Answer:
Independent
Explanation:
Independent Variable is the volume of the object. Dependent Variable is the mass of the object. So it
What is the ratio
amount (mol) Fatoms
amount (mol) Xe atoms
Enter your answer as an integer.
Pls help
Answer:
Empirical formula
Explanation:
The empirical formula of a compound is the simplest whole number ratio of atoms of each element in the compound. It is determined using data from experiments and therefore empirical.
How many atoms of Kr (Krypton) are in a balloon that contains 2.00 mol of Kr? (4)
Answer:
[tex]atoms= 1.204x10^{24}atoms[/tex]
Explanation:
Hello!
In this case, according to the Avogadro's number, it is possible to compute the atoms of Kr in 2.00 moles as shown below:
[tex]atoms=2.00mol*\frac{6.022x10^{23}atoms}{1mol} \\\\atoms= 1.204x10^{24}atoms[/tex]
Best regards!
It pulls everything down towards earth
A catalyst will
a) Increase the reaction rate
b) Move the equilibrium to the right
c) Be consumed by the reaction
d) Increase the activation energy
Answer:
increase the chemical rate
Write the equilibrium expression of each chemical equation.
2H2S(g) 2H2(g) + S2(g)
Answer:
[H2]2[S2][H2S]2Kc=[H2]2[S2][H2S]2
Explanation:
2H2S(g)⇋2H2(g)+S2(g)2H2S(g)⇋2H2(g)+S2(g)
The equilibrium constant expression in terms of concentrations is:
Kc=[H2]2[S2][H2S]2Kc=[H2]2[S2][H2S]2.
The equilibrium expression for the given reaction can be written in terms of equilibrium constant which is the ratio of power of molar concentration of the product to the product of power of molar concentration of the reactants.
What is equilibrium?Equilibrium is a state for a reversible reaction where, the rate of forward reaction is equal to the rate of backward reaction. The rate of a reaction is the rate of decrease in the concentration of reactants or the rate of increase in the concentration of the products.
The given reaction at equilibrium state is written as:
[tex]\rm 2H_{2}S (g)\leftrightharpoons 2H_{2} (g)+ S_{2}(g)[/tex]
The equilibrium constant Kb is ratio of power of molar concentration of the product to the product of power of molar concentration of the reactants.
[tex]Kb = \rm \frac{[H_{2}S]^{2}}{[H_{2}]^{2} [S_{2}]}[/tex]
The rate of the reaction will be r = Kb [H₂]² [S₂].
To find more on equilibrium constant, refer here:
https://brainly.com/question/15118952
#SPJ2
Which of the following statements is false?
a. This class discussed four physical states of matter
b. An atom is the smallest particle of an element that still contains properties of the original element.
c. Gases can be colorless or colored
d. Mass is the measure of the earth’s gravitational attraction of a body
e. A pure substance has a fixed composition.
Answer:
d. Mass is the measure of the earth’s gravitational attraction of a body
This is FALSE. Mass is the measure of matter than an object contains.
Explanation:
b. An atom is the smallest particle of an element that still contains properties of the original element.
This is True
c. Gases can be colorless or colored
This is True
d. Mass is the measure of the earth’s gravitational attraction of a body
This is FALSE. Mass is the measure of matter than an object contains.
e. A pure substance has a fixed composition.
This is True.
number of balance electrons of a non ionized oxygen atom
which temperature do they need to perform the experiment for perovskite to conduct electric current?
A: T=1980°C
B: T>1980°
C: T>_ 1980°C
D:T< 1980°C
For C it's suppose to be an less than equal sign .
Answer:
Correct answer is D : T < 1980°C
Explanation:
Correct answer is D:T< 1980°C
Perovskite proton conductors belong to the class of high temperature proton conductors (HTPCs) , solid that conduct electricity by transporting H⁺ ions (protons ) at temperatures above ambient , typically 400 - 1000°C
So, we get T < 1980°C
A 9.725-g gaseous mixture contains ethane () and propane (). Complete combustion to form carbon dioxide and water requires 1.115 moles of oxygen gas. Calculate the mass percent of ethane in the original mixture.
Answer:
% = 33.83%
Explanation:
To do a better understanding of this, we can treat the mixture of the combustion as two separate reactions, in that way, we can have an idea of what is happening and how to calculate the mass percent.
So the combustion reactions in this mixture are:
2C₂H₆ + 7O₂ ---------> 4CO₂ + 6H₂O
C₃H₈ + 5O₂ ----------> 3CO₂ + 4H₂O
Now that we have both reactions (And balanced) we can hace an idea of the mole ratio between every compound in the mix.
For practical purposes, let's call "a" the mass of ethane, and "b" the mass of propane. The innitial mix have 9.725 g, so this means that:
a + b = 9.725 g (1)
Now that we have this, we can write a relation between the moles of oxygen and the moles of the gases. If we have 1.115 moles of oxygen, and also know the mole ratio of oxygen to "a" and "b", so:
moles O₂ = moles a (moles O₂/moles a) + moles b (moles O₂/moles b) (2)
And we know that moles a and moles b are:
moles a = a / MW
moles b = b / MW
The MW of a is 30 g/mol and the MW of b is 44 g/mol
Replacing the given data we have:
1.115 moles O₂ = (a/30)(7 moles O₂/2 moles a) + (b/44)(5 moles O₂/1 mole b)
1.115 moles O₂ = (0.1167a) moles O₂ + (0.1136b) moles O₂
To keep solving this, we can use expression (1) to solve for b, and then, replace here and have only one equation with 1 incognite:
a + b = 9.725 g
b = 9.725 - a (3)
Replacing above we have:
1.115 = 0.1167a + 0.1136(9.725 - a)
1.115 = 0.1167a + (1.1048 - 0.1136a)
1.115 - 1.1048 = 0.1167a - 0.1136a
0.0102 = 0.0031a
a = 3.29 g
Now, that we have the mass of the ethane, we can calculate the mass percent:
% = (3.29 / 9.725) * 100
% = 33.83%Hope this helps
The mass fractions of a mixture of gases are 15 percent nitrogen, 5 percent helium, 60 percent methane, and 20 percent ethane with a total mixture molecular weight of 16.12 kg/kmole. Determine the mole fraction of each constituent, the partial pressure of each constituent when the mixture pressure is 1200 kPa and the apparent specific heats of the mixture when the mixture is at room temperature.
Answer:
Explanation:
mass fraction N₂ : He : CH₄ : C₂H₆ : : 15 : 5 : 60 : 20
mole fraction N₂ : He : CH₄ : C₂H₆ : : 15/28 : 5/4 : 60/16 : 20/30
mole fraction N₂ : He : CH₄ : C₂H₆ : : .5357 : 1.25 : 3.75 : .67
Total mole fractions = .5357 + 1.25 + 3.75 + 0.67 = 6.2057
mole fraction of N₂ = .5357 / 6.2057 = .0877
mole fraction of He = 1.25 / 6.2057 = .20
mole fraction of CH₄ = 3.75 / 6.2057 = .6043
mole fraction of C₂H₆ = .67 / 6.2057 = .108
Partial pressure = total pressure x mole fraction
Partial pressure of N₂ = 1200 kPa x .0877 = 105.24 kPa
Partial pressure of He = 1200 kPa x .20 = 240 kPa
Partial pressure of CH₄ = 1200 kPa x .6043 = 725.16 kPa
Partial pressure of C₂H₆ = 1200 kPa x .108 = 129.6 kPa
Please explain to me!!!
Answer:
nice handwrtting
Explanation:
please help. im freaking out rn. i have like 40 missing assignments please
Answer:
I'm pretty sure its the one that says very little at the beginning but if I get it wrong I'm sorry
Menthol is a crystalline substance with a peppermint taste and odor. When 0.533 g of menthol is dissolved in 25.0 g of cyclohexane, the freezing point of the solution is lowered by 2.84 ∘C. Look up the freezing point and f constant for cyclohexane in the Colligative Constants table. Calculate the molar mass of menthol.
Answer: The molar mass of menthol is 156.15 g/mol
Explanation:
Depression in freezing point is given by:
[tex]\Delta T_f=K_f\times m[/tex]
[tex]\Delta T_f=T_f^0-T_f=2.84^0C[/tex] = Depression in freezing point
[tex]K_f[/tex] = freezing point constant = [tex]20.8^0C/m[/tex]
m= molality
[tex]\Delta T_f=K_f\times \frac{\text{mass of solute}}{\text{molar mass of solute}\times \text{weight of solvent in kg}}[/tex]
Weight of solvent (cyclohexane)= 25.0 g = 0.025 kg
Molar mass of solute (menthol) = ?
Mass of solute (menthol) = 0.533 g
[tex]2.84^0C=20.8\times \frac{0.533}{xg/mol\times 0.025}[/tex]
[tex]x=156.15g/mol[/tex]
The molar mass of menthol is 156.15 g/mol
Hi do you know this?
Answer:
2
Explanation
It seems logical
18. What is one of the three things that cause the surface currents of the oceans?
A.differences in salinity
B.temperature differences
C. density differences
D. Coriolis effect
Answer:
b. temperature difference
What is the molecular formula of the molecule that has an empirical formula of C2H40 and a molar mass of 176.21 g/mol?
Type your answer using the following format:
CuCl2 for CuCl2.
Answer:
C8H16O4
Explanation:
C2H4O= 24+4+16
44
n=molar mass/empirical formula
n=176.21/44
=4
Therefore
Molar Formula= (C2H4O)4=C8H16O4
Can someone help me with this
Answer:
wow!
5. C
6. B
7. B
8. A
Explanation:
how might the biodiversity of a mowed lawn compare to that of huge weedy field?
Answer: The mowed lawn is the one from where the grasses are removed by using the machines or tools.
Explanation:
The mowed lawn is expected to have low number of species as the grasses may be few or scanty thus can support the population of few species like insects, mice, birds, and small number of grazing animals. On the other hand the weedy field can be hub of insects, reptiles like snakes, small mammals, and large mammals. Large weed field can provide food, and habitat to the large number of species. This will support the increase in biodiversity as compared to the mowed lawn.
I need help with this!!!
Answer:
0.73g/cm^3
Explanation:
d=m/v
d=11/15
d=0.73
Determine the chemical equation for the reaction between Fe3+ and Cu2+ with NH3
Answer:
Cu2 + 4 NH3 = Cu (NH3) 42+
so - - >
[Cu (NH3) 6] ^ 2+
Explanation:
Binary compounds are formed by ............... ............... elements.
Answer: i think its A diatomic compound..
Explanation: hope i helped! sorry if im wrong!
Liquid octane CH3CH26CH3 will react with gaseous oxygen O2 to produce gaseous carbon dioxide CO2 and gaseous water H2O. Suppose 2.3 g of octane is mixed with 12.4 g of oxygen. Calculate the minimum mass of octane that could be left over by the chemical reaction. Round your answer to 2 significant digits.
Answer: Octane will be used completely.
Explanation:
To calculate the moles :
[tex]\text{Moles of solute}=\frac{\text{given mass}}{\text{Molar Mass}}[/tex]
[tex]\text{Moles of octane}=\frac{2.3g}{114g/mol}=0.0202moles[/tex]
[tex]\text{Moles of oxygen}=\frac{12.4g}{32g/mol}=0.388moles[/tex]
The balanced chemical reaction will be
[tex]2C_8H_{18}+25O_2(g)\rightarrow 16CO_2(g)+18H_2O(g)[/tex]
According to stoichiometry :
2 moles of octane require = 25 moles of [tex]O_2[/tex]
Thus 0.0202 moles of octane will require=[tex]\frac{25}{2}\times 0.0202=0.2525moles[/tex] of [tex]O_2[/tex]
Thus octane is the limiting reagent as it limits the formation of product and [tex]O_2[/tex] is the excess reagent.
Thus octane will be used completely.
I need help with this!
Answer:
2.68 cm^3
Explanation:
Density= Mass/Volume
so...
8.96 g/cm^3 = 24.01 g/ V
and then u solve so it would be 2.68 cm ^3
((:
Decide whether the element is a metal or nonmetal, if you can.
Element is a hard silvery-gray solid. Wires are fastened to each side of a 2 cm slab of it, and an ordinary household 9 V battery is hooked up so that it can feed electricity through the slab to an LED. But the LED stays dark
Answer:
The element is a nonmetal
Explanation:
Elements are broadly classified into metals and non metals. Metals conduct electricity while non metals do not conduct electricity.
If we look at this scenario described in the question, we can easily decipher that the element is a nonmetal because the LED stays dark. The LED should have been lit if electricity was passed through the element in question.
Hence, the element is a non metal.
Name each of the following organic molecules. 
If expending 3500 kcal is equal to a loss of 1.0 lb, how many days will it take Charles to lose 5.0 lb? Express your answer to two significant figures. Charles consumes 1800 kcal per day.
Answer:31 days
Explanation:
3500kcal/lb x 5lb =17500
1800-1230=570
17500/570=30.70
Round up =31
This question involves the concepts of energy, weight, and time.
It will take Charles "9.7 days" to lose 5.0 lb.
TIME TO LOSE WEIGHTSince the loss of 1.0 lb weight requires expending 3500 kcal energy. Therefore, by using the unitary method,
1.0 lb loss = 3500 kcal
(5)(1.0) lb loss = (5)(3500 kcal)
5.0 lb loss = 17500 kcal ----- eqn(1)
Now, the time required to consume 1800 kcal is 1 day. Hence, by the unitary method,
1800 kcal = 1 day
1 kcal = [tex]\frac{1}{1800}\ day[/tex]
17500 kcal = [tex]\frac{17500}{1800}[/tex] day
17500 kcal = 9.7 days ------ eqn(2)
Comparing eqn (1) and eqn (2)
5.0 lb loss = 9.7 days
Learn more about energy here:
https://brainly.com/question/1932868
There are four conditions an atom needs to meet to participate in hydrogen bonding. It needs to be_______ enough not to bump into other atoms when approaching the 1s orbital of the hydrogen, it needs to carry at least one________ atom, it needs to be_________enough to create a delta on the connected hydrogen, and it needs to have at least one________.
Answer:
The conditions are
1) Small enough
2) Electronegative atom
3) highly electronegative
4) lone pair of electrons
The correct statement therefore is
It needs to be small enough not to bump into other atoms when approaching the 1s orbital of the hydrogen, it needs to carry at least one electronegative atom, it needs to be highly electronegative enough to create a delta on the connected hydrogen, and it needs to have at least one lone pair of electrons.
Explanation:
Hydrogen bonding is a type of intermolecular bond that occurs between the partial positive charge (delta) on a hydrogen atom bonded to a small highly electronegative element (like nitrogen, oxygen or fluorine) and the free electrons on another electronegative element of another molecule.
The hydrogen atom with the partial positive charge (delta) is known as the hydrogen bond donor, while the electronegative element, carrying lone electrons is called the hydrogen bond acceptor.
Let's take a deeper look at these terms:
1) Hydrogen bond donor
Using water (H₂O) as an example, the high electronegativity of the oxygen atom covalently bonded to the hydrogen atom draws the lone electron in the 1s orbital of the hydrogen atom, creating a partial positive charge (d⁺) on the hydrogen atom. This is what happens within one water molecule
2) Hydrogen bond acceptor
When two or more molecules of water interact, the partial positive charge (d⁺) on the hydrogen atom of one molecule, is attracted to the valence or free electrons on the oxygen atom of a nearby molecule of water thus creating a dipole-dipole intermolecular bond known as a hydrogen bond.
For the hydrogen bond to be effective, the electronegative atom bonded to the hydrogen acting as the hydrogen bond donor in the first water molecule needs to be small enough so as not to disrupt the 1s orbital of the hydrogen atom. The smaller the size of the electronegative atom, the stronger the partial negative charge created on the hydrogen atom.
The valence or free pair of electrons on the electronegative (oxygen) atom of the second molecule of water (hydrogen bond acceptor) is what attracts the partial positive charge on the hydrogen atom to create the hydrogen bond
How many grams of sulfur must be burned to give 100.0 g of So2
Answer:
50 g of S are needed
Explanation:
To star this, we begin from the reaction:
S(s) + O₂ (g) → SO₂ (g)
If we burn 1 mol of sulfur with 1 mol of oxygen, we can produce 1 mol of sulfur dioxide. In conclussion, ratio is 1:1.
According to stoichiometry, we can determine the moles of sulfur dioxide produced.
100 g. 1mol / 64.06g = 1.56 moles
This 1.56 moles were orginated by the same amount of S, according to stoichiometry.
Let's convert the moles to mass
1.56 mol . 32.06g / mol = 50 g
Pls give a detailed explanation about what are enzyme mutations
Answer:
Enzyme mutations can lead to serious or fatal human disorders and are the consequence of inherited abnormalities in the affected individual's DNA. The mutation may be at a specific position in an enzyme encoded by a mutated gene, just like a single abnormal amino acid residue.
Explanation:
Vitamin C is a covalent compound with the molecular
formula C6H8O6. The recommended daily dietary
allowance of vitamin C for children aged 4-8 years is
0.000142mol. What is the mass of this allowance in grams?
The mass allowance of Vitamin C for children aged 4-8 years is equal to 0.025 grams.
What is a mole?A mole can be defined as a standard unit that can be utilized to evaluate the number of entities such as atoms, molecules, ions, or other particular particles in a particular amount of the substance.
The number of elementary entities present in one mole of any chemical substance was found to be equal to 6.023 × 10²³ which is also known as the Avogadro number.
Given, the number of moles of vitamin C = 0.000142 moles
Given, the molecular formula of Vitamin C is C₆H₈O₆.
The mass of one mole of C₆H₈O₆ = 176 g
One mole of Vitamin C has mass = 176 g
0.000142 mol of Vitamin C has mass = 0.000142×176 = 0.025 g
Therefore, the mass of 0.000142 mol of Vitamin C is 0.025 g.
Learn more about the mole, here:
brainly.com/question/26416088
#SPJ2