefore, the increase in internal energy is 3211.78 J
b)
Find the increase in internal energy if translational, rotational, and vibrational motions are possible.
Nf = 3 + 2 + 1 = 6
dU = 6 × 1/2 × nRdT
dU = 6 × 0.5 × 2.37 × 8.314× 65.2
dU = 3854.14 J
c)
How much of the energy calculated in (a) and (b) is translational kinetic energy?
dU[tex]_{T}[/tex] = 3 × 0.5 × 2.37 × 8.314 × 65.2
dU[tex]_{T}[/tex] = 1927.06 J
Three resonance structures of the given anion are possible. One is given, but it is incomplete. Complete the given structure by adding nonbonding electrons and formal charges. Draw the two remaining resonance structures (in any order), including nonbonding electrons and formal charges. Omit curved arrows.
Answer:
Explanation:
The missing incomplete resonance structure is attached in the image below. From there, we can see the addition of the nonbonding electrons and its' formal charge which makes the resonance structure a complete resonance structure. The others two resonance structure that can be derived from the complete structure is also shown in the image. Out of these three structures, the structure that contributes most to the hybrid is the structure with the negative charge on the oxygen.
An ionic compound has a generic formula of QR2.
Which elements could the Q and R represent?
Once you choose an answer, check it by plugging those elements into the QR2 formula to see if it looks right.
Q= Sodium R= Oxygen
Q= Magnesium R= Chlorine
Q= Oxygen R= Sodium
Q= Chlorine R= Magnesium
Answer:
Q= Magnesium R= Chlorine
Explanation:
The element Q should be magnesium and R is chlorine.
An ionic compound is a compound that is formed by the combination of a metal and non-metal. Such bonds forms when there is a transfer of electrons from the metals to the non-metals. This leaves a net positive charge on the metal and a negative charge on the non-metal.
The electrostatic attraction leads to the formation of the bond.
To solve this problem, the hypothetical compound is QR₂
Mg Cl
2 8 2 2 8 7
So, Mg transfers 2 electrons to two atoms of chlorine.
This leads to the formation of the compound MgCl₂
Which of the following is the poorest conductor of electricity?
Calcium (Ca)
Silicon (Si)
Fluorine (F)
Sodium (Na)
Cobalt (Co)
Answer:
Fluorine (F)
Explanation:
The poorest conductor of electricity from the given choices is fluorine. This is because fluorine is a non - metal.
Like other non - metals, fluorine does not conduct electricity.
Only metals are known to conduct electricity and heat readily.
Semi - metals like silicon will conduct electricity under specific condition.
The free mobile electrons in metals makes it easy for them propagate electricity
0
Which is not one of Earth's layers?
A А
crust
B)
inner core
mantle
D
ocean
The ocean is not a part of Earth's layers.
Answer:
Ocean
Explanation:
Suppose a chemical engineer studying a new catalyst for the Haber reaction finds that liters per second of dinitrogen are consumed when the reaction is run at and the dinitrogen is supplied at . Calculate the rate at which ammonia is being produced. Give your answer in kilograms per second. Be sure your answer has the correct number of significant digits.
The question is incomplete. Here is the complete question.
In the Haber reaction, patented by German chemist Fritz Haber in 1908, dinitrogen gas combines with dihydrogen gas to produce gaseous ammonia. This reaction is now the first step taken to make most of the world's fertilizer. Suppose a chemical engineer studying a new catalyst for the Haber reaction finds that 505. liters per second of dinitrogen are consumed when the reaction is run at 172.°C and 0.88 atm. Calculate the rate at which ammonia is being produced. Give your answer in kilogram per second. Be sure your answer has the correct number of significant digits.
Answer: Rate = 0.41 kg/s
Explanation: The balanced Haber reaction is
[tex]N_{2}+3H_{2}\rightarrow2NH_{3}[/tex]
As all the components are gases, we can use Ideal Gas Law, which relates Pressure (P), Volume (V), Temperature (T) and Moles (n) in the following formula:
PV = nRT
where
R is gas constant and, in this case, is R = 0.082 L.atm.K⁻¹mol⁻¹
T is in Kelvin
Converting Celsius in Kelvin:
T = 273 + 172
T = 445 K
Calculating moles
[tex]n=\frac{PV}{RT}[/tex]
[tex]n=\frac{0.88(505)}{0.082(445)}[/tex]
n = 12.18 moles
According to the balanced equation, for 1 mol of dinitrogen gas consumed, 2 moles of ammonia is produced.
With 12.18 moles of dinitrogen, the reaction will result in
2(12.18) = 24.36 moles of ammonia
Molar mass of ammonia is M = 17.031 g/mol.
In 24.36 moles, there are
[tex]m=n.M[/tex]
m = 24.36.17.031
m = 414.87 grams
Since it's asking in kilograms: m = 0.41 kg.
In the beginning, it is said that dinitrogen gas is consumed at a rate of liters per second. So, the production rate of ammonia will be 0.41 kg/s.
Calculate the percent composition (percent by mass of each element) of NH4Cl.
Round to the nearest ONES place ((example: 12.34% = 12%))
Answer:
[tex]\%N=26.2\%\\\\\%H=7.5\%\\\\\%Cl=66.3\%[/tex]
Explanation:
Hello!
In this case, since the calculation of the percent composition of an element in a chemical compound is computing considering its atomic mass, subscript in the formula and molecular mass of the compound it is; for nitrogen, hydrogen and chlorine we have that ammonium chloride has a molar mass of 53.49 g/mol so the percent compositions are:
[tex]\%N=\frac{14.01*1}{53.49}*100\% =26.2\%\\\\\%H=\frac{1.01*4}{53.49}*100\% =7.5\%\\\\\%Cl=\frac{35.45*1}{53.49}*100\% =66.3\%[/tex]
Best regards!
A sample of PCl5 weighting 2.69 gram was placed in 1.00 Litter container and completely vaporized at 250C. The pressure observed at that temperature was 1.00 atm. The possibility exists that some of the PCl5 dissociated according to PCl5 (g) ! PCl3 (g) Cl2 (g) . What must be the partial pressures of PCl5 PCl3 and Cl2 under these experimental conditions
Answer:
Partial pressures:
PCl₅ = 0.558 atm
PCl₃ = 0.22 atm
Cl₂ = 0.22 atm
Explanation:
From the given information:
The number of moles of PCl₅ associated with the evaporation is:
[tex]n_{PCl_5}= \dfrac {weight \ of \ PCl_5} {M.Wt. \ of \ PCl_5}[/tex]
[tex]n_{PCl_5}= \dfrac {2.69 \ g} {208.5 \ g/mol}[/tex]
[tex]n_{PCl_5}= 0.013 \ mol[/tex]
Temperature of the gas = 250° C = (250 + 273.15) K
= 523.15 K
Using the Ideal gas equation to determine the pressure exerted by the completely vaporized PCl₅
PV = nRT
[tex]P = \dfrac{nRT}{V}[/tex]
[tex]P = \dfrac{0.0013 \ mol \times 0.082 \ Latm^0 K^{-1} . mol ^{-1} \times 523.15 \ K}{1.0 \ L}[/tex]
P = 0.558 atm
Thus, at 250° C, decomposition of PCl₅ occurs.
In the container, PCl₅ decomposes to PCl₃ and Cl₂.
i.e.
[tex]PCl_{5(g)} \to PCl_{3(g)}+ Cl_{2(g)}[/tex]
Using Dalton's Law:
[tex]P_{total } =P_1 + P_2+P_3 +...[/tex]
[tex]P_1 = P_{Total} \times X_1[/tex]
where;
X = mole fraction
Then, the total no. of moles in the container is:
[tex]n = \dfrac{PV} {RT}[/tex]
[tex]n = \dfrac{1\ atm \times 1.0\ L}{0.0821 \ L \ atm \ K^{-1}.mol \times 523.15\ K}[/tex]
n = 0.023 mol
Now, the container contains a total amount of 0.023 mol where initially 0.013 mol are that of PCl₅ and remaining 0.005 mol of PCl₃ and 0.005 mol of Cl₂.
Thus, the partial pressure of PCl₃ is:
[tex]P__{PCL_3} }= P_{total} \times \dfrac{no. \ of \ moles \ of PCl_5}{total \ no. \ of \ moles}[/tex]
[tex]P__{PCL_3}} = 1 \ atm \times \dfrac{0.005}{0.023}[/tex]
[tex]P__{PCL_3}} = 0.22 \ atm[/tex]
Thus, since the no of moles of PCl₃ and Cl₂ are the same, then the partial pressure for Cl₂ is = 0.22 atm
A clone has _________ chromosomes as its parent.
A. Half the number of
B. The same exact
C. double the number of
D. half of the same
Answer:
B. The same exact
Explanation:
I think B because in order to be a clone of your parent you have to have the exact same DNA and chromosomes.
Hope this helps :D
A clone has the same exact chromosomes as its parent.
CLONING:
Cloning is a genetic procedure in which identical copies of a cell or organism is made. Cloning can be done naturally or artificially, however, it follows the process of mitosis. In cloning, the genetic content of a parent cell is used as a template to replicate another cell or organism. Examples of cloning are biological twins, vegetative reproduction in plants etc. Therefore, a clone has the same exact chromosomes as its parent.Learn more at: https://brainly.com/question/12483409?referrer=searchResults
what state of matter travels in straight lines
Answer:
light
Explanation:
light is plasma, which is a state of matter
What produces the magnetic force of an electromagnet?
O magnetic fields passing through the device
O static charged particles on the wire
O movement of charged particles through the wire
O positive and negative charges repelling each other
Answer:
movement of charged particles through the wire .
Explanation:
When electricity is passed through the wire of electromagnet , moving electrons of the wire produces magnetic field . This magnetic field in increased due to high permeability of soft iron of the electromagnet . It is this magnetic field which creates magnetic force .
In the reaction 2 HgO --> 2 Hg + O2
how many moles of O2 are produced when 5 moles of HgO are decomposed?
Answer:
2.5 moles of oxygen are produced.
Explanation:
Given data:
Number of moles of O₂ produced = ?
Number of moles of HgO decomposed = 5 mol
Solution:
Chemical equation:
2HgO → 2Hg + O₂
now we will compare the moles of HgO and O₂.
HgO : O₂
2 : 1
5 : 1/2×5 = 2.5
Thus, from 5 moles of HgO 2.5 moles of oxygen are produced.
How does heat travel?
1. From cold things to hotter things
2. From hot things to colder things
3. Between things of the same temperature
Answer:
well heat travels by conduction, convection, and radiation but I think it's 2.
Explanation:
heat travels to colder things trying to make a balanced temperature for both of the objects.
For the reaction of ammonia (NH3) with oxygen (O2) to produce water and nitric oxide (NO), how many moles of water are produced when 2.2 moles of ammonia are reacted?
Answer:
3.3 moles of H₂O.
Explanation:
We'll begin by writing the balanced equation for the reaction. This is illustrated below:
4NH₃ + 5O₂ —> 6H₂O + 4NO
From the balanced equation above,
4 moles of NH₃ reacted to produce 6 moles of H₂O.
Finally, we shall determine the number of mole of H₂O produced by the reaction of 2.2 moles of NH₃. This can be obtained as follow :
From the balanced equation above,
4 moles of NH₃ reacted to produce 6 moles of H₂O.
Therefore, 2.2 moles of NH₃ will react to produce = (2.2 × 6)/4 = 3.3 moles of H₂O.
Thus, 3.3 moles of H₂O were obtained from the reaction.
An element has five isotopes. Calculate the atomic mass of this element using the information below. Show all your work. Using the periodic table, identify the element this is likely to be and explain your choice. (18 pts)
A) Isotope 1 – mass: 64 amu; percent abundance: 48.89%
B) Isotope 2 – mass: 66 amu; percent abundance: 27.81%
C) Isotope 3 – mass: 67 amu; percent abundance: 4.11%
D) Isotope 4 – mass: 68 amu; percent abundance: 18.57%
E) Isotope 5 – mass: 70 amu; percent abundance: 0.62%
Answer: Sol:-
Data provided in the question is :-
Atomic mass of isotope -1 = 64 amu
Atomic mass of isotope -2 = 66 amu
Atomic mass of isotope -3 = 67 amu
Atomic mass of isotope -4 = 68 amu
Atomic mass of isotope - 5 = 70 amu
Percentage abundace of isotope - 1 = 48.89 %
Percentage abundance of isotope -2 = 27.81 %
Percentage abundance of isotope - 3 = 4.11%
Percentage abundance of isotope-4 = 18.57%
Percentage abundance of isotope - 5 = 0.62 %
Formula used :-
Average atomic mass of an element =[ {(atomic mass of isotope-1 * percentage abundance of isotope-1) + ( atomic mass of isotope-2 * percentage abundance of isotope -2) + ( atomic mass of isotope -3 * percantege abundance of isotope-3 ) + ( atomic mass of isotope-4 * percentage abundance of isotope-4) + (atomic mass of isotope-5 * percentage abundance of isotope-5)} / 100]
Calculation :-
Put all the value in the formula :-
Average atomic mass of an element = [{(64 * 48.89) + (66 * 27.81) + (67 * 4.11) + (68 * 18.57) + (70 * 0.62)} / 100] amu
= [{(3128.96) + (1835.46) +(257.37) + (1262.76) + (43.4)} / 100] amu
= {(6528.04) / 100} amu
= 65.2804 amu
Average atomic mass of an element is = 65.2804 amu
Then this mass is approximatly equal to atomic mass of zinc so this element would be zinc
atomic mass of zinc = 65.38 \approx 65.2804 amu
The energy stored in an object is called potential energy
True or false
its true
Potential energy is the stored or latent energy in an object at rest. It’s fundamental to many physics-related concepts because its laws hold true on any level, from the planetary to the atomic level. The potential energy of an object is measurable.
Where would a disease transmitted by person to person contact be most likely to spread quickly
Answer: inside
Explanation:
Answer:
direct and indirect contact
Explanation:
if you touch a doorknob right after an infected person than you make be exposed to the disease.
Question 6 of 10
What is ethane?
A. An alkane
B. An alkene
C. A polymer
D. An alkyne
Answer:
An Alkane
Explanation:
Formula of ethane is CH3-CH3
Answer:
Ethane is the second member of
An alkane