We multiply the numerators together to get x*2x = 2x^2 as the numerator for the answer.
The denominators pair up and multiply to get (x-5)(x+4) = x^2+4x-5x-20 = x^2-x-20. You can use the distributive property, FOIL, or the box method to expand out (x-5)(x+4)
So that's how we end up with (2x^2) all over (x^2-x-20) as the answer.
Before the pandemic cancelled sports, a baseball team played home games in a stadium that holds up to 50,000 spectators. When ticket prices were set at $12, the average attendance was 30,000. When the ticket prices were on sale for $10, the average attendance was 35,000.
(a) Let D(x) represent the number of people that will buy tickets when they are priced at x dollars per ticket. If D(x) is a linear function, use the information above to find a formula for D(x). Show your work!
(b) The revenue generated by selling tickets for a baseball game at x dollars per ticket is given by R(x) = x-D(x). Write down a formula for R(x).
(c) Next, locate any critical values for R(x). Show your work!
(d) If the possible range of ticket prices (in dollars) is given by the interval [1,24], use the Closed Interval Method from Section 4.1 to determine the ticket price that will maximize revenue. Show your work!
Optimal ticket price:__________ Maximum Revenue:___________
Answer:
(a)[tex]D(x)=-2,500x+60,000[/tex]
(b)[tex]R(x)=60,000x-2500x^2[/tex]
(c) x=12
(d)Optimal ticket price: $12
Maximum Revenue:$360,000
Step-by-step explanation:
The stadium holds up to 50,000 spectators.
When ticket prices were set at $12, the average attendance was 30,000.
When the ticket prices were on sale for $10, the average attendance was 35,000.
(a)The number of people that will buy tickets when they are priced at x dollars per ticket = D(x)
Since D(x) is a linear function of the form y=mx+b, we first find the slope using the points (12,30000) and (10,35000).
[tex]\text{Slope, m}=\dfrac{30000-35000}{12-10}=-2500[/tex]
Therefore, we have:
[tex]y=-2500x+b[/tex]
At point (12,30000)
[tex]30000=-2500(12)+b\\b=30000+30000\\b=60000[/tex]
Therefore:
[tex]D(x)=-2,500x+60,000[/tex]
(b)Revenue
[tex]R(x)=x \cdot D(x) \implies R(x)=x(-2,500x+60,000)\\\\R(x)=60,000x-2500x^2[/tex]
(c)To find the critical values for R(x), we take the derivative and solve by setting it equal to zero.
[tex]R(x)=60,000x-2500x^2\\R'(x)=60,000-5,000x\\60,000-5,000x=0\\60,000=5,000x\\x=12[/tex]
The critical value of R(x) is x=12.
(d)If the possible range of ticket prices (in dollars) is given by the interval [1,24]
Using the closed interval method, we evaluate R(x) at x=1, 12 and 24.
[tex]R(x)=60,000x-2500x^2\\R(1)=60,000(1)-2500(1)^2=\$57,500\\R(12)=60,000(12)-2500(12)^2=\$360,000\\R(24)=60,000(24)-2500(24)^2=\$0[/tex]
Therefore:
Optimal ticket price:$12Maximum Revenue:$360,000The total area under the standard normal curve to the left of zequalsnegative 1 or to the right of zequals1 is
Answer:
0.3174
Step-by-step explanation:
Z-score:
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the area under the normal curve to the left of Z. Subtracting 1 by the pvalue, we find the area under the normal curve to the right of Z.
Left of z = -1
z = -1 has a pvalue of 0.1587
So the area under the standard normal curve to the left of z = -1 is 0.1587
Right of z = 1
z = 1 has a pvalue of 0.8413
1 - 0.8413 = 0.1587
So the area under the standard normal curve to the right of z = 1 is 0.1587
Left of z = -1 or right of z = 1
0.1587 + 0.1587 = 0.3174
The area is 0.3174
The graph shows a gasoline tank being filled at a rate of 2,500 gallons of gas per
hour. How will the graph change if the rate slows?
The correct answer is The line will be less steep because the rate will be slower
Explanation:
The rate of the graph is defined by the number of gallons filled vs the time; this relation is shown through the horizontal axis (time) and the vertical axis (gallons). Additionally, there is a constant rate because each hour 2,500 gallons are filled, which creates a steep constant line.
However, if the rate decreases, fewer gallons would be filled every hour, and the line will be less steep, this is because the number of gallons will not increase as fast as with the original rate. For example, if the rate is 1,250 gallons per hour (half the original rate), after 8 hours the total of gallons would be 1000 gallons (half the amount of gallons); and this would make the line to be less steep or more horizontal.
solve and find the value of (1.7)^2
Answer:
2.89
Step-by-step explanation:
just do 1.7×1.7=2.89
Please answer this correctly
Answer:
The second question
Step-by-step explanation:
The orca starts at -25 meters. She goes up 25 meters.
up 25 = +25
-25+25=0
Answer:
Option 2
Step-by-step explanation:
The orca swims at the elevation of -25 meters. The orca swims up 25 meters higher than before.
-25 + 25 = 0
g A catering service offers 7 %E2%80%8b Appetizers, 9 main%E2%80%8B courses, and 5 desserts. A banquet committee is to select 2 %E2%80%8b Appetizers, 8 main%E2%80%8B courses, and 4 desserts. How many ways can this be%E2%80%8B done
Answer:
945 ways
Step-by-step explanation:
Total
Number of Appetizers = 7Number of main courses = 9Number of desserts =5Required Selection
Number of Appetizers = 2Number of main courses = 8Number of desserts =42 Appetizers out of 7 can be selected in [tex]^7C_2[/tex] ways
8 main courses out of 9 can be selected in [tex]^9C_8[/tex] ways
4 desserts out of 5 can be selected in [tex]^5C_4[/tex] ways
Therefore, the number of ways this can be done
[tex]=^7C_2 \times ^9C_8 \times ^5C_4[/tex]
=945 ways
Which steps would be used to solve the equation? Check all that apply. 2 and two-thirds + r = 8 Subtract 2 and two-thirds from both sides of the equation. Add 2 and two-thirds to both sides of the equation. 8 minus 2 and two-thirds = 5 and one-third 8 + 2 and two-thirds = 10 and two-thirds Substitute the value for r to check the solution.
Answer:
Subtract 2 and two-thirds from both sides of the equation
8 minus 2 and two-thirds = 5 and one-third
Substitute the value for r to check the solution.
Step-by-step explanation:
2 2/3 + r = 8
Subtract 2 2/3 from each side
2 2/3 + r - 2 2/3 = 8 - 2 2/3
r = 5 1/3
Check the solution
2 2/3 +5 1/3 =8
8 =8
Answer:
1, 3, 5
Step-by-step explanation:
edge
Arrange the functions for which the result is a non-infinite value and the limit exists in ascending order of their limit values as x tends to infinity. Please see picture attached.
Answer:
see attached
Step-by-step explanation:
The limit as x gets large is the ratio of the highest-degree terms. In most cases, the limit can be found by evaluating that ratio. Where an absolute value is involved, the absolute value of the highest-degree term is used.
If the ratio gives x to a positive power, the limit does not exist. If the ratio gives x to a negative power, the limit is zero.
The arrangement of functions according to the given condition
[tex]m(x)=\frac{4x^{2}-6 }{1-4x^{2} }[/tex]
[tex]h(x)=\frac{x^{3} -x^{2} +4}{1-3x^{2} }[/tex]
[tex]k(x)=\frac{5x+1000}{x^{2} }[/tex]
[tex]i(x)=\frac{x-1}{|1-4x| }[/tex]
[tex]g(x)=\frac{|4x-1|}{x-4}[/tex]
[tex]l(x)=\frac{5x^{2} -4}{x^{2} +1}[/tex]
[tex]f(x)=\frac{x^{2} -1000}{x-5}[/tex]
[tex]j(x)=\frac{x^{2}-1 }{|7x-1|}[/tex]
What is limit?A limit is the value that a function approaches as the input approaches some value.
According to the given question
[tex]l(x)=\frac{5x^{2} -4}{x^{2} +1}[/tex]
⇒[tex]\lim_{nx\to \infty} \frac{5x^{2} -1}{x^{2} +1}[/tex]
⇒[tex]\lim_{x \to \infty} \frac{x^{2} }{x^{2} } \frac{5-\frac{1}{x^{2} } }{1+\frac{1}{x^{2} } }[/tex]
= 5 ([tex]\frac{1}{x^{2} } = 0[/tex] ,as x tends to infinity [tex]\frac{1}{x^{2} }[/tex] tends to 0)
[tex]i(x)=\frac{x-1}{|1-4x|}[/tex]
⇒[tex]\lim_{x \to \infty} \frac{x-1}{|1-4x|}[/tex] = [tex]\lim_{x \to \infty} \frac{x}{x} \frac{1-\frac{1}{x} }{|\frac{-1}{4}+\frac{1}{x} | }[/tex] =[tex]\frac{1}{\frac{1}{4} }[/tex] =[tex]\frac{1}{4}[/tex]
As x tends to infinity 1/x tends to 0, and |[tex]\frac{-1}{4}[/tex]| gives 1/4
[tex]f(x)= \frac{x^{2} -1000}{x--5}[/tex]
⇒[tex]\lim_{x \to \infty} \frac{x^{2} -1000}{x-5}[/tex]= [tex]\lim_{x \to \infty} \frac{x^{2} }{x} \frac{1-\frac{1000}{x^{2} } }{1-\frac{5}{x} }[/tex]= [tex]\lim_{x \to \infty} x\frac{1-\frac{1000}{x^{2} } }{1-\frac{5}{x} }[/tex] ⇒ limit doesn't exist.
[tex]m(x)=\frac{4x^{2}-6 }{1-4x^{2} }[/tex]
⇒[tex]\lim_{x\to \infty} \frac{4x^{2} -6}{1-4x^{2} }[/tex]=[tex]\lim_{x\to \infty} \frac{x^{2} }{x^{2} } \frac{4-\frac{6}{x^{2} } }{\frac{1}{x^{2} } -4}[/tex] [tex]= \lim_{n \to \infty} \frac{4}{-4}[/tex] = -1
As x tends to infinity [tex]\frac{1}{x^{2} }[/tex] tends to 0.
[tex]g(x)=\frac{|4x-1|}{x-4}[/tex]
⇒[tex]\lim_{x\to \infty} \frac{|4x-1|}{x-4}[/tex] = [tex]\lim_{x \to \infty} \frac{|x|}{x} \frac{4-\frac{1}{x} }{1 -\frac{4}{x} } }[/tex] = 4
as x tends to infinity 1/x tends to 0
and |x|=x ⇒[tex]\frac{|x|}{x}=1[/tex]
[tex]h(x)=\frac{x^{3}-x^{2} +4 }{1-3x^{3} }[/tex][tex]\lim_{x \to \infty} \frac{x^{3} -x^{2} +4}{1-3x^{3} }[/tex][tex]= \lim_{x \to \infty} \frac{x^{3} }{x^{3} } \frac{1-\frac{1}{x}+\frac{4}{x^{3} } }{\frac{1}{x^{3} -3} }[/tex] = [tex]\frac{1}{-3}[/tex] =[tex]-\frac{1}{3}[/tex]
[tex]k(x)=\frac{5x+1000}{x^{2} }[/tex]
[tex]\lim_{x \to \infty} \frac{5x+1000}{x^{2} }[/tex] = [tex]\lim_{x \to \infty} \frac{x}{x} \frac{5+\frac{1000}{x} }{x}[/tex] =0
As x tends to infinity 1/x tends to 0
[tex]j(x)= \frac{x^{2}-1 }{|7x-1|}[/tex]
[tex]\lim_{x \to \infty} \frac{x^{2}-1 }{|7x-1|}[/tex] = [tex]\lim_{x \to \infty} \frac{x}{|x|}\frac{x-\frac{1}{x} }{|7-\frac{1}{x}| }[/tex] = [tex]\lim_{x \to \infty} 7x[/tex] = limit doesn't exist.
Learn more about limit here:
https://brainly.in/question/5768142
#SPJ2
What is y - 8 = 4(x - 4) in slope intercept form?
Answer:
y=4x-8
Step-by-step explanation:
First you must use the distributive property and get y-8=4x-16.
Then you have to add 8 on both sides so just y is left on the left side.
This will get you y=4x-8 in slope-intercept form.
Jacqueline and Maria set up bug barns to catch lady bugs. Jacqueline caught ten more than three times the number of lady bugs that Maria caught. If c represents the number of lady bugs Maria caught, write an expression for the number of lady bugs that Jacqueline caught.
Answer:
(CX3)+10
Step-by-step explanation:
Answer:
c×3+10= j
Step-by-step explanation:
Researchers wanted to know whether it is better to give the diphtheria, tetanus and pertussis (DTaP) vaccine in the thigh or the arm. They collect data on severe reactions to this vaccine in children aged 3 to 6 years old. What would be the best statistical test for them to utilize?
A. One-sample chi-square
B. Linear regression
C. T-test
D. Two-sample chi-square
Answer:
D. Two-sample chi-square
Step-by-step explanation:
A chi-square test is a test used to compare the data that is observed, from the data that is expected.
In a two-sample chi-square test the observed data should be similar to the expected data if the two data samples are from the same distribution.
The hypotheses of the two-sample chi-square test is given as:
H0: The two samples come from a common distribution.
Ha: The two samples do not come from a common distribution
Therefore, in this case, the best statistical test to utilize is the two-sample chi-square test.
PLS HELP ASAP!!!!........
Answer:
aaaaha pues
Step-by-step explanation:
Answer:
what happened
Step-by-step explanation:
To get from North to East, you walk 12 meters south and 16 meters east, as shown
in the diagram below. If you wanted to walk straight from North to East, what would
the distance be? Solve for x
Answer:
ur pito is to small
Step-by-step explanation:
it to little
A square has a perimeter of 12x+52 units. Which expression represents the side leagth of the square in units
Answer:
12x/2 or 52/2
Step-by-step explanation:
Ok, perimeter is length+length+width+width. 12x/2 and 52/2 could are probably the answers.
The table shows three unique functions. (TABLE IN PIC) Which statements comparing the functions are true? Select three options. Only f(x) and h(x) have y-intercepts. Only f(x) and h(x) have x-intercepts. The minimum of h(x) is less than the other minimums. The range of h(x) has more values than the other ranges. The maximum of g(x) is greater than the other maximums.
Answer:
(A)Only f(x) and h(x) have y-intercepts.
(C)The minimum of h(x) is less than the other minimums.
(E)The maximum of g(x) is greater than the other maximums.
Step-by-step explanation:
From the table
f(0)=0 and h(0)=0, therefore, Only f(x) and h(x) have y-intercepts. (Option A)
Minimum of f(x)=-14Minimum of g(x)=1/49Minimum of h(x)=-28Therefore, the minimum of h(x) is less than the other minimums. (Option C).
Maximum of f(x)=14
Maximum of g(x)=49
Maximum of h(x)=0
Therefore, the maximum of g(x) is greater than the other maximums. (Option E)
Answer: It's B,C, and E
Step-by-step explanation:
Determine if the matrix below is invertible. Use as few calculations as possible. Justify your answer. 3 0 -4 2 0 6 -3 0 8
a. The matrix is invertible. The columns of the given matrix span R^3.
b. The matrix is not invertible. If the given matrix is A, the columns of A do not form a linearly independent set.
c. The matrix is invertible. The given matrix has 2 pivot positions.
d. The matrix is not invertible. If the given matrix is A, the equation Ax = 0 has only the trivial solution.
Answer:
b. The matrix is not invertible. If the given matrix is A, the columns of A do not form a linearly independent set.
Step-by-step explanation:
A square matrix is said to be invertible if the product of the matrix and its inverse result into an identity matrix.
3 0 -4
2 0 6
-3 0 8
Since the second column elements are all zero, the determinant of the matrix is zero ad this implies that the inverse of the matrix does not exist(i.e it is not invertible )
A square matrix is said to be invertible if it has an inverse.
The matrix is not invertible. If the given matrix is A, the columns of A do not form a linearly independent set.
The matrix is given as:
[tex]\left[\begin{array}{ccc}3&0&-4\\2&0&6\\-3&0&8\end{array}\right][/tex]
Calculate the determinant
The determinant of the matrix calculate as:
[tex]|A| = 3 \times(0 \times 8- 6 \times 0) - 0(2 \times 8 - 6 \times -3) -4(2 \times 0 - 0 \times -3)[/tex]
[tex]|A| = 3 \times(0) - 0(34) -4(0)[/tex]
[tex]|A| = 0 - 0 -0[/tex]
[tex]|A| = 0[/tex]
When a matrix has its determinant to be 0, then
It is not invertibleIt does not form a linear independent set.Hence, the correct option is (b)
Read more about matrix at:
https://brainly.com/question/19759946
Phil Nelson deposited $35,000 at Wachovia Bank at 3.5% interest
compounded quarterly. How much money will be in this account at
the end of the year?
Answer:
$36,241.20
Step-by-step explanation:
Compounded Interest Rate Formula: A = P(1 + r/n)^nt
Since we are given P, r, n, and t, simply plug it into the formula:
A = 35000(1 + 0.035/4)⁴⁽¹⁾
A = 35000(1 + 0.00875)⁴
A = 35000(1.00875)⁴
A = 35000(1.03546)
A = 36241.2
www.g A survey of athletes at a high school is conducted, and the following facts are discovered: 19% of the athletes are football players, 79% are basketball players, and 14% of the athletes play both football and basketball. An athlete is chosen at random from the high school: what is the probability that they are either a football player or a basketball player
Answer:
84%
Step-by-step explanation:
The probability that the selected player is a football player, P(F)=19%
The probability that the selected player is a basketball player, P(B)=79%
The probability that the selected player play both football and basketball,
[tex]P(B \cap F)=14\%[/tex]
We want to determine the probability that a randomly chosen athlete is either a football player or a basketball player, [tex]P(B \cup F)[/tex]
In probability theory
[tex]P(B \cup F)=P(B)+P(F)-P(B \cap F)\\=79\%+19\%-14\%\\=84\%[/tex]
The probability that a randomly chosen athlete is either a football player or a basketball player is 84%.
What is the greatest common factor of the polynomial below?
20x^3 - 14x
Answer:
the correct answer is 2x
Answer:
D. 2x
Step-by-step explanation:
20x² : 1, 2, 4, 5, 10, 20, x
14x : 1, 2, 7, 14, x
The greatest common factor of the polynomial is 2x.
2x(10x² - 7)
If the 2412 leaves are not a random sample, but the researchers treated the 2412 leaves as a random sample, this most likely made the data more:_____________.1. accurate, but not precise2. precise, but not accurate3. neither4. both accurate and precise
Answer:
2. Precise but not accurate
Step-by-step explanation:
In a high precision, low accuracy case study, the measurements are all close to each other (high agreement between the measurements) but not near/or close to the center of the distribution (how close a measurement is to the correct value for that measurement)
In the DBE 122 class, there are 350 possible points. These points come from 5 homework sets that are worth 10 points each and 3 exams that are worth 100 points each. A student has received homework scores of 7, 8, 7, 5, and 8 and the first two exam scores are 81 and 80. Assuming that grades are assigned according to the standard scale, where if the grade percentage is 0.9 or higher the student will get an A, and if the grade percentage is between 0.8 and 0.9 the student will get a B, and there are no weights assigned to any of the grades, is it possible for the student to receive an A in the class? What is the minimum score on the third exam that will give an A? What about a B?
Answer:
a) The student cannot receive an A in the class.
b) The student must score 119 in the third exams to make an A. This is clearly not possible, since he cannot make 119 in a 100-points exam.
c) The student can make a B but he must score at least 84 in the third exam.
Step-by-step explanation:
To make an A, the student must score 315 (350 x 90%) in both home and the three exams.
The student who scored 35 (7 + 8 + 7 + 5 + 8) in the homework and 161 (81 + 80), getting a total of 196, is short by 119 (315 - 196) scores in making an A.
To make a B, the student must score 280 (350 x 80%) or higher but not reaching 315.
B ≥ 280 and < 315.
Since, the student had scored 196, he needs to score 84 and above to make a B in the last exam.
Find the value of x geometry
Answer:
x = 22
Step-by-step explanation:
Since the the 2 bisectors are equal, that means the chords are also equal. Since bisector splits into 2 equal parts, 11 + 11 equals 22
A rookie quarterback is negotiating his first NFL contract.His opportunity cost is 10%. He has been offered three possible 4-year contracts. Payments are guaranteed, and they would be made at the end of each year. Terms of each contract are as follows:________.
1 2 3 4
Contract 1 $3,000,000 $3,000,000 $3,000,000 $3,000,000
Contract 2 $2,000,000 $3,000,000 $4,000,000 $5,000,000
Contract 3 $7,000,000 $1,000,000 $1,000,000 $1,000,000
As his advisor, which contract would you recommend that he accept?
Answer:
He should accept contract 2 because it has a higher present value.
Step-by-step explanation:
we need to find the present value of each contract:
Contract 1 = $3,000,000/1.1 + $3,000,000/1.1² + $3,000,000/1.1³ + $3,000,000/1.1⁴ = $2,727,273 + $2,479,339 + $2,253,944 + $2,049,040 = $9,509,596
Contract 2 $2,000,000/1.1 + $3,000,000/1.1² $4,000,000/1.1³ + $5,000,000 /1.1⁴ = $1,818,182 + $2,479,339 + $3,005,259 + $3,415,067 = $10,717,847
Contract 3 $7,000,000/1.1 + $1,000,000/1.1² + $1,000,000/1.1³ + $1,000,000/1.1⁴ = $6,363,636 + $826,446 + $751,315 + $683,013 = $8,624,410
Evaluate. Write your answer as a fraction or whole number without exponents. 1/10^-3 =
Answer:
1000
Step-by-step explanation:
=> [tex]\frac{1}{10^{-3}}[/tex]
According to the law of exponents, [tex]\frac{1}{a^{-m}} = a^{m}[/tex]
So, it becomes
=> [tex]10^{3}[/tex]
=> 1000
1. Lisa is a regional manager for a restaurant chain that has locations in the towns of Berwick, Milton, and Leesburg. She would like to investigate if a difference exists in the proportion of customers who rate their experience as satisfactory or better between the three locations. The following data represent the number of customers who indicated they were satisfied from random samples taken at each location.
Berwick Milton Leesburg
Number Satisfied 80 85 60
Sample Size 100 120 80
The expected frequency of satisfied customers from the Berwick sample is________.
a. 60
b. 75
c. 80
d. 90
2. Lisa is a regional manager for a restaurant chain that has locations in the towns of Berwick, Milton, and Leesburg. She would like to investigate if a difference exists in the proportion of customers who rate their experience as satisfactory or better between the three locations. The following data represent the number of customers who indicated they were satisfied from random samples taken at each location.
Berwick Milton Leesburg
Number Satisfied 80 85 60
Sample Size 100 120 80
The expected frequency of satisfied customers from the Milton sample is________.
a. 60
b. 75
c. 80
d. 90
3. Lisa is a regional manager for a restaurant chain that has locations in the towns of Berwick, Milton, and Leesburg. She would like to investigate if a difference exists in the proportion of customers who rate their experience as satisfactory or better between the three locations. The following data represent the number of customers who indicated they were satisfied from random samples taken at each location.
Berwick Milton Leesburg
Number Satisfied 80 85 60
Sample Size 100 120 80
The expected frequency of satisfied customers from the Leesburg sample is________.
a. 60
b. 75
c. 80
d. 90
4. Lisa is a regional manager for a restaurant chain that has locations in the towns of Berwick, Milton, and Leesburg. She would like to investigate if a difference exists in the proportion of customers who rate their experience as satisfactory or better between the three locations. The following data represent the number of customers who indicated they were satisfied from random samples taken at each location.
Berwick Milton Leesburg
Number Satisfied 80 85 60
Sample Size 100 120 80
The chi-square test statistic for these samples is_______.
a. 1.49
b. 2.44
c. 4.15
d. 5.33
5. Lisa is a regional manager for a restaurant chain that has locations in the towns of Berwick, Milton, and Leesburg. She would like to investigate if a difference exists in the proportion of customers who rate their experience as satisfactory or better between the three locations. The following data represent the number of customers who indicated they were satisfied from random samples taken at each location.
Berwick Milton Leesburg
Number Satisfied 80 85 60
Sample Size 100 120 80
The degrees of freedom for the chi-square critical value is_______.
a. 1
b. 2
c. 3
d. 4
6. Lisa is a regional manager for a restaurant chain that has locations in the towns of Berwick, Milton, and Leesburg. She would like to investigate if a difference exists in the proportion of customers who rate their experience as satisfactory or better between the three locations. The following data represent the number of customers who indicated they were satisfied from random samples taken at each location.
Berwick Milton Leesburg
Number Satisfied 80 85 60
Sample Size 100 120 80
The chi-square critical value using alpha = 0.05 is_______.
a. 2.706
b. 3.841
c. 5.991
d. 7.815
7. Lisa is a regional manager for a restaurant chain that has locations in the towns of Berwick, Milton, and Leesburg. She would like to investigate if a difference exists in the proportion of customers who rate their experience as satisfactory or better between the three locations. The following data represent the number of customers who indicated they were satisfied from random samples taken at each location.
Berwick Milton Leesburg
Number Satisfied 80 85 60
Sample Size 100 120 80
Using alpha = 0.05, the conclusion for this chi-square test would be that because the test statistic is
A. More than the critical value, we can reject the null hypothesis and conclude that there is a difference in proportion of satisfied customers between these three locations.
B. Less than the critical value, we can reject the null hypothesis and conclude that there is a difference in proportion of satisfied customers between these three locations.
C. More than the critical value, we fail to reject the null hypothesis and conclude that there is no difference in proportion of satisfied customers between these three locations.
D. Less than the critical value, we fail to reject the null hypothesis and conclude that there is no difference in proportion of satisfied customers between these three locations.
Answer:
1) Option B is correct.
Expected frequency of satisfied customers from the Berwick sample = 75
2) Option D is correct.
Expected frequency of satisfied customers from the Milton sample = 90
3) Option A is correct.
Expected frequency of satisfied customers from the Leesburg sample = 60
4) Option B is correct.
The chi-square test statistic for these samples = 2.44
5) Option B is correct.
The degrees of freedom for the chi-square critical value = 2
6) Option C is correct.
The chi-square critical value using alpha = 0.05 is 5.991
7) Option D is correct.
The conclusion for this chi-square test would be that because the test statistic is less than the critical value, we fail to reject the null hypothesis and conclude that there is no difference in proportion of satisfied customers between these three locations.
Step-by-step explanation:
Berwick Milton Leesburg
Number Satisfied 80 85 60
Unsatisfied 20 35 20
Sample Size 100 120 80
Since this is a chi test that aims to check if there are differences in the proportion of expected number of customers for each location, we state the null and alternative hypothesis first.
The null hypothesis usually counters the claim we hope to test and would be that there is no difference between the proportion of expected frequency of satisfied customers at the three locations.
The alternative hypothesis confirms the claim we want to test and is that there is a significant difference between the proportion of expected frequency of satisfied customers at the three locations.
So, the total proportion of satisfied customers is used to calculate the expected number of satisfied customers for each of the three locations.
80+85+60= 225
Total number of customers = 100 + 120 + 80 = 300
Proportion of satisfied customers = (225/300) = 0.75
1) Expected frequency of satisfied customers from the Berwick sample = np = 100 × 0.75 = 75
2) Expected frequency of satisfied customers from the Milton sample = np = 120 × 0.75 = 90
3) Expected frequency of satisfied customers from the Leesburg sample = np = 80 × 0.75 = 60
4) Berwick Milton Leesburg
Number Satisfied 80 85 60
Unsatisfied 20 35 20
Sample Size 100 120 80
Proportion for unsatisfied ccustomers = 0.25
So, expected number of unsatisfied customers for the three branches are 25, 30 and 20 respectively.
Chi square test statistic is a sum of the square of deviations from the each expected value divided by the expected value.
χ² = [(X₁ - ε₁)²/ε₁] + [(X₂ - ε₂)²/ε₂] + [(X₃ - ε₃)²/ε₃] + [(X₄ - ε₄)²/ε₄] + [(X₅ - ε₅)²/ε₅] + [(X₆ - ε₆)²/ε₆]
X₁ = 80, ε₁ = 75
X₂ = 85, ε₂ = 90
X₃ = 60, ε₃ = 60
X₄ = 20, ε₄ = 25
X₅ = 35, ε₅ = 30
X₆ = 20, ε₆ = 20
χ² = [(80 - 75)²/75] + [(85 - 90)²/90] + [(60 - 60)²/60] + [(20 - 25)²/25] + [(35 - 30)²/30] + [(20 - 20)²/20]
χ² = 0.3333 + 0.2778 + 0 + 1 + 0.8333 + 0 = 2.4444 = 2.44
5) The degree of freedom for a chi-square test is
(number of rows - 1) × (number of columns - 1)
= (2 - 1) × (3 - 1) = 1 × 2 = 2
6) Using the Chi-square critical value calculator for a degree of freedom of 2 and a significance level of 0.05, the chi-square critical value is 5.991.
7) Interpretation of results.
If the Chi-square test statistic is less than the critical value, we fail to reject the null hypothesis.
If the Chi-square test statistic is unusually large and is greater than the critical value, we reject the null hypothesis.
For this question,
Chi-square test statistic = 2.44
Critical value = 5.991
2.44 < 5.991
test statistic < critical value
The test statistic is Less than the critical value, we fail to reject the null hypothesis and conclude that there is no difference in proportion of satisfied customers between these three locations.
Hope this Helps!!!
Find the value of c such that the three points (5,5), (-3,1), and (6,c) lie on the same line. Note: Three points are on the same line if the slope of the line through any two points is always the same.
Answer:
c = 5.5
Step-by-step explanation:
We can find the slope of the line using the given points (5,5) and (-3,1) using rise over run:
-4/-8 = 1/2
Now, we can plug in the slope and a point into the equation y = mx + b to find b:
5 = 1/2(5) + b
5 = 2.5 + b
2.5 = b
Then, we can plug in 6 in the point (6,c) to find c:
y = (1/2)(6) + 2.5
y = 3 + 2.5
y = 5.5
c = 5.5
Answer:
c = 5.5
Step-by-step explanation:
Find the slope with two points
m = (y2-y1)/(x2-x1)
m = (1-5)/(-3-5)
= -4/-8
= 1/2
If all the points are on the same line, then they have the same slope
m = (y2-y1)/(x2-x1)
Using the first and third points
1/2 = (c-5)/(6-5)
1/2 = (c-5)/1
1/2 = c-5
Add 5 to each side
5+1/2 = c
5.5 =c
(0, 3) and (-2, -1)
Write an equation in slope intercept from of the line that passes through the given points.
Answer:
y = 2x + 3
Step-by-step explanation:
Slope Formula: [tex]m=\frac{y_2-y_1}{x_2-x_1}[/tex]
Slope-Intercept Form: y = mx + b
Step 1: Find slope m
m = (-1 - 3)/(-2 - 0)
m = -4/-2
m = 2
y = 2x + b
Step 2: Rewrite equation
y = 2x + 3
*You are given y-intercept (0, 3), so simply add it to your equation.
A pet store has 10 puppies, including 2 poodles, 3 terriers, and 5 retrievers. If Rebecka and Aaron, in that order, each select one puppy at random without replacement find the probability that both select a poodle.
The probability is
Answer:
2/10 for Rebecka and either 2/9 or 1/9 for Aaron depending on if Rebecka selects a poodle or not.
Step-by-step explanation:
do some math
the diagram shows a circle drawn inside a square the circle touches the edges of the square
Answer:
69.5309950592 cm²
Step-by-step explanation:
Area of Square:
Area = [tex]Length * Length[/tex]
Area = 18*18
Area = 324 square cm
Area of circle:
Diameter = 18 cm
Radius = 9 cm
Area = [tex]\pi r^2[/tex]
Area = (3.14)(9)²
Area = (3.14)(81)
Area = 254.469004941 square cm
Area of Shaded area:
=> Area of square - Area of circle
=> 324 - 254.469004941
=> 69.5309950592 cm²
forex is the name of the U.S. stock exchange.
-true
-false
Answer:
false
Step-by-step explanation:
hello
this is false
FOREX means Foreign Exchange
it refers to the foreign exchange market
hope this helps
Answer:
true, forex trading is a profitable than staking cryptocurrency. forex trading is the best thing I will refer someone I love because learning never stops and no on is above blowing accounts when beginning Forex