Volcanic bombs originate as erupted magma blobs that partly congeal before falling to the ground. These bombs are formed by ash particles that join together in the eruptive plume and fall as cobble-sized objects.
Volcanic bombs are a type of pyroclastic material that is ejected from a volcanic vent during explosive eruptions. They can be formed from a variety of magma types, including basaltic, andesitic, and dacitic. The type of magma and the explosivity of the eruption can determine the size and shape of the volcanic bombs. As the magma is ejected into the air, it cools and solidifies on the exterior due to the lower temperature of the surrounding air. This solidified exterior can then be shaped by the air into an aerodynamic form. As the volcanic bomb travels through the air, it continues to cool, and the interior of the bomb can solidify partially. However, the core of the bomb remains hot and molten due to the insulating effect of the solidified exterior. When the volcanic bomb falls to the ground, it can often be shattered upon impact, revealing the still-liquid interior. The size of volcanic bombs can range from a few centimeters to several meters in diameter, and they can travel several kilometers away from the volcano. The impact of volcanic bombs can be devastating to the surrounding landscape and infrastructure, and they pose a significant hazard to people living near active volcanoes.
Learn more about solidified here:
https://brainly.com/question/31251857
#SPJ11
the seasonal winds in the indian ocean caused by the differences in temperature between the rapidly heating and cooling landmasses of africa and asia and the slowly changing ocean waters are called:
The seasonal winds in the Indian Ocean that are caused by the temperature differences between Africa and Asia's rapidly heating and cooling landmasses and the slowly changing ocean waters are called monsoons.
These monsoons occur annually, and they are essential for the people and the ecosystems in the regions surrounding the Indian Ocean. The temperature differences between the land and the ocean create low and high-pressure zones that cause the winds to blow from the ocean to the land or vice versa. During the summer, the landmasses of Africa and Asia heat up faster than the ocean waters, and this creates a low-pressure zone that draws in moisture-laden winds from the ocean. These winds bring heavy rains to the region, which are crucial for agriculture and the water supply.
During the winter, the ocean waters cool more slowly than the landmasses, and this creates a high-pressure zone that causes the winds to blow from the land to the ocean. This dry season is crucial for harvest time and for the replenishment of groundwater resources. In summary, the seasonal winds in the Indian Ocean caused by temperature differences between the landmasses of Africa and Asia and the ocean waters are known as monsoons and are a vital part of the region's ecology and human livelihoods.
For more such questions on Indian Ocean
https://brainly.com/question/30896133
#SPJ11
The seasonal winds in the Indian Ocean caused by the differences in temperature between the rapidly heating and cooling landmasses of Africa and Asia and the slowly changing ocean waters are called Monsoons.
Monsoons are a seasonal wind system that affects large parts of South Asia, Southeast Asia, and parts of East Asia. They are characterized by a shift in wind direction and intensity, with moist air blowing from the ocean onto land during the summer months and dry air blowing from land to sea during the winter months. The monsoon system is driven by the differential heating of land and ocean. During the summer months, the landmasses of Africa and Asia heat up more quickly than the ocean waters, causing a low-pressure area to form over the land. This draws moist air from the Indian Ocean onto land, resulting in heavy rainfall and flooding in many parts of South and Southeast Asia. During the winter months, the landmasses cool down more quickly than the ocean waters, causing a high-pressure area to form over the land. This results in dry and cool conditions, with little rainfall.
Learn more about landmasses :
https://brainly.com/question/6281922
#SPJ11
creates a zone of still water near the coastline is called?
The zone of still water near the coastline is called a "littoral zone". It is created by the interaction between waves and the seabed, as well as other factors such as tides and currents.
A littoral cell is a section of coastline that is relatively self-contained, with a balance between the amount of sand added to the beach (by rivers or offshore currents) and the amount of sand removed from the beach (by waves and longshore currents). As waves approach the shore, they cause water to pile up in a zone of still water, which can help to protect the beach from erosion and provide a calm area for swimming and recreation. The littoral cell is an important concept in coastal management, as it helps to define the boundaries of coastal ecosystems and inform decisions about beach nourishment, erosion control, and other coastal activities.
Learn more about ecosystems here:
https://brainly.com/question/13979184
#SPJ11
The zone of still water near the coastline is called a "littoral zone". This term refers to the area of the ocean that is shallow enough to be influenced by the coastline and the waves that crash against it.
The littoral zone can extend from the high tide line to the point where waves no longer have an effect on the seabed. The littoral zone is an important habitat for many marine creatures, including various types of fish, shellfish, and seaweed. These organisms are adapted to living in the shallow waters of the coastline, where they can take advantage of the abundant sunlight and nutrients that are available. The littoral zone can also have a significant impact on the coastal ecosystem. For example, the waves that crash against the coastline can erode the shoreline and change the shape of the coastline over time.
Additionally, the littoral zone can act as a buffer zone, helping to protect inland areas from the effects of storms and erosion. Overall, the littoral zone is an important part of the coastal ecosystem, providing a home for many marine organisms and playing a crucial role in shaping the coastline and protecting inland areas from the effects of storms and erosion.
For more such questions on littoral zone
https://brainly.com/question/1133225
#SPJ11
which earthquake would result in the greatest building damage as indicated by the greatest amount of complete building collap
The earthquake that would result in the greatest building damage as indicated by the greatest amount of complete building collapse is earthquakes caused by S-Waves.
The S-Waves comprise the body waves part of the seismic waves and shear down the crust of the earth, the portion where the earthquake is taking place. These waves are secondary transverse waves to a seismograph reading that cause serious reverberations of all the layers below a building.
Hence based on the above-mentioned points, it can be stated that, the the earthquake that causes the greatest damage to buildings and properties are the ones touched by the S-waves.
To know more about the S-Wave earthquakes:
brainly.com/question/9624788
in addition to the destruction created directly by seismic vibrations, how else can earthquakes cause destruction? choose all that apply.
Earthquakes can cause destruction in various ways, in addition to the direct damage caused by seismic vibrations.
Here are some of the ways earthquakes can cause destruction:
Landslides and rockfalls: Earthquakes can cause landslides and rockfalls, particularly in mountainous areas, which can damage infrastructure and buildings, block roads and cause injury or death.Tsunamis: Earthquakes that occur under the ocean can create tsunamis that can cause extensive damage to coastal communities, including buildings, infrastructure, and people.Liquefaction: This is a process in which shaking of loose, water-saturated soil causes the soil to lose strength and stiffness and turn into a liquid-like state. This can cause buildings and other structures to sink or tilt, leading to damage and collapse.Fire: Earthquakes can rupture gas and electrical lines, leading to fires that can cause extensive damage to buildings and other infrastructure.Infrastructure damage: Earthquakes can damage infrastructure such as roads, bridges, and pipelines, which can lead to disruption of services and make it difficult to provide emergency assistance.Psychological trauma: Earthquakes can cause psychological trauma and stress for survivors, particularly if they have lost family members, friends or homes, leading to long-term mental health issues.It is essential to prepare for the different ways earthquakes can cause destruction to mitigate their effects and protect people and infrastructure.
Learn more about Earthquakes here:
https://brainly.com/question/9415516
#SPJ11
as the pair of tones increase in loudness, our perception of the difference between them
As the pair of tones increase in loudness, our perception of the difference between them becomes more apparent.
This is because the increase in loudness makes the two tones more distinct, allowing our auditory system to easily differentiate between them. As the tones become louder, we are able to hear the difference in frequency more clearly, allowing us to better distinguish between the two tones.
Additionally, the increased loudness can cause us to perceive the tones as having more complex harmonic structures, as the loudness of the tones makes them easier to pick out from other frequencies in the environment. This can further help us to differentiate between the two tones. Ultimately, as the pair of tones increase in loudness, our perception of the difference between them becomes more distinct.
To know more about loudness , click here:
https://brainly.com/question/14353513
#SPJ4
Water in a pothole freezing at night. Physical or chemical weathering
Answer: Your answer would be physical weathering.
Explanation:
Though water freezing is apart of mechanical weathering, an important component of physical weathering is water. As its ability to expand in size as the water flows and can freeze overtime, this is apart of physical weathering. When the water that passes by and gets in the pothole then freezes, its a apart of a vital component of the process to many formations of the potholes.
engineers refer to any loose material on the surface of the earth as soil. how does this differ from the definition earth scientists prefer?
Engineers typically define soil as any loose material on the surface of the Earth, which includes unconsolidated rocks, sediments, and organic matter. Earth scientists, on the other hand, prefer a more specific definition of soil that emphasizes its formation through weathering, its composition, and its ability to support plant life.
In contrast, earth scientists have a more specific definition of soil that takes into account its formation and characteristics. They define soil as the upper layer of the earth's surface that is composed of mineral particles, organic matter, and other living organisms. This layer has developed over thousands of years through the weathering of underlying rock and the accumulation of organic matter and nutrients.Earth scientists also consider the properties of soil, such as its texture, structure, and composition, when studying its function and role in the environment. They may analyze soil samples to determine its chemical and physical properties, and use this information to understand its impact on plant growth, erosion, and water retention.
Learn more about accumulation here:
https://brainly.com/question/14846351
#SPJ11
which of the following activities can contribute to an increase in the carbon dioxide in the earth's atmosphere? i. the burning of fossil fuels ii. volcanic activity iii. condensation
Answer: I & II
Explanation: Burning fossil fuels such as coal can most definitely release CO2. For example, when one burns a fire, black smoke is released. Along with this, large volcanic eruptions can also eject millions of tons of CO2 into the atmosphere.
even though he was not in the capital city, czar nicholas was well aware of the actual conditions of the rebellion because his wife was writing letters to him. True or false?
The given statement "even though he was not in the capital city, Czar Nicholas was well aware of the actual conditions of the rebellion because his wife was writing letters to him" is True because Czar Nicholas was not in the capital city during the rebellion.
He was still informed of the events taking place due to his wife's regular correspondence. She wrote letters to him detailing the political unrest and violence in the city, providing him with an accurate description of the situation.
These letters gave Nicholas an understanding of the actual conditions of the rebellion and enabled him to understand the gravity of the situation. Without these letters, Nicholas may not have been informed of the true state of the rebellion, as he was not in the capital city himself.
To know more about rebellion , click here:
https://brainly.com/question/13938004
#SPJ4
the buildup of excess salts in irrigated soils can result in increased ph if the salts are high in sodium bicarbonate.A. TrueB. False
The coating of excess salts in irrigated soils can result in raised ph if the salts are increased in sodium bicarbonate. This statement is False.
The buildup of extra salts in irrigated soils can result in grown pH if the salts are high in sodium carbonate. High levels of sodium carbonate can direct to an expansion in soil pH, a state known as soil alkalization. The high groups of sodium bicarbonate can guide a decline in soil pH, a state known as soil acidification.
The pH values in the topsoil are lower because topsoil is high in organic significance and the decay of organic weight will direct to the display of more organic acids, thus reducing the pH of topsoil.
To learn more about sodium bicarbonate
https://brainly.com/question/1904767
#SPJ4
differentiate between the dip slope of of a homoclinal ridge and cuesta
The scarp slope maintains a high slope through undermining and mass wasting as a result of fast weathering of a less resistant layer below, while the dip slope is at or less than the angle of dip of the beds.
What is the dip slope of a Homoclinal ridge?
Cuestas, where the strata very gently descend from 10 to 25 degrees Homoclinal ridges dip at an angle greater than 45°, such as the Hogsback north of Alice in the Eastern Cape, where the dip slope is quite high. Homoclinal ridges dip between 25° and 45°, for example the Magaliesberg hogsback ridges.
In homoclinal ridge classification, the angle of the dip slope is used. a ridge that has a sharp scarp slope and a mild dip slope. The dip slope has a 10o to 25o inclination to the horizontal. The dip slope is typically utilised for forestry and has good soil.
The dip slope is 10 to 25 degrees from horizontal. Cuesta basins and cuesta domes are both products of folding.
learn more about Homoclinal ridge:
https://brainly.com/question/13100936
#SPJ9
Reasons Why immigrants are in Khayelitsha areas ?
There are several reasons why there are immigrants in Khayelitsha areas such as :
economic opportunities.ocial and cultural factors.Why are people at Khayelitsha ?One reason why immigrants are in Khayelitsha is economic opportunities. South Africa has one of the largest economies in Africa, and Cape Town is one of the country's main economic hubs. Many immigrants are attracted to the city's job opportunities, particularly in sectors such as construction.
Another reason why immigrants are in Khayelitsha is social and cultural factors. The township has a vibrant and diverse community, with residents from many different ethnic and cultural backgrounds.
Find out more on immigrants at https://brainly.com/question/17141328
#SPJ1
in this configuration, where would the larger tidal bulge, smaller tidal bulge, and low tide be located?
The far side of the Earth would have the bigger tidal bulge, the close side would have the smaller tidal bulge, and the side of the Earth facing the opposite direction would have low tide.
Ocean water, which is fluid and mobile, is drawn towards the moon by the gravitational force between the moon and the Earth. This causes a "bulge" in the ocean's surface nearest to the moon, and as the Earth spins, the impacted waters' locations shift.
The bulge on the far side of the Earth is a result of inertia. The water that is moving away from the moon resists the gravitational forces that attempt to drag it away from it. Inertia wins out, the ocean swells, and high tide occurs on the opposite side of the Earth from the moon where the moon's gravitational attraction is weaker.
To know more about low tides and moon visit:
https://brainly.com/question/1125070
#SPJ4
Answer: The larger tidal bulge occurs on the side of the Earth facing the Moon, smaller tidal bulge is located on the opposite side of the Earth, away from the Moon and low tides occur in the areas between the two tidal bulges.
Explanation: This is due to the gravitational force exerted by the Moon on the Earth's water, causing a stretching effect. The water closest to the Moon experiences a stronger gravitational pull, leading to a high tide, or the larger tidal bulge. The smaller tidal bulge is located on the opposite side of the Earth, away from the Moon. While it might seem counterintuitive, this bulge is created because the gravitational force exerted by the Moon is weaker on the far side of the Earth. This causes the Earth to be slightly stretched along the Earth-Moon line, resulting in a smaller tidal bulge at this location.
Low tides occur in the areas between the two tidal bulges, where the water is "pulled" away from the Earth's surface to create the high tides. This reduction in water level leads to low tide regions on Earth. In summary, the larger tidal bulge is found on the side of the Earth facing the Moon, the smaller tidal bulge is on the opposite side of the Earth, and low tides are located between these two bulges.
For more such questions on tidal bulge
https://brainly.com/question/30420408
#SPJ11
an inner segment of the earth which is rigid, dense, and solid and lies directly beneath the moho is called the . inner core crust mantle magma outer core
The inner segment of the Earth which is rigid, dense, and solid and lies directly beneath the Moho is called the inner core. The Earth's inner core is a sphere of solid iron and nickel with a radius of about 1,220 kilometers (760 miles).
It is surrounded by a liquid outer core, which is also made of iron and nickel, but is in a liquid state due to the high temperatures and pressures found in the Earth's interior. The inner core is the Earth's deepest layer, located at a depth of approximately 5,150 kilometers (3,200 miles) beneath the Earth's surface. It is believed to be the result of intense pressure and high temperatures caused by the weight of the Earth's outer layers pressing down on the inner core. The inner core is estimated to have a temperature of about 5,500°C (9,932°F), making it one of the hottest places on Earth. Despite its extreme temperatures, the inner core is believed to be solid due to the immense pressure exerted on it by the weight of the Earth's outer layers. The solid inner core is also believed to rotate slightly faster than the rest of the Earth, completing a full rotation in about 24 hours, whereas the rest of the Earth completes a full rotation in 23 hours and 56 minutes. Overall, the inner core is an important component of the Earth's interior, playing a crucial role in the planet's magnetic field and providing valuable insights into the Earth's formation and evolution.
To learn more about directly beneath click the link below:
brainly.com/question/30901985
#SPJ11
a section of marine sediments is uplifted, folded, and then overlain by sandstone. what is the name of the resulting feature?
The resulting feature in this scenario is called a folded stratum or folded strata. The marine sediments were first uplifted and folded, creating a deformation in the rock layers.
Then, the sandstone was deposited on top of these folded layers, resulting in a complex geological structure with distinct layers of folded marine sediments and overlying sandstone. When this happens, the layers of rock may buckle and fold, creating a series of folds or undulations in the rock structure. These folds can take on different shapes and sizes, depending on the amount and direction of the compressive force. When the folds are exposed to the surface through erosion or other geological processes, they can create distinctive features in the landscape, such as ridges or valleys. In some cases, the folds may be so tightly compressed that they create a type of rock structure known as a folded stratum, which can be seen in sedimentary rock formations that have been subjected to folding.
Learn more about sedimentary rock :
https://brainly.com/question/29771190
#SPJ11
The resulting feature when a section of marine sediments is uplifted, folded, and then overlain by sandstone is called a fold-and-thrust belt.
A fold-and-thrust belt forms through the processes of tectonic compression and deformation. Here is a step-by-step explanation of its formation:
1. Tectonic forces cause the compression of the Earth's crust.
2. This compression results in the uplift and folding of marine sediments.
3. As the sediments are uplifted and folded, they create a series of anticlines (upward folds) and synclines (downward folds).
4. Over time, these folded sediments can become exposed to erosion, which removes some of the overlying layers.
5. New sedimentary layers, such as sandstone, are then deposited on top of the folded sediments through sedimentation.
6. The resulting feature, a fold-and-thrust belt, displays the distinct layers of folded marine sediments overlain by sandstone.
These geological features can be found in areas where tectonic plates converge and can be associated with mountain ranges or other prominent landforms. The presence of a fold-and-thrust belt often indicates a history of significant tectonic activity and can provide valuable information about the geological history of a region.
To know more about fold-and-thrust belt refer here
brainly.com/question/13387639 #
#SPJ11
on mount st. helens, the intensity of disturbance ranged from extremely high (lava dome, pumice plain) to moderate (mudflow zone, blowdown zone), to low (scorch zone). in which area is the biotic stress of competition most likely to control succession?
In Pumice Plain area is the biotic stress of competition most likely to control succession.
On the northern slopes of Mount St. Helens, inside the National Volcanic Monument, the Pumice Plain is a Class I Research Area. The Pumice Plain has stayed a pure natural laboratory since the volcanic explosion. Unlike any other place on Earth, the site has given researchers the chance to observe how new ecosystems are formed.
Because of the distinctive opportunities it offers, researchers are drawn to this website. Ecosystems are huge, intricate networks where it might be challenging to isolate any one cause.
Know more about Mount st. helens here
https://brainly.com/question/7602037
#SPJ4
If the standard meridian of India passes at 82.5E, and the time gap between India and UAE is 1hour 30 minutes, what is the standard meridian considered for time calculation in the UAE?
The standard meridian considered for time calculation in the UAE would be 60 degrees east.
How to find the standard meridian ?The time difference between India and UAE is 1 hour 30 minutes, which is equivalent to 1.5 hours. Since each hour corresponds to 15 degrees of longitude, the time difference corresponds to a longitude difference of 1.5 x 15 = 22.5 degrees to the west of India's standard meridian.
Therefore, to calculate the standard meridian considered for time calculation in the UAE, we need to subtract the longitude difference of 22.5 degrees from India's standard meridian of 82.5 degrees east.
This gives us a standard meridian of 60 degrees east, which is considered for time calculation in the UAE.
Find out more on the Standard meridian at https://brainly.com/question/24067880
#SPJ1
Conclusion/Summary: Describe/Discuss your own views/experiences on the impact of tropical cyclone Eloise.
The impact of tropical cyclone Eloise included: 6,297 were destroyed, 11,254 were damaged, and 3,007 were flooded. The number climbed to 29,310 houses, with 17,738 destroyed, 8,565 damaged, and 3,007 flooded.
What was the impact of tropical cyclone Eloise?Tropical cyclone Eloise made landfall in Mozambique on January 23, 2021, causing significant damage to infrastructure and displacing thousands of people.
The storm also brought heavy rainfall and flooding to parts of Zimbabwe, South Africa, and Eswatini, resulting in further damage and loss of life. The impact of the storm highlights the need for continued efforts to mitigate the effects of extreme weather events, particularly in vulnerable communities.
Read more about cyclone Eloise
brainly.com/question/26402970
#SPJ1
Unlike storms formed at higher latitudes, are unique in that warm air descends in their centers and wind speeds decrease with increasing height. (Enter only one word per blank.)
Unlike storms formed at higher latitudes, Hurricanes are unique in that warm air descends in their centers and wind speeds decrease with increasing height.
Hurricanes are unique in that warm air descends in their centers and wind speeds decrease with increasing height. This is in contrast to storms formed at higher latitudes, which are characterized by rising warm air and wind speeds that increase with height.
Hurricanes are also associated with a low-pressure center, intense thunderstorms, and strong winds. Hurricanes are formed over tropical waters and can travel over large distances, potentially causing destruction and devastation along their paths.
Additionally, hurricanes are also associated with heavy rains, storm surges, and floods. As a result, hurricanes are some of the most destructive and powerful storms on the planet.
To know more about Hurricanes , click here:
https://brainly.com/question/18950883
#SPJ4
The Question is-
Unlike storms formed at higher latitudes, ________are unique in that warm air descends in their centers and wind speeds decrease with increasing height. (Enter only one word per blank.)
Ecologically, the best way to approach flooding isa.flood control dams.b.artificial leveesc.channelization.d.floodplain management.e.dams.
The best way to approach flooding ecologically is through a combination of floodplain management, artificial levees, channelization, and dams.
The correct options are B, C, D and E.
Floodplain management involves using natural and man-made barriers to help control the flow of floodwaters. This includes things like vegetation, topography, and wetland areas. Artificial levees are man-made barriers used to create a barrier between land and water, allowing for better control of water levels and reduced flooding.
Channelization involves the use of man-made channels to redirect water away from vulnerable areas and into areas better able to handle the flow of water. Dams are also used to help reduce the risk of flooding in areas where rivers or creeks are prone to flooding. All of these strategies are important for helping to reduce the risks associated with flooding and to protect the environment from the impacts of flooding.
The correct options are B, C, D and E.
To know more about flooding , click here:
https://brainly.com/question/31459538
#SPJ4
The line of latitude 30° N runs through
.
The Chinese city of Hong Kong is located between the
lines of longitude.
What two countries extend north of 45° N latitude?
Which two countries are located east of the 105° E line of longitude?
North Africa, the Middle East, and the United States are all located along the 30° N line.Between the longitudes 113° and 114° East is where the Chinese city of Hong Kong is situated.North of 45° N latitude are Canada and Russia.
What latitude divides the continents of Africa and the United States?A circle of latitude located 30 degrees north of the equatorial plane of the Earth is known as the 30th parallel north. It traverses Africa, Asia, the Pacific Ocean, North America, and the Atlantic Ocean while standing one-third of the way between the equator and the North Pole.
What is the longitude line of 30 degrees?A line of longitude that crosses the Arctic Ocean from the North Pole to 30 degrees east of Greenwich, Europe, Turkey, Africa, the Indian Ocean, the Southern Ocean, and Antarctica to the South Pole.
To know more about longitudes visit:-
https://brainly.com/question/13492273
#SPJ1
according to earth science reference tables which radioactive element formed at the time of its origin has
According to Earth Science Reference Tables, the radioactive element that formed at the time of Earth's origin and is often used for dating purposes is Uranium-238.
Uranium-238 decays into Lead-206, and this decay process is used to determine the age of rocks and minerals through radiometric dating techniques. The radioactive element that formed at the time of the Earth's origin and is commonly used for dating geological materials is actually Uranium-235 (U-235). U-235 is a naturally occurring isotope of uranium, and it is unstable, which means it undergoes radioactive decay over time. When a rock or mineral containing U-235 forms, the clock starts ticking, and the U-235 begins to decay into other elements at a known rate. By measuring the ratio of U-235 to its decay products, scientists can determine the age of the rock or mineral. This technique is known as radiometric dating and is widely used in geology and other fields to determine the age of rocks, fossils, and other geological materials.
Learn more about geological materials :
https://brainly.com/question/29571249
#SPJ11
According to Earth Science Reference Tables, the radioactive element that formed at the time of its origin has the longest half-life is Uranium-238.
Uranium-238, with a half-life of approximately 4.5 billion years, is commonly used to determine the age of Earth and various geological formations. This long half-life allows scientists to study Earth's geological history and make estimates about the age of rocks and minerals.
By comparing the ratio of Uranium-238 to its decay product, Lead-206, scientists can determine how long it has been since the rock was last heated or otherwise altered, which provides valuable information about Earth's formation and the processes that have shaped it over time.
This method, known as radiometric dating, is a powerful tool for understanding the age and development of our planet.
The use of Earth Science Reference Tables, which contain information about the half-lives of various radioactive elements, enables researchers to accurately measure and interpret these ratios to draw conclusions about Earth's history.
In summary, according to Earth Science Reference Tables, Uranium-238 is the radioactive element formed at the time of Earth's origin with the longest half-life, allowing scientists to study geological processes and the age of our planet.
To know more about radioactive refer here
brainly.com/question/1770619 #
#SPJ11
1. compare the sea level anomaly maps from feb 2017 and feb 2021. a. what differences do you notice between them?
The sea level anomaly maps from February 2017 and February 2021 show significant differences in the distribution and intensity of anomalies.
The sea level anomaly maps from February 2017 and February 2021 show some noticeable differences. Firstly, the overall pattern of sea level anomalies has changed. In 2017, there were large areas of negative anomalies in the Pacific and Indian Oceans, while in 2021, these negative anomalies have reduced in size and intensity. At the same time, there are now areas of positive anomalies in the Pacific and Atlantic Oceans that were not present in 2017.
Another difference is that the magnitude of the anomalies has changed. In 2021, the anomalies are generally smaller than in 2017, particularly in the areas that previously had the largest anomalies. This could indicate a reduction in the rate of sea level rise over the past four years, but further research would be needed to confirm this.
Overall, the sea level anomaly maps from February 2017 and February 2021 show significant differences in the distribution and intensity of anomalies. While it is not yet clear what these differences mean in terms of long-term sea level trends, they highlight the importance of continued monitoring and analysis of changes in the world's oceans.
For more such questions on anomaly maps
https://brainly.com/question/31538499
#SPJ11
Sea level anomaly maps depict the deviation of sea level from its long-term average. Typically, sea level anomalies are expressed in units of centimeters or inches.
One major difference that might be observed between sea level anomaly maps from February 2017 and February 2021 is the magnitude and spatial patterns of the anomalies. In February 2017, the sea level anomaly might have been lower or higher in some areas compared to the long-term average, while in February 2021, the sea level anomaly might have been different in other locations.Another possible difference between the two maps might be related to the causes of the sea level anomalies. Sea level anomalies can be influenced by a range of factors, including ocean currents, winds, tides, and changes in atmospheric pressure, among others. It is possible that the differences between the two maps could reflect changes in these factors over time.Overall, without access to the specific sea level anomaly maps in question, it is difficult to provide a more detailed comparison of the differences between the two maps.
learn more about observed here:https://brainly.com/question/28041973
#SPJ11
mount st. helens, in southwestern washington state, is an active volcano because group of answer choices an oceanic plate is subducting beneath the north american continent. a continental plate is colliding with the north american continent. a continental plate is sliding past the north american continent. a transform fault runs beneath it a triple junction migrated past it
Mount St. Helens, located in southwestern Washington state, is an active volcano because a continental plate is colliding with the North American continent. This collision causes the buildup of pressure and magma within the volcano. This area is part of the Pacific Ring of Fire, which is known for its high concentration of volcanic and seismic activity due to the subduction of oceanic plates beneath continental plates. So, although an oceanic plate is involved in the broader context of the American continent's geological activity, it is not the direct cause of Mount St. Helens' volcanic activity.
The Mount St. Helens major eruption of May 18, 1980 remains the deadliest and most economically destructive volcanic event in U.S. history. Fifty-seven people were killed; 200 homes, 47 bridges, 15 miles (24 km) of railways, and 185 miles (298 km) of highway were destroyed.[5] A massive debris avalanche, triggered by a magnitude 5.1 earthquake, caused a lateral eruption[6] that reduced the elevation of the mountain's summit from 9,677 ft (2,950 m) to 8,363 ft (2,549 m), leaving a 1 mile (1.6 km) wide horseshoe-shaped crater. The debris avalanche was 0.6 cubic miles (2.5 km3) in volume. The 1980 eruption disrupted terrestrial ecosystems near the volcano. By contrast, aquatic ecosystems in the area greatly benefited from the amounts of ash, allowing life to multiply rapidly. Six years after the eruption, most lakes in the area had returned to their normal state.
Learn more about American continent here:
https://brainly.com/question/28431674
#SPJ11
in the northern hemisphere what is the difference in how the sides of a low pressure system develop during the formation of a mid latitude cyclone
In the northern hemisphere, the sides of a low pressure system in the formation of a mid-latitude cyclone develop in a counterclockwise direction. This is due to the Coriolis effect, which is caused by the Earth's rotation and deflects moving objects to the right in the northern hemisphere. This results in the counterclockwise rotation of the cyclone and the development of the warm front on the eastern side and the cold front on the western side.
During the formation of a mid-latitude cyclone in the northern hemisphere, the sides of a low-pressure system develop differently. The side of the low-pressure system to the east of the center of the cyclone experiences a stronger pressure gradient force due to the faster movement of the jet stream in that direction. As a result, the air on this side of the low-pressure system rises more rapidly, leading to stronger upward vertical motion and the development of more intense precipitation and thunderstorms. On the other hand, the side of the low-pressure system to the west of the center of the cyclone experiences weaker pressure gradients due to the slower movement of the jet stream in that direction. As a result, the air on this side rises less rapidly and tends to form more stratiform clouds, leading to less intense precipitation and a more gradual decrease in atmospheric pressure. Overall, the different pressure gradients on the two sides of the low-pressure system contribute to the development of a complex weather system that includes a range of precipitation types and wind patterns, as well as changes in temperature and humidity. The exact positioning and strength of these fronts can be influenced by the latitude of the cyclone's formation, as the Coriolis effect is stronger at higher latitudes. In the Northern Hemisphere, the development of a low-pressure system in a mid-latitude cyclone involves the Coriolis effect, which causes winds to move counterclockwise around the low-pressure center. This rotation is due to the Earth's rotation and the variation in latitude, resulting in a distinct pattern of convergence and divergence that shapes the cyclone's structure.
To learn more about western click the link below:
brainly.com/question/29399200
#SPJ11
a tsunami is group of answer choices a seawave generated by an earthquake, landslide, or submarine volcanic eruption that may destroy coastal cities thousands of kilometers from its source. a wave caused by unusually large tidal forces. the tendency of wet, clay-rich soils to behave like a liquid during an earthquake. a sloshing of water back and forth within a lake or a bay.
A tsunami is a seawave generated by an earthquake, landslide, or submarine volcanic eruption that may destroy coastal cities thousands of kilometers from its source.
S
A tsunami is a seawave generated by an earthquake, landslide, or submarine volcanic eruption that may destroy coastal cities thousands of kilometers from its source. The impact of a tsunami is particularly devastating for coastal cities as the large waves can flood and damage infrastructure and homes near the water. It is important for people living in coastal areas to be aware of the potential danger and have an emergency plan in place in case of a tsunami warning.
SS+
Learn more about earthquake here
https://brainly.com/question/29500066
#SPJ11
Why does the unequal supply and distribution of water help contribute to the conflict between the State of Palestine and Israel
The unequal supply and distribution of water resources in the region is a major source of conflict between the State of Palestine and Israel because Israel uses water as a tool of power and domination over the Palestinian people.
What is one reason for the Palestine conflict ?Israel has used its control over water resources to deny Palestinians access to water or to limit their access to insufficient quantities. This has resulted in a situation where many Palestinian communities are forced to rely on contaminated or inadequate water sources, which can lead to a range of health problems.
In addition, Israel has restricted the ability of Palestinians to develop their own water resources or to drill new wells, making it difficult for them to meet their basic water needs.
Find out more on Palestine at https://brainly.com/question/9983505
#SPJ1
where would a volcano least likely occur? mid-ocean ridge convergent plate boundary transform plate boundary hot spot above a mantle plume
A volcano would least likely occur at a transform plate boundary because the movement of the plates there is horizontal and not conducive to magma rising to the surface.
Transform plate boundaries occur where two tectonic plates slide past each other, with no significant vertical movement. As a result, there is typically no significant magma generation or volcanic activity at these boundaries. Instead, transform plate boundaries are characterized by seismic activity, as the movement of the plates can cause earthquakes. Volcanoes are more likely to occur at other types of plate boundaries, such as divergent plate boundaries (where two plates are moving apart) and convergent plate boundaries (where two plates are moving towards each other). At divergent plate boundaries, magma rises up from the mantle to fill the gap created by the moving plates, leading to volcanic activity such as mid-ocean ridge volcanism. At convergent plate boundaries, one plate is typically forced under the other (subduction), which can also lead to magma generation and volcanic activity.
Learn more about tectonic plates :
https://brainly.com/question/19317822
#SPJ11
the combination of drifting and blowing snow, after falling snow has ended, is called a ___. a. ground blizzard b. dusting c. aftersnow d. snow squall e. snow blanket
The combination of drifting and blowing snow, after falling snow has ended, is called a (a) ground blizzard.
A ground blizzard is a weather phenomenon that occurs after a snowfall when snow is blown and drifted by wind, reducing visibility and creating hazardous conditions. Ground blizzards are particularly common in areas with flat terrain and dry snow, such as the Great Plains of North America and the steppes of central Asia. The strong winds can cause significant drifting and redistribution of snow, leading to the formation of snowdrifts and wind-packed snow. The term "ground blizzard" is often used to distinguish this phenomenon from a traditional blizzard, which is characterized by falling snow and strong winds. The strong winds can cause significant drifting and redistribution of snow, leading to the formation of snowdrifts and wind-packed snow.
Learn more about Great Plains :
https://brainly.com/question/20530869
#SPJ11
The combination of drifting and blowing snow, after falling snow has ended, is called a ground blizzard. The correct answer to your question is a. ground blizzard.
A ground blizzard occurs when strong winds blow loose snow on the ground, creating whiteout conditions and reducing visibility to near zero. Ground blizzards often occur after a snowfall has ended, when the wind continues to blow snow from the ground and cause it to drift. The combination of drifting and blowing snow can make it difficult to travel and can also create dangerous conditions for people who are caught outside in the storm.
A ground blizzard can be particularly dangerous because it can happen without warning, and people may not be prepared for the sudden drop in visibility and extreme cold. It is important to stay inside during a ground blizzard if possible, or to use caution if you must go outside.
If you do need to travel, be sure to bring warm clothing, extra food and water, and a way to communicate with others in case of an emergency. By taking these precautions, you can help stay safe during a ground blizzard and avoid the potentially deadly effects of this weather phenomenon. The correct answer to your question is a. ground blizzard.
For more about blizzard:
https://brainly.com/question/29040518
#SPJ11
where you have oceanic crust subducted under continental crust, basaltic magma rises through and incorporates/melts granitic rocks to become an intermediate or andesite magma. which best describes this process?
The process you described, where oceanic crust is subducted under continental crust and basaltic magma rises, incorporating and melting granitic rocks to become intermediate or andesite magma, is best described as the formation of volcanic arcs in subduction zones.
The process being described is known as partial melting of the continental crust by basaltic magma during subduction. As oceanic crust is subducted under continental crust, it heats up and releases water and other volatile compounds. This water causes the overlying mantle to partially melt and generate basaltic magma. As this magma rises, it incorporates and melts the granitic rocks of the continental crust, creating an intermediate or andesite magma. This process is an important factor in the formation of volcanic arcs and the creation of continental crust.
Learn more about oceanic crust here:
https://brainly.com/question/5714762
#SPJ11