Answer:
23.8
Step-by-step explanation:
V = 4/3 π r³
V = 4/3 π (15)³
V = 4500 π
V = 4/3 π r³
4500 π / 2 = 4/3 π r³
1687.5 = r³
r ≈ 11.9
d ≈ 23.8
Answer:
23.8 is the diameter.
Step-by-step explanation:
In the diagram, PQRT is a rhombus. STUQ and
PUR are straight lines. Find the values of x and y.
Step-by-step explanation:
since PQRT is a rhombus,
URQ=TPU
y=180-90-24=66
x=180-32-90-24=34
3. Callum rolled a single six sided die 12 times and it landed on a six, three of the times. The probability that it will land on a six on the 13th roll is?
Answer:
1/6
Step-by-step explanation:
Each roll is independent. So the probability of rolling a six is 1/6, regardless of the previous rolls.
A standard deck of of 52 playing cards contains 13 cards in each of four suits : diamonds, hearts , clubs and spades. Two cards are chosen from the deck at random.
Answer:
Probability of (one club and one heart) = 0.1275 (Approx)
Step-by-step explanation:
Given:
Total number of cards = 52
Each suits = 13
FInd:
Probability of (one club and one heart)
Computation:
Probability of one club = 13 / 52
Probability of one heart = 13 / 51
Probability of (one club and one heart) = 2 [(13/52)(13/51)]
Probability of (one club and one heart) = 0.1275 (Approx)
Answer:
D. 0.1275
Step-by-step explanation:
Justo took the Pre-Test on Edg (2020-2021)!!
Find the area of the shaded region
Answer:
[tex] \mathsf{ {5x}^{2} + 28x + 21}[/tex]
Option A is the right option.
Step-by-step explanation:
Let's find the area of large rectangle:
[tex] \mathsf{(3x + 6)(2x + 4)}[/tex]
Multiply each term in the first parentheses by each term in the second parentheses
[tex] \mathsf{ = 3x(2x + 4) + 6(2x + 4)}[/tex]
Calculate the product
[tex] \mathsf{ = 6 {x}^{2} + 12x + 12x + 6 \times 4}[/tex]
Multiply the numbers
[tex] \mathsf{ = 6 {x}^{2} + 12x + 12x + 24}[/tex]
Collect like terms
[tex] \mathsf{ = {6x}^{2} + 24x + 24}[/tex]
Let's find the area of small rectangle
[tex] \mathsf{(x - 3)(x - 1)}[/tex]
Multiply each term in the first parentheses by each term in the second parentheses
[tex] \mathsf{ = x( x - 1) - 3(x - 1)}[/tex]
Calculate the product
[tex] \mathsf{ = {x}^{2} - x - 3x - 3 \times ( - 1)}[/tex]
Multiply the numbers
[tex] \mathsf{ = {x}^{2} - x - 3x + 3}[/tex]
Collect like terms
[tex] \mathsf{ = {x}^{2} - 4x + 3}[/tex]
Now, let's find the area of shaded region:
Area of large rectangle - Area of smaller rectangle
[tex] \mathsf{6 {x}^{2} + 24x + 24 - ( {x}^{2} - 4x + 3)}[/tex]
When there is a ( - ) in front of an expression in parentheses, change the sign of each term in the expression
[tex] \mathsf{ = {6x}^{2} + 24x + 24 - {x}^{2} + 4x - 3}[/tex]
Collect like terms
[tex] \mathsf{ = {5x}^{2} + 28x + 21}[/tex]
Hope I helped!
Best regards!
25 POINTS AND BRAINLIEST FOR THESE!
Answer:
Step-by-step explanation:
Hello,
For any function f which has an inverse function we can write
[tex]x=(f^{-1}of)(x)=(fof^{-1})(x)=f(f^{-1}(x))[/tex]
This is why, in practice, to find the inverse of f we will consider f(x) = y and we will look for x as a function of y, so we switch x and y and solve for y. Let's do it.
Step 1 - The function f(x) can be written as a variable. [tex]\boxed{y}=f(x)[/tex]
f(x) = y = 5x + 2
Step 2 - switch the variables x <-> y
x = 5y + 2
subtract 2 to both parts of the equation
<=> x - 2 = 5y + 2 - 2 = 5y
divide by 5 both parts of the equation
[tex]<=> y=\dfrac{x-2}{5}[/tex]
It means that the inverse of f is as below.
[tex]\boxed{ \ f^{-1}(x)=\dfrac{x-2}{5}\ }[/tex]
Step 3 - Find the inverse of g(x)
We already found that the inverse of f is g, so the inverse of g is f.
Let's do it again.
[tex]g(x)=y=\dfrac{x-2}{5} \ \ \text{ switch x and y } \\ \\ x= \dfrac{y-2}{5} \ \ \text{ solve for y }\\ \\ y-2=5x \ \ \text{ mulitply by 5 both parts of the equation } \\ \\ y = 5x+2 \ \ \text{ add 2 to both parts of the equation }[/tex]
And we found what we already known, meaning f is the inverse of g.
[tex](gof)(x)=(fog)(x)=x[/tex]
Hope this helps.
Do not hesitate if you need further explanation.
Thank you
Answers and Step-by-step explanation:
Step 1:
We want to find the variable that ff(x) represents. Well, we know it can't be x because we already have x on the other side of the equation: ff(x) = 5x + 2.
So, ff(x) must equal y.
Since ff(x) = y, we know then that ff(x) = y = 5x + 2. And our equation is:
y = 5x + 2
Step 2:
Let's switch the variables now. This means that what used to be y will be x and what used to be x will be y:
y = 5x + 2 ⇒ x = 5y + 2
Subtract 2 from both sides:
5y = x - 2
Divide by 5 from both sides:
y = (x - 2)/5
Step 3:
Let's find the inverse of g(x) by doing the exact same thing as we did with ff(x):
g(x) = y = (x - 2)/5
Switch the variables:
y = (x - 2)/5 ⇒ x = (y - 2)/5
Multiply by 5 on both sides:
5x = y - 2
Add 2 to both sides:
y = 5x + 2
Notice that this is the exact same as ff(x)! This means that ff(x) and g(x) are inverses.
15 points are placed on a circle. How many triangles is it possible to form, such that their vertices will be the given points?
Answer: 445 triangles can be form with 15 dots of a circle (I hope good luck)
Step-by-step explanation:
Answer:
455
Step-by-step explanation:
There are 15 points on a circle.
We need three points to form a triangle
Therefore the number of triangles = 15 choose 3 = 15!/(3!x12!) = (15x14x13)/(3x2x1) = 5x7x13 = 455
Hence the number of triangles formed is 455
The triangles are congruent by the SSS congruence theorem. Triangles F G H and V W X are shown. Triangle F G H is rotated about point G and then is shifted to the right to form triangle V W X. Which rigid transformation(s) can map TriangleFGH onto TriangleVWX? reflection, then rotation reflection, then translation rotation, then translation rotation, then dilation
Answer:
C. rotation, then translation
Step-by-step explanation:
edge 2021
I think it's C "rotation, then translation"
not 100% sure so check other answers too
Bruhhh I need help dude !!!
Answer:
(B), in which the first two values are 2 and 10.
Step-by-step explanation:
We can tell that this is a proportional relationship because we can examine the numbers in there.
(2,10)
(4,20)
and (6,30).
If you notice, the x value times 5 gets us the y value for every single point there.
Therefore, B is proportional and it's equation is y = 5x.
Hope this helped!
Answer:
B.
Step-by-step explanation:
B. Is the only one that proportional because,
(2,10)
(4,20)
(6,30)
All these x values multiply by 5 to get the y value.
So the equation is y = 5x meaning it is linear and it goes through the origin which makes it proportional.
Thus,
answer choice B is correct.
Hope this helps :)
help me please i jave 10 min left HELP
Answer:
Option (A).
Step-by-step explanation:
[tex]8\frac{4}{5}[/tex] is a mixed fraction and can be written as,
[tex]8\frac{4}{5}=8+\frac{4}{5}[/tex] [Combination of a whole number and a fraction]
When we multiply this mixed fraction by 7,
[tex]7\times 8\frac{4}{5}=7\times (8+\frac{4}{5})[/tex]
[tex]=(7\times 8)+(7\times \frac{4}{5})[/tex] [Distributive property → a(b + c) = a×b + a×c]
[tex]=56+\frac{28}{5}[/tex]
[tex]=56+5\frac{3}{5}[/tex]
[tex]=56+5+\frac{3}{5}[/tex]
[tex]=61+\frac{3}{5}[/tex]
[tex]=61\frac{3}{5}[/tex]
Therefore, [tex]7\times 8\frac{4}{5}=61\frac{3}{5}[/tex] will be the answer.
Option (A) will be the correct option.
For what values of the following expressions are true: |a−5|=5−a
Answer:
Whenever a-5<0 or a<5
Step-by-step explanation:
So if you have an absolute value, that turns into two equations. The one we care about is -(a-5)=5-a. After distributing the negative through the left side of the equation, you'll get that 5-a=5-a, which is an identity. But you can only say that abs(a-5)=5-a when a-5<0. To see a visual representation of this, graph both sides of the equation in desmos.
ASAP!! Please help me. I will not accept nonsense answers, but will mark as BRAINLIEST if you answer is correctly with solutions.
Answer:
w²-30w+210=0
Step-by-step explanation:
2w + 2l = 60 , w + l = 30, l = 30 - w
wl = 210
w(30-w) -210 = 0
30w - w²-210 = 0
w²-30w+210=0
Which graph represents the solution set of the inequality
ASAP PLEASEEEE
Answer: C
Step-by-step explanation:
The open dot means its not equal to X and the placement is -14.5
The triangles are similar. Solve for the missing segment.
Answer:
56
Step-by-step explanation:
Since the triangles are similar then the ratios of corresponding sides are equal, that is
[tex]\frac{35+20}{20}[/tex] = [tex]\frac{32+?}{32}[/tex] ( cross- multiply )
20(32 + ?) = 1760 ( divide both sides by 20 )
32 + ? = 88 ( subtract 32 from both sides )
? = 56
Answer:
[tex]\boxed{56}[/tex]
Step-by-step explanation:
We can use ratios to solve since the triangles are similar.
[tex]\frac{20}{32} =\frac{35}{x}[/tex]
Cross multiplication.
[tex]20x=35 \times 32[/tex]
Divide both sides by 20.
[tex]\frac{20x}{20} = \frac{35 \times 32}{20}[/tex]
[tex]x=56[/tex]
22.
Makes s the subject
[tex] \sqrt{p} \: is \: equals \: to \: \sqrt[r]{w \: - as ^{2}}[/tex]
Step-by-step explanation:
[tex] \sqrt{p} = \sqrt[r]{w - {as}^{2} } [/tex]
Find raise each side of the expression to the power of r
That's
[tex]( \sqrt{p} )^{r} = (\sqrt[r]{w - {as}^{2} } ) ^{r} [/tex]we have
[tex]( \sqrt{p} )^{r} = w - {as}^{2} [/tex]Send w to the left of the equation
[tex]( \sqrt{p} )^{r} - w = -{as}^{2} [/tex]Divide both sides by - a
We have
[tex] {s}^{2} = -\frac{( \sqrt{p} )^{r} - w}{a} [/tex]Find the square root of both sides
We have the final answer as
[tex]s = \sqrt{ -\frac{( \sqrt{p} )^{r} - w }{a} } [/tex]Hope this helps you
identify the coefficient of x
1. 3xy³
2. xy
___
5
3. 3
___ x y
4
4. 3
___ x²y
4
Answer:
3
1/5
3/4
3/4
Step-by-step explanation:
Coefficient is a number that is always written in front of a term.
3xy^3=3
xy/5=1/5
3/4xy=3/4
3/4x^2y=3/4
Hope this helps ;) ❤❤❤
I need this done help!!
Answer:
Because the triangle is isosceles, the base angles are congruent, meaning that the angles that are not right angles are x and x. Since the sum of angles in a triangle is 180°, we can write:
90 + x + x = 180
x + x = 90
2x = 90
x = 45°
Answer:
45 degrees
Step-by-step explanation:
This triangle is "isosceles..." two legs are equal. Thus, the triangle has two 45 degree angles. The indicated angle is 45 degreees.
4) Flying to Tahiti with a tailwind a plane averaged 259 km/h. On the return trip the plane only
averaged 211 km/h while flying back into the same wind. Find the speed of the wind and the
speed of the plane in still air.
A) Plane: 348 km/h, Wind: 37 km/h B) Plane: 243 km/h, Wind: 30 km/h
C) Plane: 235 km/h, Wind: 24 km/h D) Plane: 226 km/h, Wind: 13 km/h
fundraiser Customers can buy annle nies and
Answer: C) Plane: 235 km/h, Wind: 24 km/h
Step-by-step explanation:
Given that :
Average Speed while flying with a tailwind = 259km/hr
Return trip = 211km/hr
Let the speed of airplane = a, and wind speed = w
Therefore ;
Average Speed while flying with a tailwind = 259km/hr
a + w = 259 - - - (1)
Return trip = 211km/hr
a - w = 211 - - - (2)
From (2)
a = 211 + w
Substitute the value of a into (1)
a + w = 259
211 + w + w = 259
211 + 2w = 259
2w = 259 - 211
2w = 48
w = 48/2
w = 24km = windspeed
Substituting w = 24 into (2)
a - 24 = 211
a = 211 + 24
a = 235km = speed of airplane
5. Lisa sold costume jewelry at a bazaar. The
first hour she sold 2 bracelets and 3 rings
for a total of $26. Later a customer bought
2 rings and paid $12. All bracelets were
priced the same. All rings were priced the
same. How much did a bracelet cost?
Answer:
$4
Step-by-step explanation:
2 Bracelets + 3 rings = $26
2 rings = $12
3 rings = x
To get the cost of 1 ring you divide 12 by 2 and the answer you get is 6.
The total cost of the 3 rings is $18( $6*3)
Then you subtract the cost of both 2 bracelets and 3 rings($26) from the cost of 3 rings($18). The answer is $8. ( THIS IS THE COST OF 2 BRACELETS)
1 BRACELET= $4( $8/2)
An electronics company designed a cardboard box for its new line of air purifiers. The figure shows the dimensions of the box.
The amount of cardboard required to make one box is___square inches.
a)130
b)111
c)109
d)84
Answer:
130
Step-by-step explanation:
just did test on plato/edmentum..it was correct
84 (the answer above) is incorrect
Answer:
Hi sorry for late respond but the answer in 130!!
Step-by-step explanation:
I need help ASAP thank you!! Sorry if you can’t see it but you can zoom in:)
Answer:
432 aquariums
Step-by-step explanation:
To determine the number of aquariums the factory made, find the volume of 1 aquarium, then divide the total volume of water required.
Solution:
Volume of triangular prism aquarium = triangular base area × length of triangular prism
Volume = ½*b*h*l
Where,
b = 8 ft
h = 4 ft
l = 3 ft
Volume = ½*8*4*3 = 4*4*3
Volume = 48 ft³
Number of aquarium made = Volume of water required ÷ volume of 1 aquarium
= 20,736 ÷ 48 = 432 aquariums
Trivikram jogs from one end of corniche to its other end on a straight 300 m road in 2 minutes 50 seconds and then turns around and jogs 100 m back on same track in another 1 minute. What is his average speed and velocity?
Answer:
1.76m/s ; 1.76m/s ; 1.74m/s, 0.86m/s
Step-by-step explanation:
Given the following :
Distance jogged in first direction (A to B) = 300m
Time taken = 2 minutes 50s = (2*60) + 50 = 120 + 50 = 170s
Distance jogged in opposite direction (B to C) = 100m
Time taken = 1minute = 60s
Recall:
Speed = distance / time
Therefore Average speed from A to B
Average speed = 300m/ 170s = 1.764 = 1.76m/s
Average Velocity = Displacement / time
Displacement = 300m ; time = 170s
= 300m / 170s = 1.76m/s
Average speed (A to C)
Therefore, average speed = total distance / total time taken
Total distance = (300 + 100)m = 400m
Total time taken = (170 + 60)s = 230s
Average speed = 400m / 230s
= 1.739m/s = 1.74m/s
Average velocity:
Displacement = distance between initials position and final position.
Initial distance covered = 300m. Then 100m was jogged in the opposite direction.
Distance between starting and ending positions, becomes : (300 - 100)m = 200m
200 / 230 = 0.87m/s
Factorize a² +3ab - 5ab - 15b².
Answer:
[tex]a^2+3\,a\,b-5\,a\,b-15\,b^2=(a-5\,b)\,(a+3\,b)[/tex]
Step-by-step explanation:
Work via factoring by groups:
!) re arrange the terms as follows:
[tex]a^2-5ab+3ab-15b^2[/tex]
then extract the common factor for the first two terms (a), and separately the common factors for the last two terms (3 b):
[tex]a^2-5ab+3ab-15b^2\\a\,(a-5\,b)+3\,b\,(a-5\,b)[/tex]
Now notice that the binomial factor (a-5 b) is in both expressions, so extract it:
[tex]a\,(a-5\,b)+3\,b\,(a-5\,b)\\(a-5\,b)\,(a+3\,b)[/tex]
which is the final factorization.
Answer:
[tex] \boxed{\sf (a + 3b)(a - 5b)} [/tex]
Step-by-step explanation:
[tex] \sf Factor \: the \: following: \\ \sf \implies {a}^{2} + 3ab - 5ab - 15 {b}^{2} \\ \\ \sf Grouping \: like \: terms, \\ \sf {a}^{2} + 3ab - 5ab - 15 {b}^{2} = {a}^{2} + (3ab - 5ab) - 15 {b}^{2} : \\ \sf \implies {a}^{2} + (3ab - 5ab) - 15 {b}^{2} \\ \\ \sf 3ab - 5ab = - 2ab : \\ \sf \implies {a}^{2} - 2ab - 15 {b}^{2} \\ \\ \sf The \: factors \: of \: - 15 \: that \: sum \: to \: - 2 \: are \: 3 \: and \: - 5. \\ \\ \sf So, \\ \sf \implies {a}^{2} + (3 - 5)ab - 15 {b}^{2} \\ \\ \sf \implies {a}^{2} + 3ab - 5ab - 15 {b}^{2} \\ \\ \sf \implies a(a + 3b) - 5b(a + 3b) \\ \\ \sf \implies (a + 3b)(a - 5b)[/tex]
PLEASE HELP ME! Please do not comment nonsense, and actually comment the answer and the solution.
=================================================
Explanation:
For choice C, the x values are out of order, so it might be tricky at first. I recommend sorting the x values from smallest to largest to get -2, -1, 0, 1, 2. Do the same for the y values as well. Make sure the correct y values stay with their x value pairs. You should get the list of y values to be 4, 2, 1, 1/2, 1/4
Check out the attached image below for the sorted table I'm referring to
We can see the list of y values is going down as x increases. This is a good sign we have decay. Further proof is that we multiply each term by 1/2 to get the next one
4 times 1/2 = 2
2 times 1/2 = 1
1 times 1/2 = 1/2
1/2 times 1/2 = 1/4
and so on. Effectively we can say the decay rate is 50%
Shrina is selling cookie dough for her soccer team. She sold 2 tubs of
Oatmeal Raisin and 2 tulbs of Peanut Butter.
How much money did she make?
Oatmeal Raisin
$6 a tub
$22
$24
Peanut Butter
$5 a tub
$20
$11
Answer: 22
Step-by-step explanation:
She sold two tubs of Oatmeal Raisins and it's 6 dollars a tub so we can do 6*2 or 6+6 (doesn't matter). We get $12. Then, she also sells 2 tubs of Peanut Butter, and since it's $5 a tub, then we do 5*2 or 5+5 to get 10. We add 12 and 10 (12+10) and get 22.
I'm not sure if this is right because you added $22, $24, $20, and $11 and I'm not sure what the purposes of those are.
What is the difference between a parallelogram and a rectangle? a Both pairs of opposite sides are congruent and parallel. b Contains four right angles. c The diagonals bisect each other. d Both pairs of opposite angles are congruent.
Answer:
b. Contains four right angles.
Step-by-step explanation:
A parallelogram has two pairs of opposite sides that are both congruent and parallel, as does a rectangle.
A parallelogram usually does NOT have four right angles, but a rectangle does. b Contains four right angles is the difference between a parallelogram and a rectangle.
The diagonals of a parallelogram bisect each other, and so do the rectangle's diagonals.
The opposite angles of parallelograms are congruent, and all four angles of a rectangle are congruent, so this is a similar aspect of both a parallelogram and a rectangle.
Hope this helps!
38. Convert 85 to a number in base eight.
O 95 (base eight)
O 105 (hase eight)
O 115 (base eight)
O 125 (base eight)
Answer:
divide the number by 8 and write the remainder like this 10 r 5.Then you get your answer by going through the remainders in an upward direction. So the answer is 125
32x - 12.8 simplify plz
Answer:
Length = 8x - 3.2
Step-by-step explanation:
Perimeter = 4(Length) [Since it's a square so all the sides are equal]
Given that Perimeter = 32x - 12.8
32x - 12.8 = 4(Length)
Dividing both sides by 4
=> Length = [tex]\frac{4(8x-3.2)}{4}[/tex]
=> Length = 8x - 3.2
Now, Three equivalent expressions to find the perimeter
=> Perimeter = 32x - 12.8
=> Perimeter = 4(8x - 3.2) [Perimeter = 4 (Length)]
=> Perimeter = 2(16x - 6.4)
Answer:
[tex]\boxed{8x-3.2}[/tex]
Step-by-step explanation:
The perimeter is 32x - 12.8 of a square.
Use formula for perimeter of a square.
[tex]P=4a[/tex]
[tex]P=perimeter\\a=side \: length[/tex]
[tex]32x - 12.8=4a[/tex]
Solve for side length.
[tex]\frac{32x - 12.8}{4} =a[/tex]
[tex]8x-3.2=a[/tex]
Three equivalent expressions for perimeter:
32x - 12.8
⇒ 8(4x - 1.6)
⇒ 4(8x - 3.2)
⇒ 2(16x - 6.4)
Given the sequence 38, 32, 26, 20, 14, ..., find the explicit formula.
Answer:
The explicit formula for the sequence is
44 - 6nStep-by-step explanation:
The above sequence is an arithmetic sequence
For an nth term in an arithmetic sequence
A(n) = a + ( n - 1)d
where a is the first term
n is the number of terms
d is the common difference
From the question
a = 38
d = 32 - 38 = - 6 or 20 - 26 = - 6 or
14 - 20 = - 6
So the formula for the sequence is
A(n) = 38 + ( n - 1)-6
= 38 - 6n + 6
We have the final answer as
A(n) = 44 - 6nHope this helps you
Answer:
[tex]\huge\boxed{a_n=-6n+44}[/tex]
Step-by-step explanation:
This is an arithmetic sequence:
32 - 38 = -6
26 - 32 = -6
20 - 26 = -6
14 - 20 = -6
The common difference d = -6.
The explicit formula of an arithmetic formula:
[tex]a_n=a_1+(n-1)(d)[/tex]
Substitute:
[tex]a_1=38;\ d=-6[/tex]
[tex]a_n=38+(n-1)(-6)[/tex] use the distributive property
[tex]a_n=38+(n)(-6)+(-1)(-6)\\\\a_n=38-6n+6\\\\a_n=-6n+(38+6)\\\\a_n=-6n+44[/tex]
What the answer now hurry up and answer fast question
Answer:
927.0 cm²
Step-by-step explanation:
Step 1: find Z
m < Z = 180 - (28 + 118) (sum of ∆)
= 180 - 146
Z = 34°
Step 2: Find side XY using the law of sines
[tex] \frac{XY}{sin(34)} = \frac{42}{sin(28)} [/tex]
Cross multiply
[tex] XY*sin(28) = 42*sin(34) [/tex]
[tex]XY*0.469 = 42*0.559[/tex]
Divide both sides by 0.469
[tex]\frac{XY*0.469}{0.469} = \frac{42*0.559}{0.469}[/tex]
[tex]XY = 50.06[/tex]
XY ≈ 50 cm
Step 3: find the area.
Area of ∆ = ½*XY*YZ*sin(Y)
XY ≈ 50 cm
= ½*50*42*sin(118)
= 25*42*0.8829
Area = 927.045
Area ≈ 927.0 cm² (nearest tenth)
A restaurant catered a party for 45 people. A child’s dinner (c) cost $15 and an adult’s dinner (a) cost $25. The total cost of the dinner was $1,015. How many children and adults were at the party? Use the table to guess and check.
Number of People
a
c
c + a = 45
15 c + 25 a = 1,015 dollars
9 adults and 36 children
10 adults and 35 children
34 adults and 11 children
36 adults and 9 children
Answer:
34 adults and 11 children
Step-by-step explanation:
15 times 11 is 165dollars for kids
25 times 34 adults equals 850 dollars
add it and its 1015
Answer:
34 and 11
Step-by-step explanation: