You wish to make a simple amusement park ride in which a steel-wheeled roller-coaster car travels down one long slope, where rolling friction is negligible, and later slows to a stop through kinetic friction between the roller coaster's locked wheels sliding along a horizontal plastic (polystyrene) track. Assume the roller-coaster car (filled with passengers) has a mass of 743.0 kg and starts 83.4 m above the ground. (a) Calculate how fast the car is going when it reaches the bottom of the hill. m/s (b) How much does the thermal energy of the system change during the stopping motion of the car
Answer:
(a) The car is going approximately 40.43 m/s at the bottom of the hill
(b) The thermal energy will increase by 607,268.76 J
Explanation:
In the question, we have;
The height of the roller coaster above ground = 83.4 m
The mass of the roller coaster, m = 743.0 kg
(a) By the conservation of energy principle, we have;
The potential energy at the top of the hill, P.E., is equal to the kinetic energy at the bottom of the hill, K.E.
∴ P.E. = K.E.
P.E. = m·g·h
Where;
m = The mass of the roller coaster = 743.0 kg
g = The acceleration due to gravity = 9.8 m/s²
h = The height of the roller coaster = 83.4 m
Therefore, we have;
P.E. = 743.0 kg × 9.8 m/s² × 83.4 m = 607,268.76 J
P.E. = 607,268.76 J
K.E. = 1/2·m·v²
∴ K.E. = 1/2 × 743.0 kg × v²
P.E. = K.E.
∴ P.E. = K.E. = 607,268.76 J
1/2 × 743.0 kg × v² = 607,268.76 J
v² = 607,268.76 J/(1/2 × 743.0 kg) = 1,634.64 m²/s²
v = √(1,634.64 m²/s²) ≈ 40.43 m/s
(b) Given that the material wheel moves along polystyrene track, the sound released will be minimal and almost all the kinetic energy will be converted to heat energy when the train stops, therefore, the thermal energy will increase by K.E. = 607,268.76 J
The thermal energy change of the system is 624,492 J.
We know that in the roller coaster, there is an energy transformation from gravitational potential energy to kinetic energy. As such we can write;
mgh = 1/2mv^2
Where we cancel out the mass from both sides, we are left with;
gh=0.5v^2
v= √gh/0.5
v = √10 × 83.4 m/0.5
v = 41 ms-1
Now the kinetic energy is converted also into heat energy hence;
Thermal energy change of the system = 1/2 mv^2 = 0.5 × 743.0 kg × ( 41 ms-1)^2 = 624,492 J
Learn more about energy: https://brainly.com/question/1195122
3. A woman drove her car from home to her daughter's school. The odometre on her dashboard says she travelled 4.5 km to do this. She then immediately drove back home, using a different route, which was 5.5 km long. The whole journey took 30 minutes.
a. What distance did she travel?
b. What was her displacement?
C. What was her average speed during the journey?
Answer:
Look Below -->
Explanation:
a. She traveled 10 km, add 4.5 km + 5.5 km = 10 km (Distance is the total units travelled, so just add them all up :) )
b. Her displacement is 0 km because she went back home. (Displacement is the difference between the end and starting points)
c. 3 km/hr (30 minutes / 10 km)
A plastic ball in a liquid is acted upon by its weight and by a buoyant force. The weight of the ball is 4 N. The buoyant force has a magnitude of 5 N and acts vertically upward. When the ball is released from rest, what is it's acceleration and direction? [2 pts] for a Free Body Diagram correctly labeled.
Answer:
The acceleration is 2.448 meters per square second and is vertically upward.
Explanation:
The Free Body Diagram of the plastic ball in the liquid is presented in the image attached below. By Second Newton's Law, we know that forces acting on the plastic ball is:
[tex]\Sigma F = F - m\cdot g = m\cdot a[/tex] (1)
Where:
[tex]F[/tex] - Buoyant force, measured in newtons.
[tex]m[/tex] - Mass of the plastic ball, measured in kilograms.
[tex]g[/tex] - Gravitational acceleration, measured in meters per square second.
[tex]a[/tex] - Net acceleration, measured in meters per square second.
If we know that [tex]F = 5\,N[/tex], [tex]m = 0.408\,kg[/tex] and [tex]g = 9.807\,\frac{m}{s^{2}}[/tex], then the net acceleration of the plastic ball is:
[tex]a = \frac{F}{m} - g[/tex]
[tex]a= 2.448\,\frac{m}{s^{2}}[/tex]
The acceleration is 2.448 meters per square second and is vertically upward.
Object A is moving due east, while object B is moving due north. They collide and stick together in a completely inelastic collision. Momentum is conserved. Object A has a mass of m A = 17.0 kg and an initial velocity of v 0A = 8.00 m/s, due east. Object B, however has a mass of m B = 29.0 kg and an initial velocity of v 0B = 5.00 m/s, due north. Find the magnitude and direction of the total momentum of the two-object system after the collision.
Answer:
pf = 198.8 kg*m/s
θ = 46.8º N of E.
Explanation:
Since total momentum is conserved, and momentum is a vector, the components of the momentum along two axes perpendicular each other must be conserved too.If we call the positive x- axis to the W-E direction, and the positive y-axis to the S-N direction, we can write the following equation for the initial momentum along the x-axis:[tex]p_{ox} = p_{oAx} + p_{oBx} (1)[/tex]
We can do exactly the same for the initial momentum along the y-axis:[tex]p_{oy} = p_{oAy} + p_{oBy} (2)[/tex]
The final momentum along the x-axis, since the collision is inelastic and both objects stick together after the collision, can be written as follows:[tex]p_{fx} = (m_{A} + m_{B} ) * v_{fx} (3)[/tex]
We can repeat the process for the y-axis, as follows:[tex]p_{fy} = (m_{A} + m_{B} ) * v_{fy} (4)[/tex]
Since (1) is equal to (3), replacing for the givens, and since p₀Bₓ = 0, we can solve for vfₓ as follows:[tex]v_{fx} = \frac{p_{oAx}}{(m_{A}+ m_{B)}} = \frac{m_{A}*v_{oAx} }{(m_{A}+ m_{B)}} =\frac{17.0kg*8.00m/s}{46.0kg} = 2.96 m/s (5)[/tex]
In the same way, we can find the component of the final momentum along the y-axis, as follows:[tex]v_{fy} = \frac{p_{oBy}}{(m_{A}+ m_{B)}} = \frac{m_{B}*v_{oBy} }{(m_{A}+ m_{B)}} =\frac{29.0kg*5.00m/s}{46.0kg} = 3.15 m/s (6)[/tex]
With the values of vfx and vfy, we can find the magnitude of the final speed of the two-object system, applying the Pythagorean Theorem, as follows:[tex]v_{f} = \sqrt{v_{fx} ^{2} + v_{fy} ^{2}} = \sqrt{(2.96m/s)^{2} + (3.15m/s)^{2}} = 4.32 m/s (7)[/tex]
The magnitude of the final total momentum is just the product of the combined mass of both objects times the magnitude of the final speed:[tex]p_{f} = (m_{A} + m_{B})* v_{f} = 46 kg * 4.32 m/s = 198.8 kg*m/s (8)[/tex]
Finally, the angle that the final momentum vector makes with the positive x-axis, is the same that the final velocity vector makes with it.We can find this angle applying the definition of tangent of an angle, as follows:[tex]tg \theta = \frac{v_{fy}}{v_{fx}} = \frac{3.15 m/s}{2.96m/s} = 1.06 (9)[/tex]
⇒ θ = tg⁻¹ (1.06) = 46.8º N of E
A magnet produces a magnetic field.
Which diagram shows the magnetic field pattern around a bar magnet
You Forgot To Add The Pictures
Two small, identical conducting spheres repel each other with a force of 0.020 N when they are 0.35 m apart. After a conducting wire is connected between the spheres and then removed, they repel each other with a force of 0.055 N. What is the original charge on each sphere
Answer:
why does anyone need to know
Explanation:
1 plus one = 69
An official major league baseball has a mass of 0.14 kg. A pitcher throws a 40 m/s fastball which is hit by the batter straight back up the middle at a speed of 46 m/s.
a) What is the change in momentum of the ball during the collision with the bat?
b) If this collision occurs during a time of 0.012 seconds, what is the average force exerted by the bat on the ball?
Answer:
(a) The change in momentum is 12.04 kg-m/s
(b) The force exerted by the bat is 1003.33 N
Explanation:
Given that,
The mass of a ball, m = 0.14 kg
Initial speed of the ball, u = 40 m/s
Final speed of the ball, v = -46 m/s
(a) The change in momentum of the ball during the collision with the bat is given by :
[tex]\Delta p=m(v-u)\\\\=0.14(-46-40)\\\\=-12.04\ kg-m/s[/tex]
(b) Time for collision, t = 0.012 s
Now the force can be calculated as follows :
[tex]F=\dfrac{\Delta p}{t}\\\\F=\dfrac{12.04}{0.012}\\\\=1003.33\ N[/tex]
Hence, this is the required solution.
Answer:
a. = 12.04 kg*m/s
b. = 1,003.3N
Explanation:
The answer above is correct.
a wave of frequency 10hz forms a stationary wave pattern in a medium where the velocity is 30cm/s. the distance between adjacent nodes is?
Answer:
The ans is 1 not 2
Explanation:
The distance between two adjacent node in a stationary wave is half wavelength π/2 and not full wavelength as in π,so when solving we got 2cm as the wavelength since they ask the dist. Also adjacent nodes you will divide it by 2 and the ans will give u 1cm.
Hope this helps.
What is the magnitude of the force that is exerted on a 20 kg mass to give it an acceleration of 10.0
m/s2?
Answer:Mass of the body = 20 kg.
Final Velocity = 5.8 m/s.
Initial velocity = 0
Time = 3 seconds.
Using the Formula,
Acceleration = (v - u)/ t
= (5.8 - 0)/ 3
= 1.6 m /s².
Now, Using the Formula,
Force = mass × acceleration
= 20 × 1.6
=
Explanation: I REALLY HOPE THIS HELPS I'M KINDA NEW AT THIS :] :]
The magnitude of requires force, that is exerted on a 20 kg mass to give it an acceleration of 10.0 m/s^2 is 200 Newton.
What is force?The definition of force in physics is: The push or pull on a mass-containing item changes its velocity.
An external force is an agent that has the power to alter the resting or moving condition of a body. It has a direction and a magnitude. The application of force is the location at which force is applied, and the direction in which the force is applied is known as the direction of the force.
Given parameters:
Mass of the object: m = 20 kg.
Acceleration of the object: a = 10.0 m/s^2.
Hence, according to Newton's 2nd law of motion:
the magnitude of requires force = mass ×acceleration
= 20 × 10 Newton
= 200 Newton.
Hence, the magnitude of requires force is 200 Newton.
Learn more about force here:
https://brainly.com/question/13191643
#SPJ5
g We have studied diffraction from a single slit, where light is sent through a thin opening. A similar phenomena occurs when light bends around a thin object, like a human hair. Here the width of the hair plays the role of the width of the single slit. Measurements found that when a beam of light of wavelength 632.8 nm was shone on a single strand of hair, the first dark fringe on either side of the central bright spot were 5.22 cm apart. If the screen is 1.25 meters away, how thick was this strand of hair?
Answer:
[tex]3.031\times 10^{-5}\ \text{m}[/tex]
Explanation:
[tex]y[/tex] = Distance between central maxima and first minimum
m = Order = 1
d = Thickness of hair
[tex]\lambda[/tex] = Wavelength = 632.8 nm
L = Distance between light source and screen = 1.25 m
Width of central maximum is given by
[tex]2y=5.22\times 10^{-2}\\\Rightarrow y=\dfrac{5.22\times 10^{-2}}{2}\\\Rightarrow y=0.0261\ \text{m}[/tex]
Distance between central maxima and first minimum is given by
[tex]y=L\tan\theta_{min}\\\Rightarrow \tan\theta_{min}=\dfrac{y}{L}\\\Rightarrow \tan\theta_{min}=\dfrac{0.0261}{1.25}\\\Rightarrow \theta_{min}=\tan^{-1}0.02088\\\Rightarrow \theta_{min}=1.1962^{\circ}[/tex]
Since [tex]\theta[/tex] is small [tex]\tan\theta_{min}=\sin\theta_{min}[/tex]
[tex]\sin\theta_{min}=\dfrac{m\lambda}{d}\\\Rightarrow d=\dfrac{m\lambda}{\sin\theta}\\\Rightarrow d=\dfrac{1\times 632.8\times 10^{-9}}{\sin1.1962^{\circ}}\\\Rightarrow d=3.031\times 10^{-5}\ \text{m}[/tex]
The strand of hair is [tex]3.031\times 10^{-5}\ \text{m}[/tex] thick.
In what order were the following energy sources
discovered by humans
If 155 g of sugar can be dissolve in 100g of water at 20 degree than how much sugar will be dissolved in 300 g of water at same temperature if someone do I will make you brainly
Answer:
465 grams of sugar.
Explanation:
I'm not sure this is true: is the relationship linear?
If it is then 300 grams of water should be able told 3*155 grams of sugar
3 * 155 = 465 grams of sugar in 300 grams of water.
In which scenario is the greatest amount of work done on a wagon?
A force of 55 N moves it 8 m.
A force of 60 N moves it 6 m.
A force of 50 N moves it 5 m.
A force of 40 N moves it 10 m.
Answer:
The first scenario!
Explanation:
W=F*d
a) 55*8= 440J
b) 60*6= 360J
c) 50*5= 250J
d) 40*10= 400J
The scenario with the greatest amount of work done on a wagon is "A force of 55 N moves it 8 m" and the Work done is 440N.m.
What is Work done?Work done is simply defined as the energy transfer that takes place when an object is either pushed or pulled over a certain distance by an external force. It is expressed as;
W = F × d
Where F is force applied and d is distance travelled.
From the question;
A force of 55 N moves it 8 m
W = 55N×8m = 440N.m
A force of 60 N moves it 6 m.
W = 60N×6m = 360N.m
A force of 50 N moves it 5 m.
W = 50N×5m = 250N
A force of 40 N moves it 10 m.
W = 40N×10m = 400N.m
Therefore, the scenario with the greatest amount of work done on a wagon is "A force of 55 N moves it 8 m" and the Work done is 440N.m.
Learn more about work done: brainly.com/question/26115962
#SPJ2
Which would be a good analogy of wave motion
Answer:
i believe it would be C
Explanation:
when a constant force is applied to an object, the acceleration of the object varies inversely with its mass. When a certain constant force acts upon an object with a mass 12 kg, the acceleration of the object is 6 m/s. If the same force acts on another object whose mass is 9kg, what is the objects acceleration
Answer:
8 m/s²
Explanation:
From the question,
Since the same force act on both object,
F = ma = m'a'.............................. Equation 1
Where F = force action on the obeject, m = mass of the first object, a = acceleration of the first object, m' = mass of the second object, a' = acceleration of the second object.
make a' the subject of the equation
a' = ma/m'................... Equation 2
Given: m = 12 kg, a = 6 m/s², m' = 9 kg.
Substitute these values into equation 2
a' = 12(6)/9
a' = 8 m/s².
Hence the acceleration of the second object is 8 m/s²
Explain which energies work together to bake the bread
and cook the eggs.
Answer:
Thermal Energy
Explanation:
The energies that work together to bake the bread and cook the eggs is the thermal energy. Thermal energy is basically heat energy, which makes the food warmer.
Thermal energy and chemical energy work together to bake the bread and cook the eggs.
What is thermal energy?The energy present in a system that determines its temperature is referred to as thermal energy. Thermal energy flows as heat. Thermodynamics is a whole field of physics that studies how heat is transmitted across various systems and how work is done in the process.
What is chemical energy?Chemical energy is described as: the power that is kept in chemical compound bonds (molecules and atoms). It is released during the chemical process, which is referred to as an exothermic reaction, which mostly generates heat as a byproduct.
When the bread is baked or the eggs are cooked, thermal energy is provided from outside and chemical energy inside the molecules of bread or eggs come to play. So, these two energies work together to bake the bread and cook the eggs.
Learn more about energy here:
https://brainly.com/question/1932868
#SPJ2
what is dimensional analysis
Answer:
The formula used to convert from the metric system outside of it. So like converting kilograms into pounds. The Formula is as follows:
# unit x (#unit/#unit) = # unit
^ ^ ^
I I I
given Conversion Answer
factor
*Note: Italic "units" are the same. Bold "units" are the same.
Example:
One thousand eighty kilometers is how many miles? Set it up dimensionally.
1080 km (1 mi/1.61 km) = 670.81 mi
*This is because 1080 x 1 = 1080, but then you divide 1080 by 1.61
Plsss I want answer???
Answer:
s=136.89/2g meter
s=6.98 meter (correct to 3 sig.fig. taking g=9.81ms^-2)
Explanation:
u= + 11.7 ms^-1
a= - g ms^-2
At highest point: v=0ms^-1
v^2=u^2+2as
0=11.7^2+2(-g)s
s=136.89/2g meters
Find the current if 20C of charge pass a particular point in a circuit in 10 seconds.
Answer:
2 A
Explanation:
From the question,
Q = it..................... Equation 1
Where Q = Quantity of charge, i = cudrrent, t = time.
Make i the subject of the equation
i = Q/t.......................... Equation 2
Given: Q = 20 C, t = 10 seconds.
Substitute these values into equation equation 2
i = 20/10
i = 2 A.
Hence the current is 2A
Given values are:
Charge, Q = 20 CTime, t = 10 secondsAs we know,
→ [tex]Current = \frac{Charge}{Time}[/tex]
or,
→ [tex]i = \frac{Q}{t}[/tex]
BY substituting the values, we get
[tex]= \frac{20}{10}[/tex]
[tex]= 2 \ A[/tex]
Thus the answer above is right.
Learn more about current here:
https://brainly.com/question/19668907
Due to historical difficulty in delivering supplies by plane, one of your colleagues has suggested you develop a catapult for slinging supplies to affected areas, similar to the electromagnetic lift catapults used to launch planes from aircraft carriers. This catapult is located at a fixed point 400 meters away and 50 meters below the target site. The catapult is capable of launching the payload at 67 meters per second and an initial launch angle of 50 degrees. Using your knowledge of kinematics equations, determine whether this would be sufficient to deliver the payload to the drop site.
Answer:
Please see below as the answer is self-explanatory.
Explanation:
We can take the initial velocity vector, which magnitude is a given (67 m/s) and project it along two directions perpendicular each other, which we choose horizontal (coincident with x-axis, positive to the right), and vertical (coincident with y-axis, positive upward).Both movements are independent each other, due to they are perpendicular.In the horizontal direction, assuming no other forces acting, once launched, the supply must keep the speed constant.Applying the definition of cosine of an angle, we can find the horizontal component of the initial velocity vector, as follows:[tex]v_{avgx} = v_{o}*cos 50 = 67 m/s * cos 50 = 43.1 m/s (1)[/tex]
Applying the definition of average velocity, since we know the horizontal distance to the target, we can find the time needed to travel this distance, as follows:[tex]t = \frac{\Delta x}{v_{avgx} } = \frac{400m}{43.1m/s} = 9.3 s (2)[/tex]
In the vertical direction, once launched, the only influence on the supply is due to gravity, that accelerates it with a downward acceleration that we call g, which magnitude is 9.8 m/s2.Since g is constant (close to the Earth's surface), we can use the following kinematic equation in order to find the vertical displacement at the same time t that we found above, as follows:[tex]\Delta y = v_{oy} * t - \frac{1}{2} *g*t^{2} (3)[/tex]
In this case, v₀y, is just the vertical component of the initial velocity, that we can find applying the definition of the sine of an angle, as follows:[tex]v_{oy} = v_{o}*sin 50 = 67 m/s * sin 50 = 51.3 m/s (4)[/tex]
Replacing in (3) the values of t, g, and v₀y, we can find the vertical displacement at the time t, as follows:[tex]\Delta y = (53.1m/s * 9.3s) - \frac{1}{2} *9.8m/s2*(9.3s)^{2} = 53.5 m (5)[/tex]
Since when the payload have traveled itself 400 m, it will be at a height of 53.5 m (higher than the target) we can conclude that the payload will be delivered safely to the drop site.(What is the weight of a 50 kg woman at the top of Jupiter's
atmosphere, where g = 24.8 N/kg? Give your answer in both
newtons and pounds.
Answer:
The correct answer is - 1240 newtons; 278.763 lbs.
Explanation:
A friend pushes a sled across horizontal snow and when it gets up to speed the friend jumps on. After the friend jumps on, the sled gradually slows down. Which forces act on the combined sled plus friend after the friend jumps on
Answer:
v’ =( [tex]\frac{1}{1+ \frac{M}{m} }[/tex] ) v
we see that the greater the difference, the more the sled slows down.
friction force
Explanation:
When the man pushes the sled he does work and the sled acquires a speed and as long as it is supplied with an energy equal to the work of the chipping force with the snow, the speed is maintained.
When he jumps on the sled, a collision occurs and the initial moment
p₀ = mv
is increased by the increase in mass
m_f= (m + M_{man} ) v '
In this case there is no longer any external force applied and the only external force is friction, which causes the sled to stop, even when it is small, but the significant reduction in speed is due to the increase in masses.
p₀ = p_f
mv = (m + M_{man}) v '
v ’= [tex]\frac{m}{m+M}[/tex] v
v’ =( [tex]\frac{1}{1+ \frac{M}{m} }[/tex] ) v
Therefore, we see that the greater the difference, the more the sled slows down.
The only forces that act on the sled with the man are the friction that is responsible for the decrease in speed and weight with the normal
What might Earth be like if it had never been hit by the theoretical protoplanet Orpheus?
Answer:
If Earth hadn't been hit by Orpheus, it would be covered by ocean, with perhaps a few mountaintops emerging through the water. There would be no humans, but there could be other forms of life. Earth would rotate rapidly, as the moon would not be present to produce the tidal friction that slows Earth's rotation today
A woman stands still holding a 350 Newton bag (about 80 pounds) 2 meters off the ground. How much work does the woman do?
Answer:
700 Joules
Explanation:
What we know:
Force = 350 Newton
Distance = 2 meters
Work = ?
The formula for work is:
Work = force x distance
Plugging values into equation:
Work = 350 Newtons x 2 meters
Work = 700 Joules
I had the same question on the homework assignment with the answers provided:
a) It depends on how long she holds the bag
b) 350 Joules
c) none
d) 350 Newtons
The final answer would be c) none. The work done is 700 Joules. Hope this helps!
PLEASE HELP!!!
What are some compound machines that are used today?
Answer:
Examples of compound machines include bicycles, cars, scissors, and fishing rods with reels. Compound machines generally have lower efficiency but greater mechanical advantage than simple machines
Brilianst
Answer:
screws, inclined planes , etc
Explanation:
no explanation needed
14. Which of the following is not an example of work being done?
A. pushing a basketball away from your body
B. holding a coffee mug
C. carrying boxes across a warehouse floor
Answer:
B. holding a coffee mug
Explanation:
Something must move a distance for work to be done.
A transverse wave is represented below. 1.5 m 0.20 m What is the approximate amplitude and wavelength of the wave? amplitude = 0.20 m, wavelength = 0.60 m B. amplitude = 0.20 m, wavelength = 0.30 m C. amplitude = 0.10 m, wavelength = 0.60 m OO amplitude = 0.10 m, wavelength = 0.30 m
Answer:
C. amplitude = 0.10 m, wavelength = 0.60 m
Explanation:
The diagram shows an oscillating progressive wave, with its amplitude and wavelength.
Amplitude of a wave is the maximum distance covered either upward or downward.
So that,
amplitude of the wave, A = [tex]\frac{0.2}{2}[/tex]
= 0.1
Amplitude of the wave = 0.1 m
Wavelength in this case is the distance from crest to crest, or trough to trough of the wave.
So that,
wavelength = [tex]\frac{1.5}{2.5}[/tex]
= 0.6
wavelength of the wave = 0.6 m
Therefore, the amplitude of the wave is 0.10 m, while the wavelength is 0.60 m.
Please answer :>
40 POINTS
Answer:
rotates
Explanation:
I'm so bored
yrfgggghhgghhyuj
An instructor wishes to determine the wavelength of the light in a laser beam. To do so, she directs the beam toward a partition with two tiny slits separated by 0.180 mm. An interference pattern appears on a screen that lies 5.30 m from the slit pair. The instructor's measurements show that two adjacent bright interference fringes lie 1.60 cm apart on the screen. What is the laser's wavelength (in nm) ?
Answer:
λ = 5.434 x 10⁻⁷ m = 543.4 nm
Explanation:
To solve this problem we can use the formula provided by Young's Double Slit experiment:
[tex]\Delta x = \frac{\lambda L}{d}\\\\\lambda = \frac{\Delta xd}{L}[/tex]
where,
λ = wavelength of light = ?
Δx = distance between adjacent bright fringes = 1.6 cm = 0.016 m
d = slit separation = 0.18 mm = 0.00018 m
L = Distance between slits and screen = 5.3 m
Therefore,
[tex]\lambda = \frac{(0.016\ m)(0.00018\ m)}{5.3\ m}[/tex]
λ = 5.434 x 10⁻⁷ m = 543.4 nm
During a normal reaction to a stressful event, muscles are moved to their maximum capacity, and sensitivity is
Answer:
The paper focuses on the biology of stress and resilience and their biomarkers in humans from the system science perspective. A stressor pushes the physiological system away from its baseline state toward a lower utility state. The physiological system may return toward the original state in one attractor basin but may be shifted to a state in another, lower utility attractor basin. While some physiological changes induced by stressors may benefit health, there is often a chronic wear and tear cost due to implementing changes to enable the return of the system to its baseline state and maintain itself in the high utility baseline attractor basin following repeated perturbations. This cost, also called allostatic load, is the utility reduction associated with both a change in state and with alterations in the attractor basin that affect system responses following future perturbations. This added cost can increase the time course of the return to baseline or the likelihood of moving into a different attractor basin following a perturbation. Opposite to this is the system's resilience which influences its ability to return to the high utility attractor basin following a perturbation by increasing the likelihood and/or speed of returning to the baseline state following a stressor. This review paper is a qualitative systematic review; it covers areas most relevant for moving the stress and resilience field forward from a more quantitative and neuroscientific perspective.
Explanation:
During a normal reaction to a stressful event, muscles are moved to their maximum capacity, and sensitivity is increased.
What is Sensitivity?This is defined as the ability of an organism to respond to stimuli such as touch, sensation etc.
During exercise, sensitivity to substances such as insulin when glucose transport wears off helps to balance energy supply.
Read more about Sensitivity here https://brainly.com/question/8043930