Answer:
A. Recession of glaciers and ice caps
Explanation:
Land bridges began to disappear after the Ice Age ended.
Basically, a rise in sea level.
Hope this helps :D
Answer:
Recession of glaciers and ice cap
Explanation:
because i just took the test
100% sure
A bullet seized from a crime scene has a composition of lead 11.6 g, tin 0.5 g, and
antimony 0.4 g. What is the percentage of lead in the bullet? Express your answers to
the ones place.
Answer:
92.8%
Explanation:
Step 1: Given data
Mass of lead in the bullet (mPb): 11.6 gMass of tin in the bullet (mSn): 0.5 gMass of antimony in the bullet (mSb): 0.4 gStep 2: Calculate the total mass of the bullet
The total mass of the bullet is equal to the sum of the masses of the elements that form it.
m = mPb + mSn + mSb = 11.6 g + 0.5 g + 0.4 g = 12.5 g
Step 3: Calculate the mass percentage of Pb in the bullet
We will use the following expression.
%Pb = mPb / m × 100%
%Pb = 11.6 g / 12.5 g × 100% = 92.8%
Calculate the number of Li atoms in 7.8 mol of Li.
Express your answer using two significant figures.
4.7 × 10²⁴ atoms Li
General Formulas and Concepts:Math
Pre-Algebra
Order of Operations: BPEMDAS
Brackets Parenthesis Exponents Multiplication Division Addition Subtraction Left to RightChemistry
Atomic Structure
Avogadro's Number - 6.022 × 10²³ atoms, molecules, formula units, etc.Stoichiometry
Using Dimensional AnalysisExplanation:Step 1: Define
7.8 mol Li
Step 2: Identify Conversions
Avogadro's Number
Step 3: Convert
Set up: [tex]\displaystyle 7.8 \ mol \ Li(\frac{6.022 \cdot 10^{23} \ atoms \ Li}{1 \ mol \ Li})[/tex]Multiply/Divide: [tex]\displaystyle 4.69716 \cdot 10^{24} \ atoms \ Li[/tex]Step 4: Check
We are told to round to 2 sig figs. Follow sig fig rules and round.
4.69716 × 10²⁴ atoms Li ≈ 4.7 × 10²⁴ atoms Li
After going through a guided tutorial by selecting Run Grams Demonstration, you can create your own experiment by clicking the Run Experiment button at the end or by clicking the Overview tab and returning to the Experiment tab to select Run Experiment. There are nine reactions you can explore on your own. Sulfur dioxide gas (SO2) and oxygen gas (O2) react to form the liquid product of sulfur trioxide (SO3). How much SO2 would you need to completely react with 6.00 g of O2 such that all reactants could be consumed
Answer: Thus 24.0 g of [tex]SO_2[/tex] would be needed.
Explanation:
To calculate the moles :
[tex]\text{Moles of solute}=\frac{\text{given mass}}{\text{Molar Mass}}[/tex]
[tex]\text{Moles of} O_2=\frac{6.00g}{32g/mol}=0.1875moles[/tex]
[tex]2SO_2(g)+O_2(g)\rightarrow 2SO_3(l)[/tex]
According to stoichiometry :
1 mole of [tex]O_2[/tex] require = 2 moles of [tex]SO_2[/tex]
Thus 0.1875 moles of [tex]O_2[/tex] will require=[tex]\frac{2}{1}\times 0.1875=0.375moles[/tex] of [tex]SO_2[/tex]
Mass of [tex]SO_2=moles\times {\text {Molar mass}}=0.375moles\times 64g/mol=24.0g[/tex]
Thus 24.0 g of [tex]SO_2[/tex] would be needed to completely react with 6.00 g of [tex]O_2[/tex] such that all reactants could be consumed.
3. You can express the density of an object in units of kg/L or in units of
g/mL. How is the density of an object in kg/L related to its density in g/mL?
The hydronium ion concentration of an aqueous solution of 0.502 M pyridine (a weak base with the formula C5H5N) is
Answer:
1.99×10¯¹⁴ M
Explanation:
We'll begin by writing the balanced dissociation equation of pyridine. This is illustrated below:
C₅H₅N + H₂O <=> C₅H₆N⁺ + OH¯
From the balanced equation above,
1 mole of C₅H₅N produced 1 mole of OH¯.
Therefore, 0.502 M C₅H₅N will also produce 0.502 M OH¯.
Finally, we shall determine the concentration of hydronium ion, H₃O⁺ in the solution. This can be obtained as follow:
Concentration of Hydroxide ion [OH¯] = 0.502 M
Concentration of hydronium ion [H₃O⁺] =?
[H₃O⁺] [OH¯] = 1×10¯¹⁴
[H₃O⁺] × 0.502 = 1×10¯¹⁴
Divide both side by 0.502
[H₃O⁺] = 1×10¯¹⁴ / 0.502
[H₃O⁺] = 1.99×10¯¹⁴ M
Thus, the concentration of hydronium ion, H₃O⁺ in the solution 1.99×10¯¹⁴ M
which has more gravity
A. Earth
B. Sun
C. Saturn
B
the sun!
yay
!!!!!!!!!!!
Answer:
EARTH
Explanation:
Earth‘s gravity, as already noted, is equivalent to 9.80665 m/s² (or 32.174 ft/s²). This means that an object, if held above the ground and let go, will accelerate towards the surface at a speed of about 9.8 meters for every second of free fall.
The density of copper is a...
a. chemical property
c. chemical change
b. physical property
d. physical change
Answer:
B. physical property is the answer
2 Cu + Cl2 ----> 2 Cuci
If 1.64 moles of chlorine is reacted with 3.23 moles of copper, how many grams of copper I chloride will be made?
(The next question will ask about the limiting and excess reactants for this reaction)
o 320 g
O 160 g
O 162 g
O 325 g
Answer:
320 g.
Explanation:
Hello!
In this case, according to the balanced chemical reaction, we can compute the grams of copper I chloride produced by each reactant, as shown below:
[tex]m_{CuCl}^{by\ Cu}=3.23molCu*\frac{2molCuCl}{2molCu}*\frac{99.0gCuCl}{1molCuCl} =320gCuCl\\\\m_{CuCl}^{by\ Cl_2}=1.64molCl_2*\frac{2molCuCl}{1molCl_2}*\frac{99.0gCuCl}{1molCuCl} =325gCuCl[/tex]
Thus, since copper produces the fewest grams of CuCl, we infer it is the limiting reactant, therefore the correct mass of copper I chloride is 320 g.
Best regards!
Convert the volume, nm^3, to liters (L) by using the box dimensions of 4nm x 8.75nm x 10nm. Use the conversion factor of 1 L = 1 dm^3. Do not convert directly from nm^3 to dm^3
Answer:
[tex]V=3.50x10^{-22}L[/tex]
Explanation:
Hello there!
In this case, given the dimensions of the box, we first compute the volume by multiplying each side:
[tex]V=4nm*8.75nm*10nm=350nm^3[/tex]
Next, we apply the following conversion factor in order to obtain the corresponding liters:
[tex]V=350nm^3*(\frac{1m}{10^9nm} )^3*\frac{1000L}{1m^3} \\\\V=350nm^3*\frac{1m^3}{10^{27}nm^3} *\frac{1000L}{1m^3}\\\\V=3.50x10^{-22}L[/tex]
Best regards!
Which of the following are examples of limiting factors? a. water b. sunlight c. available mates d. all of the above
Answer: I believe the answer is D.) All of the above.
Explanation:
5. A reaction in which them material that starts the reaction is also one of the products and can start another reaction is called
a. An accelerator reaction
b. A moderator reaction
c. A shielding reaction
d. A chain reaction
Answer:
chain reaction
Explanation:
A chain reaction is a sequence of reactions where a reactive product or by-product causes additional reactions to take place.
Iron melts at 1535 °C. What would this temperature be in Fahrenheit
Answer:
2,795 F
Explanation:
Can someone please rephrase this question, I dont understand what it is asking for.
Which disease might have cures developed as a result of their understanding of structure and function of protein?
Answer:
Which infection may have fixes created because of their comprehension of construction and capacity of protein?
Draw the structure of the major organic product(s) for the following reaction between an acetylenic anion and an alkyl halide. (The reaction stoichiometry is 1:1.) A carbon carbon triple bond where carbon 1 is a carbanion with a lone pair and carbon 2 is bonded to methyl. This reacts with a 5 carbon chain where carbon 3 has a bromine substituent.
Answer:
See explanation below
Explanation:
In this case, we are having a reaction between an anion and alkyl halide. The carbon 1 of the anion will act as nucleophile and will attack the electrophile, which is 5 carbon chain with the bromine in the third carbon.
Now, the nucleophyle is an alkyne of 3 carbon. According to the description, it should be:
CH₃ - C ≡ C⁻
And the alkyl halide is:
CH₃ - CH₂ CH(Br) - CH₂ - CH₃
And the final product after the reaction would be the following:
CH₃ - C ≡ C - CH - (CH₂CH₃)₂
However, in the attached picture you can see this better and the mechanism of reaction.
Hope this helps
What is the oxidation number of bromine in the BrO3- ion?
Surface tension is a force that affects....
A. Gases
B. Plasmas
C. Solids
D. Liquids
Answer:
option A iis the right answer
Match the following elements with their symbols.
1.mercury Ag
2.silver He
3.gold Al
4.aluminum Fe
5.iron Hg
6.helium Ca
7.calcium Au
8.magnesium Mg
9.nickel Ni
Match the following elements with their symbols.
[tex] \sf 1.\: mercury \: \: \: \: \: \: \: \: \: Ag (2)\\ \sf 2.\: silver \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: He (6) \\ \sf 3.\: gold \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: Al (4) \\ \sf 4.\: aluminum \: \: \: \: \: \: \: Fe (5) \\ \sf 5.\: iron \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: Hg (1)\\ \sf 6.\: helium \: \: \: \: \: \: \: \: \: \: \: \: Ca (7) \\ \sf 7.\: calcium \: \: \: \: \: \: \: \: \: \: Au (3)\\ \sf 8.\: magnesium \: \: \: Mg(8) \\ \sf 9.\: nickel \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: Ni(9) \\ [/tex]
_____________________________
Symbol of Mercury is Hg.Symbol of Silver is Ag.Symbol of gold is Au.Symbol of Aluminium is Al.Symbol of Iron is Fe.Symbol of Helium is He.Symbol of Calcium is Ca.Symbol of Magnesium is Mg.Symbol of Nickel is Ni.tell me how is your life as a youngster
Answer:
ruthless, my style as a juvenile
ran with a gang, slanged in the meanwhile
Explanation:
A silver nitrate solution contains 14.77 g of primary standard AGNO3 ( Molecular weight 169.87) in 1.00 L. What volume of this solution will be needed to react with 0.2631 g of NaCl ( Molecular weight 58.44) ?
Answer:
[tex]V=5.2 mL=0.052L[/tex]
Explanation:
Hello!
In this case, since the chemical reaction between silver nitrate and sodium chloride is:
[tex]AgNO_3(aq)+NaCl(aq)\rightarrow AgCl(s)+NaNO_3(aq)[/tex]
We can see there is a 1:1 mole ratio between each solution; thus, we first compute the moles of each reactant considering their molar masses:
[tex]n_{AgNO_3}=14.77g*\frac{1mol}{169.87g}=0.087molAgNO_3\\\\ n_{NaCl}=0.2631g*\frac{1mol}{58.44}=0.0045molNaCl[/tex]
Now, since the concentration of the silver chloride solution is 0.087 M, we may assume that the concentration of the NaCl solution is the same, so we can compute the volume as shown below:
[tex]V=\frac{n_{NaCl}}{M}=\frac{0.0045mol}{0.087mol/L}\\\\V=0.052L[/tex]
Or:
[tex]V=5.2 mL[/tex]
Best regards!
The volume of solution needed to react with 0.2631 g of NaCl is 0.052 L.
How we calculate the volume?Volume of the solution will be calculated by using the below formula:
M = n/V, where
M = concentration in terms of molarity
n = no. of moles
V = volume
Given chemical reaction is:
AgNO₃(aq) + NaCl(aq) → AgCl(s) + NaNO₃(aq)
First we calculate the moles of given reactants by using the formula:
n = W/M , where
W = given mass
M = molar mass
Moles of AgNO₃ = 14.77g / 169.87g/mole = 0.087 mole
Moles of NaCl = 0.2631g / 58.44g/mole = 0.0045 mole
Concentration of AgNO₃ = 0.087 mole / 1L = 0.087M
From the stoichiometry of the reaction it is clear that mole ration of AgNO₃ & NaCl is 1:1. So, we take the concentration of NaCl is equal to the concentration of AgNO₃ and calculate the volume by using the above formula as:
Volume of NaCl = 0.0045mole / 0.087M = 0.052 L
Hence, 0.052 L is the required volume of NaCl.
To know more about moles, visit the below link:
https://brainly.com/question/17199947
5. A reaction in which them material that starts the reaction is also one of the products and can start another reaction is called
a. An accelerator reaction
b. A moderator reaction
c. A shielding reaction
d. A chain reaction
Answer:
D it's called a chain reaction
Just like cans of soup, atoms of the same element often have different masses. These different varieties are called isotopes. In the Average Atomic Mass Gizmo, you will learn how to find the average mass of an element using an instrument called a mass s
Answer:
ions are deflected and the lighter the ions the more the deflection.
Placing magnetic field in the path of the ions cause them to move in a curved path.
Explanation:
This question is all about the way in which mass spectroscopy works. Mass spectroscopy Is one of the techniques in spectroscopy which is used in the identification of chemical compounds.
Mass spectroscopy works based on the principle of ionization. For a mass spectroscopy to start ionization must first occur that is to say this is the first step in the identification of compound in mass spectroscopy.
The following steps are involve in mass spectroscopy;
=> Ionization: the molecules of the sample are first ionized. The ions formed here are positive ions.
=> Acceleration: the ions in step one are accelerated.
=> Deflection: the smaller ions get deflected more than the bigger ions. The magnetic field is used in the deflection of this ions.
=> Detection: the ions are then detected.
Therefore, to answer the question, the ions are deflected and the lighter the ions the more the deflection.
Placing magnetic field in the path of the ions cause them to move in a curved path.
Help me please omg
Answer the following question:
How many moles of ammonia are in 375. mL of a 2.25 M aqueous ammonia solution?
Find the numerical answer for this question and make sure to include the following:
What is the chemical formula for ammonia?
What is the formula for molarity?
When you give your numerical answer, what is the correct significant figures and how do you know that is the correct amount?
Answer:
NH₃
M = n/V(L)
0.844 mol (Both numbers have 3 significant figures so the result has 3 significant figures as well)
Explanation:
Step 1: Given and required data
Volume of solution (V): 375. mLMolar concentration of the solution (M): 2.25 MChemical formula for ammonia: NH₃Step 2: Calculate the moles (n) of ammonia (solute)
Molarity is equal to the moles of solute divided by the liters of solution.
M = n/V(L)
n = M × V(L)
n = 2.25 mol/L × 0.375 L = 0.844 mol (Both numbers have 3 significant figures so the result has 3 significant figures as well)
HELP I HAVE 3 MINUTES LEFT
Answer: kinetic energy
Answer:
Kinetic Energy.
Explanation:
All these "forces" rely on specific motion.
How many moles of water can be formed from 23.9 mol of oxygen gas?
H2 + O2 --> H20
Hint: Is it balanced?
Answer:
47.8 moles of H₂O.
Explanation:
We'll begin by writing the balanced equation for the reaction. This is illustrated below:
2H₂ + O₂ —> 2H₂O
From the balanced equation above,
1 mole of O₂ reacted to produce 2 moles of H₂O
Finally, we shall determine the number of mole of water, H₂O, produced by the reaction of 23.9 moles of O₂. This can be obtained as follow:
From the balanced equation above,
1 mole of O₂ reacted to produce 2 moles of H₂O.
Therefore, 23.9 moles of O₂ will react to produce = 23.9 × 2 = 47.8 moles of H₂O.
Thus, 47.8 moles of H₂O were obtained from the reaction.
Gold's natural state has a definite shape and a definite volume. What is gold's natural state(s)?
Answer:
If your asking what golds natural state of matter is it's solid.
Explanation:
Answer:
the answer is soild
Explanation:
i did it on edge :)
When rocks slowly crumble due to rain, ice, and wind and
erode away, these processes form what?
**will give brainlists if correct answer***
Predict all of the products of the incomplete reaction shown below.
K+ Cl2 →
A)KCIO3
B)K2
С)КСІ
D)KCI2
Answer:
C)
Explanation:
What are mand n in the rate law equation?
Rate = k[A]”[B]"
A (they are experimentally determined exponents)
Hello! Please help :((
Find the distance from point B to point C. Enter as a decimal rounded to the nearest tenth. А 61° 5.7 mi B С BC = [?] mi Enter
Answer:
BC = 10.28 ≈ 10.3 mi to the nearest tenth
Explanation:
Using the trigonometry rules; SOH CAH TOA,
TOA would be more suitable in this question.
Tan ∅ = Opposite / Adjacent
Tan 61 = BC / AB
1.8040 = BC / 5.7
BC = 5.7 * 1.8040
BC = 10.28 ≈ 10.3 mi
the answer is 10.3, i already rounded it.
In general chemicals enter Ecosystems through which two spears
Answer:
biosphere and lithosphere
Explanation:
The biosphere is described as the zone of life on Earth. It is a sum of all ecosystems. The biosphere is composed of living organisms and non-living factors.
The lithosphere is the outer part of the Earth such that this part is rocky. The lithosphere is made up of the brittle crust.
In general, chemicals enter Ecosystems through the biosphere and lithosphere.