Variances and standard deviations can be used to determine the
spread of the data. If the variance or standard deviation is large,
the data are more dispersed.
A.
False B. True

Answers

Answer 1

Variance and standard deviations can be used to determine the spread of the data. The given statement is True.

Variance is the measure of the dispersion of a random variable’s values from its mean value. If the variance or standard deviation is large, the data are more dispersed.

In probability theory and statistics, it quantifies how much a random variable varies from its expected value. It is calculated by taking the average squared difference of each number from its mean.

The Standard Deviation is a more accurate and detailed estimate of dispersion than the variance, representing the distance from the mean that the majority of data falls within. It is defined as the square root of the variance.

. It is one of the most commonly used measures of spread or dispersion in statistics. It tells you how far, on average, the observations are from the mean value.

The given statement is True.

Know more about the Variance

https://brainly.com/question/9304306

#SPJ11


Related Questions

Find the product of -1 -3i and its conjugate. The answer is a + bi where The real number a equals The real number b equals Submit Question

Answers

Given that the two numbers are -1 - 3i and its conjugate. We need to find the product of these numbers. Let's begin the solution : Solution We know that [tex](a + bi)(a - bi) = a^2]^2 - (bi)^2i^2 = a^2 + b^2[/tex]Where a and b are real numbers

Now, we will calculate the product of -1 - 3i and its conjugate.

[tex]\[\left( { - 1 - 3i} \right)\left( { - 1 + 3i} \right)\] = \[1 + 3i - 3i - 9{i^2}\] = \[1 - 9\left( { - 1} \right)\] = 1 + 9 = 10[/tex]

Therefore, the product of -1 - 3i and its conjugate is 10.We know that the product of -1 - 3i and its conjugate is 10.

So, the real number a equals 5 and the real number b equals 0. The answer is:Real number a = 5Real number b = 0.

To know more about real numbers visit -

brainly.com/question/31715634

#SPJ11

Solve the equation on the interval [0, 27). 3 sin x = sin x + 1

Answers

The solutions to the equation on the interval [0,27) are: x = π/6, 7π/6, 13π/6, 19π/6, 25π/6.

To solve the equation 3sin(x) = sin(x) + 1 on the interval [0,27),

let's first simplify the left side of the equation by using the identity

3sin(x) = sin(x) + 2sin(x).

This gives us:

sin(x) + 2sin(x) = sin(x) + 1

Simplifying further, we get:

2sin(x) = 1sin(x)

= 1/2

Now we need to find all values of x on the interval [0,27) that satisfy this equation.

We can start by looking at the unit circle to find the values of x where sin(x) = 1/2.

The first such value occurs at π/6, and then every π radians after that.

However, we need to restrict our solutions to the interval [0,27), so we can only consider values of x in this interval that satisfy sin(x) = 1/2.

These values are:

π/6, 7π/6, 13π/6, 19π/6, 25π/6

Thus, the solutions to the equation 3sin(x) = sin(x) + 1 on the interval [0,27) are:

x = π/6, 7π/6, 13π/6, 19π/6, 25π/6.

Know more about the interval

https://brainly.com/question/30354015

#SPJ11

consider the compound beam shown in (figure 1). suppose that p1 = 840 n , p2 = 1150 n , w = 410 n/m , and point e is located just to the left of 840 n force. follow the sign convention.

Answers

Using the quadratic formula to solve quadratic equation, we ge.t L1 = 0.266 m and L2 = 1.23 m.

The compound beam shown in figure 1 is shown below:

Given:

p1 = 840

N p2 = 1150

Nw = 410 N/m.

Point e is located just to the left of 840 N force.

Force equilibrium: ΣFy = 0R1 + R2 = p1 + p2 + wL ----(1)

Moment equilibrium:ΣMy = 0

p1 (L1 + L2) + p2 L2 + wL²/2 = R2 L2 + R1 L1 ----(2)

Here, the length of the first span is L1, the length of the second span is L2, and the total length of the beam is L.

Since point e is located just to the left of 840 N force, it is the location where the first span meets the second span.

Therefore, L1 + e = L2 R1 = ? R2 = ?

Using equation (1),

R1 + R2 = p1 + p2 + wLR1 + R2

= 840 + 1150 + 410 * LR1 + R2

= 1990 + 410 LR2 - R1

= wL R2 - R1

= 410 L - R1

Substituting equation (5) into equation (4),

R1 + 410 L - R1 = 410 LR = 410 L/2R = 205 L.

Therefore, R1 = 205 L - 840 N and

R2 = 1150 + 205 L - 410 L= -255 L + 1150 N.

Now, substituting the values of R1 and R2 into equation (2),

P1 (L1 + L2) + P2 L2 + wL²/2

= (-255 L + 1150 N) L2 + (205 L - 840 N) L1840 (L1 + L2) + 1150 L2 + 410 L²/2

= -255 L³ + 1150 L² + 205 L² - 840 L1 + 840 L1 - 205 L² + 255 L³ 840 L1 + 1395 L² + 895 L - 410 L²/2

= 0L1 + 2.59 L² + 1.06 L - 0.48 = 0.

Using the quadratic formula to solve this quadratic equation, we get L1 = 0.266 m and L2 = 1.23 m.

To know more about quadratic visit:

https://brainly.com/question/22364785

#SPJ11

(Getting Matriz Inverses Using Gauss-Jordan Elimination). For each of the following (nonsingular) square matrices A: transform the matrix. (AI), where I is the identity matrix of the same size as A, first to row echelon form, and then to reduced row-echelon form, (AI)→→ (A-¹); write down the inverse matrix A-1 (and make sure to verify your answer by the direct matrix multiplication!): -2 -1 -2 (1) -3 -3. 1 -2 3 -2 1 ; (iii) 2 -2 -2 -2 -1 2 2 -2 1 77-7

Answers

To find the inverse of a given matrix, we will perform Gaussian elimination to transform the matrix into row echelon form and then into reduced row-echelon form.

By doing so, we can obtain the inverse matrix and verify our answer using direct matrix multiplication.

Let's solve each matrix separately:

(i) Matrix A:

-2 -1 -2

-3 -3 1

-2 3 -2

We will perform row operations to convert the matrix into row echelon form:

R2 = R2 + (3/2)R1

R3 = R3 + R1

The resulting matrix in row echelon form is:

-2 -1 -2

0 3 2

0 2 0

Next, we perform row operations to convert the matrix into reduced row-echelon form:

R2 = (1/3)R2

R3 = R3 - (2/3)R2

The resulting matrix in reduced row-echelon form is:

-2 -1 -2

0 1 2/3

0 0 -4/3

Therefore, the inverse matrix A^-1 is:

-2 -1 -2

0 1 2/3

0 0 -4/3

To verify our answer, we can multiply matrix A with its inverse A^-1 and check if the result is the identity matrix:

A * A^-1 = I

(ii) Matrix A:

1 1 1

1 2 -1

2 -1 -2

By following the same steps as in (i), we obtain the inverse matrix A^-1:

1/3 1/3 -1/3

-1/3 1/3 2/3

-1/3 2/3 1/3

To verify our answer, we can multiply matrix A with its inverse A^-1 and check if the result is the identity matrix.

(iii) The matrix provided in (iii) seems to have some formatting issues. Please double-check and provide the correct matrix, so I can assist you with finding its inverse.

Note: The explanation provided above assumes familiarity with the Gaussian elimination method and the concepts of row echelon form and reduced row-echelon form.

To learn more about Gaussian elimination visit:

brainly.com/question/30400788

#SPJ11

Use Taylors formula for f(x, y) at the origin to find quadratic and cubic approximations of f near the origin f(x, y) = 2 1-3x - 3y

The quadratic approximation is
The cubic approximation is

Answers

We are given the function f(x, y) = 2(1 - 3x - 3y), and we need to find the quadratic and cubic approximations of f near the origin using Taylor's formula.  The quadratic and cubic approximations of f near the origin are the same. Both approximations yield the function 2 - 6x - 6y.

To find the quadratic approximation of f near the origin, we use the second-order Taylor expansion. The quadratic approximation is given by:

Q(x, y) = f(0, 0) + ∇f(0, 0) · (x, y) + (1/2) Hf(0, 0) · (x, y)²,

where f(0, 0) is the value of f at the origin, ∇f(0, 0) is the gradient of f at the origin, Hf(0, 0) is the Hessian matrix of f at the origin, and (x, y)² represents the element-wise square of (x, y).

Calculating the necessary terms:

f(0, 0) = 2(1 - 0 - 0) = 2,

∇f(0, 0) = (-6, -6),

Hf(0, 0) = [[0, 0], [0, 0]].

Substituting these values into the quadratic approximation formula, we have:

Q(x, y) = 2 - 6x - 6y.

For the cubic approximation, we use the third-order Taylor expansion. The cubic approximation is given by:

C(x, y) = f(0, 0) + ∇f(0, 0) · (x, y) + (1/2) Hf(0, 0) · (x, y)² + (1/6) ∇³f(0, 0) · (x, y)³,

where ∇³f(0, 0) is the third derivative of f at the origin.

Calculating the necessary term:

∇³f(0, 0) = 0.

Substituting this value into the cubic approximation formula, we have:

C(x, y) = 2 - 6x - 6y.

In this case, the quadratic and cubic approximations of f near the origin are the same. Both approximations yield the function 2 - 6x - 6y.

Learn more about Taylor expansion here:

https://brainly.com/question/32291388

#SPJ11

PROBLEM!! HIGHLIGHTED IN YELLOW!!
Problem 23 Evaluate the indicated line integral using Green's Theorem. (a) ∮ F.dr
where F = (eˣ² - y, e²ˣ + y) and C is formed by y = 1-x² and y = 0. (b) ∮ [y³ -In(x + 1)] dx + (√y² + 1 + 3x) dy
where C is formed by x = y² and x = 4. (c) ∮ [y sec² x -2] dx + (tan x - 4y²)dy where C is formed by x = 1 - y² and x = 0.

Answers

Green's Theorem relates a line integral around a closed curve to a double integral over the region enclosed by the curve. It states that for a vector field F = (P, Q) and a curve C enclosing a region D.

The line integral ∮ F · dr can be calculated as the double integral over D of (∂Q/∂x - ∂P/∂y) dA, where dA represents the infinitesimal area element.To evaluate a line integral using Green's Theorem, we need to follow these steps:

Determine the vector field F = (P, Q).

Find the partial derivatives ∂P/∂y and ∂Q/∂x.

Calculate the double integral (∂Q/∂x - ∂P/∂y) dA over the region D enclosed by the curve C.

For each part of the problem, the specific vector field F and the curves C formed by the given equations need to be identified. Then, the corresponding partial derivatives can be computed, and the double integral can be evaluated to find the value of the line integral.

In conclusion, Green's Theorem provides a method to evaluate line integrals by converting them into double integrals over the region enclosed by the curve. By following the steps mentioned above, one can calculate the line integrals for each given vector field and curve in the problem using Green's Theorem.

To learn more about Green's Theorem click here : brainly.com/question/30763441

#SPJ11

Nine players on a baseball team are arranged in the batting order. What is the probability that the first two players in the lineup will be the center fielder and the shortstop, in that order?​

Answers

Answer: The probability of the first player being the center fielder is 1 out of 9 because there is only one center fielder on the team.

After the center fielder is chosen, there are 8 players remaining, and the probability of the second player being the shortstop is 1 out of 8 because there is only one shortstop on the team.

To calculate the probability of both events occurring in order, we multiply the individual probabilities:

Probability = (1/9) * (1/8) = 1/72

Therefore, the probability that the first two players in the lineup will be the center fielder and the shortstop, in that order, is 1 out of 72.

The position of a particle, y, is given by y(t) = t³ − 14t² + 9t − 1 where t represents time in seconds. On your written working find the values of the position and acceleration of the particle when its velocity is 0. Using these results sketch the graph of y(t) for 0 ≤ t ≤ 11.

Answers

The position of a particle y, as per the given function, is y(t) = t³ − 14t² + 9t − 1.The acceleration of the particle is represented by the second derivative of the position function with respect to time. So, here is the solution to the given problem;

Position of a particle: The position of a particle y, as per the given function, is

y(t) = t³ − 14t² + 9t − 1.Velocity of the particle:

To find out the velocity of the particle we can take the first derivative of the position function with respect to time. So, the velocity function will be:

v(t) = dy(t)/dt

= 3t² - 28t + 9.

We need to find the values of t where the velocity function is equal to zero.

So, we will equate the above velocity function to zero:0 = 3t² - 28t + 9t = 1/3(28 ± √(28² - 4(3)(9)))/6 = 0.1849 sec and t = 7.4818 sec. Thus, the velocity of the particle is zero at t = 0.1849 sec and t = 7.4818 sec.Position of the particle at t = 0.1849 sec:

To find out the position of the particle at t = 0.1849 sec, we will substitute this value in the position function:y(0.1849)

= (0.1849)³ − 14(0.1849)² + 9(0.1849) − 1y(0.1849)

= -0.7237 units.

Thus, the position of the particle at t = 0.1849 sec is -0.7237 units.

Position of the particle at t = 7.4818 sec:To find out the position of the particle at t = 7.4818 sec, we will substitute this value in the position function:y(7.4818)

= (7.4818)³ − 14(7.4818)² + 9(7.4818) − 1y(7.4818) = -321.096 units. Thus, the position of the particle at t = 7.4818 sec is -321.096 units.

Acceleration of the particle:To find out the acceleration of the particle we can take the second derivative of the position function with respect to time. So, the acceleration function will be:a(t) = d²y(t)/dt²= 6t - 28.Now, we can substitute the values of t where the velocity of the particle is zero:At t = 0.1849 sec:a(0.1849) = 6(0.1849) - 28a(0.1849) = -25.686 sec^-2.At t = 7.4818 sec: a(7.4818) = 6(7.4818) - 28a(7.4818) = 22.891 sec^-2.Graph of y(t) for 0 ≤ t ≤ 1.

To know more about particle  visit:-

https://brainly.com/question/14476224

#SPJ11

Find all the eigenvalues of A. For each eigenvalue, find an eigenvector. (Order your answers from smallest to largest eigenvalue.) <--4 has eigenspace span has eigenspace span has eigenspace span A₂ = 4₂-5 46

Answers

The eigenvalues of A are 4, -5, and -6. The eigenvectors corresponding to the eigenvalues 4 and -5 are (1, 2) and (-2, 1), respectively. The eigenvector corresponding to the eigenvalue -6 is (0, 1).

To find the eigenvalues of A, we can use the characteristic equation:

| A - λI | = 0

This gives us the equation:

(4 - λ)(λ^2 + λ - 6) = 0

This equation has three solutions: λ = 4, λ = -5, and λ = -6.

To find the eigenvectors corresponding to each eigenvalue, we can solve the system of equations:

A - λI v = 0

For λ = 4, this gives us the system of equations:

[4 - 4I] v = 0

This system has the solution v = (1, 2).

For λ = -5, this gives us the system of equations:

[-5 - 4I] v = 0

This system has the solution v = (-2, 1).

For λ = -6, this gives us the system of equations:

[-6 - 4I] v = 0

This system has the solution v = (0, 1).

To learn more about eigenvalues here brainly.com/question/29861415

#SPJ11

You want to fence a rectangular piece of land adjacent to a river. The cost of the fence that faces the river is $10 per foot. The cost of the fence for the other sides is $4 per foot. If you have $1,372, how long should the side facing the river be so that the fenced area is maximum?

Answers

To maximize the fenced area while considering cost, the length of the side facing the river should be 54 feet. Let's denote the length of the side facing the river as 'x' and the length of the adjacent sides as 'y'. The cost of the fence along the river is $10 per foot, so the cost for that side would be 10x.

The cost of the other two sides is $4 per foot, resulting in a combined cost of 8y.

The total cost of the fence is the sum of the costs for each side. It can be expressed as:

Total Cost = 10x + 8y

We know that the total cost is $1,372. Substituting this value, we have:

10x + 8y = 1372

To maximize the fenced area, we need to find the maximum value for xy. However, we can simplify the problem by solving for y in terms of x. Rearranging the equation, we get:

8y = 1372 - 10x

y = (1372 - 10x)/8

Now, we can express the area A in terms of x and y:

A = x * y

A = x * [(1372 - 10x)/8]

To find the maximum area, we can differentiate A with respect to x and set it equal to zero:

dA/dx = (1372 - 10x)/8 - 10x/8 = 0

Simplifying the equation, we get:

1372 - 10x - 10x = 0

1372 - 20x = 0

20x = 1372

x = 68.6

Since the length of the side cannot be in decimal form, we round down to the nearest whole number. Therefore, the length of the side facing the river should be 68 feet.

Learn more about whole number here: https://brainly.com/question/29766862

#SPJ11

Use statistical tables to find the following values (i) fo 75,615 = (ii) X²0.975, 12--- (iii) t 09, 22 (iv) z 0.025 (v) fo.05.9, 10. (vi) kwhen n = 15, tolerance level is 99% and confidence level is 95% assuming two-sided tolerance interval

Answers

(i) The value of Fo for 75,615 is not provided in the question, and therefore cannot be determined.

(ii) The value of X²0.975, 12 is approximately 21.026.

(iii) The value of t0.9, 22 is approximately 1.717.

(iv) The value of z0.025 is approximately -1.96.

(v) The value of Fo.05, 9, 10 is not provided in the question, and therefore cannot be determined.

(vi) The value of k for a two-sided tolerance interval with a sample size of 15, a tolerance level of 99%, and a confidence level of 95% is not provided in the question, and therefore cannot be determined.

(i) The value of Fo for 75,615 is not given, and without additional information or a specific distribution, it is not possible to determine the corresponding value from statistical tables.

(ii) The value of X²0.975, 12 can be found using the chi-square distribution table. With a degree of freedom of 12 and a significance level of 0.025 (two-tailed test), we find that X²0.975, 12 is approximately 21.026.

(iii) The value of t0.9, 22 can be found using the t-distribution table. With a significance level of 0.1 and 22 degrees of freedom, we find that t0.9, 22 is approximately 1.717.

(iv) The value of z0.025 can be found using the standard normal distribution table. The significance level of 0.025 corresponds to a two-tailed test, so we need to find the value that leaves 0.025 in both tails. From the table, we find that z0.025 is approximately -1.96.

(v) The value of Fo.05, 9, 10 is not given in the question, and without additional information or a specific distribution, it is not possible to determine the corresponding value from statistical tables.

(vi) The value of k for a two-sided tolerance interval depends on the sample size, tolerance level, and confidence level. However, the specific values for these parameters are not provided in the question, making it impossible to determine the corresponding value of k from statistical tables.

learn  more about statistics here:brainly.com/question/32201536

#SPJ11

You want to obtain a sample to estimate a population proportion. Based on previous evidence, you believe the population proportion is approximately p∗=38%p∗=38%. You would like to be 99.9% confident that your esimate is within 1% of the true population proportion. How large of a sample size is required?

n =

You want to obtain a sample to estimate a population proportion. Based on previous evidence, you believe the population proportion is approximately p∗=27%p∗=27%. You would like to be 99.5% confident that your esimate is within 1.5% of the true population proportion. How large of a sample size is required?

n =

You are interested in estimating the the mean age of the citizens living in your community. In order to do this, you plan on constructing a confidence interval; however, you are not sure how many citizens should be included in the sample. If you want your sample estimate to be within 4 years of the actual mean with a confidence level of 96%, how many citizens should be included in your sample? Assume that the standard deviation of the ages of all the citizens in this community is 22 years.

Sample Size:

Answers

The sample size at 99.9% confidence is 25517

The sample size at 99.5% confidence is 6902

The sample size at 96% confidence is 127

How large of a sample size is required?

99.9% confident within 1% of the true population proportion

The sample size can be calculated using

n = (z² * p * (1-p)) / E²

Where

z = 3.291 i.e. z-score at 99.9% CI

p = 0.38

E = 1% = 0.01

So, we have

n = (3.291² * 0.38 * (1-0.38)) / 0.01²

Evaluate

n = 25517

99.5% confident within 1.5% of the true population proportion

The sample size can be calculated using

n = (z² * p * (1-p)) / E²

Where

z = 2.807 i.e. z-score at 99.5% CI

p = 0.27

E = 1.5% = 0.015

So, we have

n = (2.807² * 0.27 * (1 - 0.27)) / 0.015²

Evaluate

n = 6902

96% confidence level

The sample size can be calculated using

n = (z² * σ²) / E²

Where

z = 2.05 i.e. z-score at 99.5% CI

σ = 22

E = 4

So, we have

n = (2.05² * 22²) /4²

Evaluate

n = 127

Hence, the sample size is 127

Read more about confidence level at

https://brainly.com/question/17097944

#SPJ4

The lengths of the diagonals of a rhombus are 16 and 30
Find the length of a side of the rhombus.

Answers

The length of one side of the rhombus is 17 units. It's worth noting that the length of a side can also be found by using either of the diagonals since they are both equal in a rhombus. However, in this case, we used the Pythagorean theorem to demonstrate the relationship between the diagonals and the sides

In a rhombus, the diagonals intersect at right angles and bisect each other. Let's denote the length of one side of the rhombus as "s."

The diagonals of the rhombus have lengths of 16 and 30 units. Let's label them as "d1" and "d2" respectively.

Since the diagonals bisect each other, they form four congruent right triangles within the rhombus. The sides of these right triangles are half the lengths of the diagonals. Therefore, we can set up the Pythagorean theorem for one of the right triangles:

[tex](d1/2)^2 + (d2/2)^2 = s^2[/tex]

Plugging in the values of the diagonals, we have:

[tex](16/2)^2 + (30/2)^2 = s^2[/tex]

[tex]8^2 + 15^2 = s^2[/tex]

[tex]64 + 225 = s^2[/tex]

[tex]289 = s^2[/tex]

Taking the square root of both sides, we find:

s = √289

s = 17

For more such questions on Pythagoras Theorem

https://brainly.com/question/343682

#SPJ8

Q3) [1T, 2A] Determine if vectors = [9,-6, 12] and w = [-12, 8,-16]. are collinear.

Answers

Given vectors = [9,-6, 12] and w = [-12, 8,-16]. In this case, we find that v = -3 * w, indicating that they are indeed collinear.

Collinear vectors are vectors that lie on the same line or are parallel to each other. If v and w are collinear, it means that one vector can be obtained by scaling the other vector by a constant factor. Mathematically, this can be represented as v = k * w, where k is a scalar.

In our case, we have v = [9, -6, 12] and w = [-12, 8, -16]. To check if they are collinear, we need to find a scalar k such that v = k * w. We can perform scalar multiplication on w by multiplying each component by k.

By comparing the corresponding components of v and k * w, we find that 9 = -12k, -6 = 8k, and 12 = -16k. Solving these equations, we find that k = -3 satisfies all of them. Therefore, we can write v as -3 times w, or v = -3 * w, confirming that v and w are collinear.

To learn more about vectors click here, brainly.com/question/24256726

#SPJ11

Find an equation of the tangent plane to the graph of F(r, s) at the given point:
F(r, s) = 3 1/3^3 - 3r^2 1/s^05, (2, 1,-9)
z =

Answers

An equation of the tangent plane to the graph of F(r, s) at the given point above is z = -12r - 57s + 69.

Given the function F(r, s) = 3(1/3)^3 - 3r^2(1/s)^05. We need to find the equation of the tangent plane to the graph of F(r, s) at the given point (2,1,-9).

The formula to find the equation of the tangent plane at (a,b,c) to the surface z = f(x,y) is given by:

z - c = f x (a,b) (x - a) + f y (a,b) (y - b)

where f x and f y are the partial derivatives of the function f(x,y) with respect to x and y respectively.

So, here, we have, f(r,s) = 3(1/3)^3 - 3r^2(1/s)^05

Differentiating partially with respect to r, we get:

f r = -6r/s^05

Differentiating partially with respect to s, we get:f s = 9/s^6 - 15r^2/s^6

Substituting the values of (r,s) = (2,1) in f(r,s) and the partial derivatives f r and f s , we get:

f(2,1) = 3(1/3)^3 - 3(2)^2(1/1)^05= 3(1/27) - 12 = -11/3

f r (2,1) = -6(2)/1^05 = -12

f s (2,1) = 9/1^6 - 15(2)^2/1^6= -57

The equation of the tangent plane to the graph of F(r, s) at the point (2,1,-9) is given by:

z - (-9) = (-12)(r - 2) + (-57)(s - 1) => z = -12r - 57s + 69.

Hence, the required answer is z = -12r - 57s + 69.

Learn more about functions at:

https://brainly.com/question/31397815

#SPJ11

For the numbers 1716 and 936

a. Find the prime factor trees

b. Find the GCD

c. Find the LCM

Answers

For the numbers 1716 and 936

b. The GCD is 52.

c. The LCM is 8586.

a. Prime factor trees for 1716 and 936:

Prime factor tree for 1716:

    1716

   /     \

  2       858

         /    \

        2      429

              /    \

             3      143

                   /    \

                  11     13

Prime factor tree for 936:

     936

   /     \

  2       468

         /    \

        2      234

              /    \

             2      117

                   /    \

                  3      39

                        /   \

                       3     13

b. To find the greatest common divisor (GCD) of 1716 and 936, we identify the common prime factors and their minimum powers. From the prime factor trees, we can see that the common prime factors are 2, 3, and 13. Taking the minimum powers of these common prime factors:

GCD(1716, 936) = 2² × 3¹ × 13¹ = 52

c. To find the least common multiple (LCM) of 1716 and 936, we identify all the prime factors and their maximum powers. From the prime factor trees, we can see the prime factors of 1716 are 2, 3, 11, and 13, while the prime factors of 936 are 2, 3, and 13. Taking the maximum powers of these prime factors:

LCM(1716, 936) = 2² × 3¹ × 11¹ × 13¹ = 8586

Therefore, the GCD of 1716 and 936 is 52, and the LCM of 1716 and 936 is 8586.

To learn more about LCM: https://brainly.com/question/233244

#SPJ11

Answer quickly pls…..

Answers

The intermediate step in the form (x + a)² = b after completing the square is (x + 3)² = -9

To complete the square for the equation x² + 18 = -6x, we follow these steps:

Move the constant term to the other side of the equation:

x² + 6x + 18 = 0

Divide the coefficient of the linear term (6) by 2 and square the result:

(6/2)² = 9

Add the result from step 2 to both sides of the equation:

x² + 6x + 9 + 18 = 9

x² + 6x + 9 = -9

The intermediate step in the form (x + a)² = b after completing the square is:

(x + 3)² = -9

To learn more on Equation:

https://brainly.com/question/10413253

#SPJ1

"probability distribution
B=317
3) An electronic company produces keyboards for the computers whose life follows a normal distribution, with mean (150+ B) months and standard deviation (20 + B) months. If we choose a hard disc at random what is the probability that its lifetime will be
a. Less than 120 months?
b. More than 160 months?
c. Between 100 and 130 months?"

Answers

In this probability distribution problem, we are given that the lifetime of keyboards produced by an electronic company follows a normal distribution with a mean of (150 + B) months and a standard deviation of (20 + B) months.

We need to calculate the probability of the keyboard's lifetime being less than 120 months, more than 160 months, and between 100 and 130 months.

a) To find the probability that the keyboard's lifetime is less than 120 months, we can standardize the value using the z-score formula:

z = (x - μ) / σ

where x is the given value, μ is the mean, and σ is the standard deviation. By substituting the given values into the formula, we can calculate the corresponding z-score. Then, using a standard normal distribution table or software, we can find the probability associated with the calculated z-score.

b) To find the probability that the keyboard's lifetime is more than 160 months, we follow a similar process. We standardize the value using the z-score formula and calculate the corresponding z-score. Then, we find the area under the standard normal distribution curve beyond the calculated z-score to determine the probability.

c) To find the probability that the keyboard's lifetime is between 100 and 130 months, we calculate the z-scores for both values using the same formula. Then, we find the difference between the probabilities associated with the z-scores to determine the probability of the lifetime falling within the given range.

Learn more about mean here: brainly.com/question/31101410

#SPJ11

An urn contains 6 marbles; 3 red and 3 green. The following experiment is conducted. Marbles are randomly drawn one at a time from the urn and kept aside until a red marble is drawn out. Let X denote the number of green marbles drawn out from such an experiment. (a) Use a table to describe the probability mass function of X? (b) What is E(X)?

Answers

a) The PMF of X is described in the following table:

X | 0 | 1 | 2

P(X) | 0.5 | 0.3 | 0.15

b) The expected value of X is 0.6.

What is the probability?

(a) Probability mass function (PMF) of X:

The experiment ends when a red marble is drawn.

X represents the number of green marbles drawn before the first red marble is drawn.

X can take values from 0 to 2, as there are only 3 green marbles in the urn.

The probability of drawing 0 green marbles (X = 0):

P(X = 0) = (3/6) = 0.5

The probability of drawing 1 green marble (X = 1):

P(X = 1) = (3/6) * (3/5) = 0.3

The probability of drawing 2 green marbles (X = 2):

P(X = 2) = (3/6) * (2/5) * (3/4) = 0.15

(b) Expected value (E(X)):

E(X) = (0 * 0.5) + (1 * 0.3) + (2 * 0.15)

E(X) = 0 + 0.3 + 0.3

E(X) = 0.6

Learn more about probability at: https://brainly.com/question/23417919

#SPJ4

The mean undergraduate cost for tuition, fees, room and board for four year institutions was $26737 for a recent academic year. Suppose that standard deviation is $3150 and that 38 four-year institutions are randomly selected. Find the probability that the sample mean cost for these 38 schools is at least $25248.
A. 0.498215
B. 0.998215
C. 0.501785
D. 0.001785

Answers

The probability that the sample mean cost for these 38 schools is at least $25248 is 0.998215. Option b is correct.

Given that the mean undergraduate cost for tuition, fees, room and board for four year institutions was $26737, the standard deviation is $3150 and 38 four-year institutions are randomly selected. We have to find the probability that the sample mean cost for these 38 schools is at least $25248.

We can use the central limit theorem to solve the given problem. According to this theorem, the sample means are normally distributed with a mean of the population and a standard deviation equal to population standard deviation/ √ sample size.

So, the z-score corresponding to the given sample mean can be calculated as follows:

z = (x - μ) / σ√n

= ($25248 - $26737) / $3150/√38

= -1489 / 510 = -2.918.

On a standard normal distribution curve, the z-score of -2.918 has a probability of 0.001785 (approximately) of occurring.

Hence, the correct option is B. 0.998215.

Learn more about probability https://brainly.com/question/31828911

#SPJ11

Is there a statistically significant relationship between the 2 variables,pattern or direction and the strength

Do men and women differ in their views on capital punishment?

Men Women

Favor 67.3% 59.6%

Oppose 32.7% 40.4%

Value DF P value

Chi Square 13.758 1 .000

Answers

Based on the information provided, there is a statistically significant relationship between the two variables.

How to know if there is a statistically significant relationship between the two variables?

The relationship between two variables and whether these variables are significant or not is often determined by the p-value. The general rule is that the p-value should be smaller than 0.05 for a variable to be considered significant.

In this case, the p-value is 0.0, which shows its value is smaller than 0.05 and therefore it is significant.

Learn more about variables in https://brainly.com/question/15078630

#SPJ4

Write an equation for the transformed logarithm shown below. Your answer should include a vertical scaling and will be in the form f(x) = (x + c) 5 4 3 2 1 -5 -4 -3 -2 -1 -1 134 to 4 1 2 3 4 5

Answers

The equation of the transformed logarithm is `f(x) = log(x + c) + k` . The correct option is `(x + c)` to `f(x) = log(x + c) + k`.

The transformed logarithm that is shown below is given as;

`f(x) = (x + c)`.

And, the equation for the transformed logarithm is of the form

`f(x) = a log [b(x - h)] + k`

where `a`, `b`, `h`, and `k` are constants.

We need to find the equation for the transformed logarithm. The function value `f(x) = (x + c)` has only a vertical translation; there is no horizontal translation, reflection, or stretching.

The vertical scaling of the function is `a = 1`.

The constant `h` in the equation of the logarithmic function is equal to `-c`.

This is the equation of the transformed logarithm:

`f(x) = log [1(x - (-c))] + k

= log(x + c) + k`

The equation of the transformed logarithm is

`f(x) = log(x + c) + k` (where `k` is the vertical translation).

Hence, the correct option is `(x + c)` to `f(x) = log(x + c) + k`.

Know more about the logarithm

https://brainly.com/question/13473114

#SPJ11

"


A manufacturer has a monthly fixed cost of $70,000 and a production cost of $25 for each unit produced. The product sells for $30 per unit. (Show all your work.) (a) What is the cost function C(x)?

Answers

The cost function is given by C(x) = $70,000 + $25x.

Given data:Fixed monthly cost = $70,000

Production cost per unit = $25

Selling price per unit = $30

Let's assume the number of units produced per month to be x

.The cost function C(x) is given by the sum of the fixed monthly cost and the production cost per unit multiplied by the number of units produced per month.

C(x) = Fixed monthly cost + Production cost per unit × Number of units produced

C(x) = $70,000 + $25x

Hence, the cost function is given by C(x) = $70,000 + $25x.

To know more about cost estimate visit :-

https://brainly.com/question/27993465

#SPJ11

Determine whether the following expression is a vector, scalar or meaningless: (ả × ĉ) · (à × b) - (b + c). Explain fully

Answers

The given expression is not purely a vector or scalar but a combination of both. It is a meaningful expression, but it represents a combination of a scalar and a vector.

The given expression is:

(ả × ĉ) · (à × b) - (b + c)

To determine whether this expression is a vector, scalar, or meaningless, we need to examine the properties and definitions of vectors and scalars.

In the given expression, we have the cross product of two vectors: (ả × ĉ) and (à × b). The cross product of two vectors results in a new vector that is orthogonal (perpendicular) to both of the original vectors. The dot product of two vectors, on the other hand, yields a scalar quantity.

Let's break down the expression:

(ả × ĉ) · (à × b) - (b + c)

The cross product (ả × ĉ) results in a vector, and the cross product (à × b) also results in a vector. Therefore, the first part of the expression, (ả × ĉ) · (à × b), is a dot product between two vectors, which yields a scalar.

The second part of the expression, (b + c), is the sum of two vectors, which also results in a vector.

So overall, the expression consists of a scalar (from the dot product) subtracted from a vector (from the sum of vectors).

Therefore, the given expression is not purely a vector or scalar but a combination of both. It is a meaningful expression, but it represents a combination of a scalar and a vector.

To learn more about vector click here:

brainly.com/question/32068252

#SPJ11

You do a poll to see what fraction p of the students participated in the FIT5197 SETU survey. You then take the average frequency of all surveyed people as an estimate p for p. Now it is necessary to ensure that there is at least 95% certainty that the difference between the surveyed rate p and the actual rate p is not more than 10%. At least how many people should take the survey?

Answers

The required sample size necessary for the survey is given as follows:

n = 97.

What is a confidence interval of proportions?

A confidence interval of proportions has the bounds given by the rule presented as follows:

[tex]\pi \pm z\sqrt{\frac{\pi(1-\pi)}{n}}[/tex]

In which the variables used to calculated these bounds are listed as follows:

[tex]\pi[/tex] is the sample proportion, which is also the estimate of the parameter.z is the critical value.n is the sample size.

The confidence level is of 95%, hence the critical value z is the value of Z that has a p-value of [tex]\frac{1+0.95}{2} = 0.975[/tex], so the critical value is z = 1.96.

The margin of error is obtained as follows:

[tex]M = z\sqrt{\frac{\pi(1-\pi)}{n}}[/tex]

We have no estimate, hence:

[tex]\pi = 0.5[/tex]

Then the required sample size for M = 0.1 is obtained as follows:

[tex]0.1 = 1.645\sqrt{\frac{0.5(0.5)}{n}}[/tex]

[tex]0.1\sqrt{n} = 1.96 \times 0.5[/tex]

[tex]\sqrt{n} = 1.96 \times 5[/tex]

[tex](\sqrt{n})^2 = (1.96 \times 5)^2[/tex]

n = 97.

More can be learned about the z-distribution at https://brainly.com/question/25890103

#SPJ4

Use the following probability distribution to answer the following questions Pa) 0:14 0.1 16 18 5 0.09 0.67 Calculate the mean, Varance, and standard deviation of the distribution You may round your answers to two decimal places, il necessary What is the expected value of the distribution

Answers

The expected value of the distribution is 1.98.

Given probability distribution is, [tex]X  0 1 2 3 4 5[/tex]

Probability [tex](P(X)) 0.14 0.1 0.16 0.18 0.05 0.09 0.67(i) \\Mean (μ) \\= ∑xP(X)X P(X)0 0.14 1 0.1 2 0.16 3 0.18 4 0.05 5 0.09μ \\= ∑xP(X) \\= (0 × 0.14) + (1 × 0.1) + (2 × 0.16) + (3 × 0.18) + (4 × 0.05) + (5 × 0.09) \\= 1.98[/tex]

Therefore, the mean is 1.98.

(ii) Variance (σ2) [tex]= ∑ (x - μ)2P(X)x P(X)x - μP(X)(x - μ)2P(X)0 0 - 1.98 (-1.98)2 0.03842 1 0.1 - 1.98 (-0.98)2 0.08408 2 0.16 - 1.98 (-0.98)2 0.08408 3 0.18 - 1.98 (1.02)2 0.18612 4 0.05 - 1.98 (2.98)2 0.22322 5 0.09 - 1.98 (3.98)2 0.28326 σ2 = ∑ (x - μ)2P(X) \\= 0.03842 + 0.08408 + 0.08408 + 0.18612 + 0.22322 + 0.28326 \\= 0.89918[/tex]

Therefore, the variance is 0.89918.

(iii) Standard deviation

[tex](σ) = √σ2\\= √0.89918\\= 0.9482(approx)[/tex]

Therefore, the standard deviation is 0.9482 (approx).

(iv) Expected value [tex]= E(X) \\= ∑xP(X)x P(X)0 0.14 1 0.1 2 0.16 3 0.18 4 0.05 5 0.09E(X) \\= ∑xP(X) \\= (0 × 0.14) + (1 × 0.1) + (2 × 0.16) + (3 × 0.18) + (4 × 0.05) + (5 × 0.09) \\= 1.98[/tex]

Therefore, the expected value of the distribution is 1.98.

Know more about probability   here:

https://brainly.com/question/25839839

#SPJ11

To test the hypothesis that the population mean mu=6.0, a sample size n=15 yields a sample mean 6.346 and sample standard deviation 1.748. Calculate the P- value and choose the correct conclusion. Yanıtınız: O The P-value 0.383 is not significant and so does not strongly suggest that mu>6.0. O The P-value 0.383 is significant and so strongly suggests that mu>6.0. O The P-value 0.028 is not significant and so does not strongly suggest that mu>6.0. O The P-value 0.028 is significant and so strongly suggests that mu>6.0. O The P-value 0.016 is not significant and so does not strongly suggest that mu>6.0. O The P-value 0.016 is significant and so strongly suggests that mu>6.0. O The P-value 0.277 is not significant and so does not strongly suggest that mu>6.0. O The P-value 0.277 is significant and so strongly suggests that mu>6.0. O The P-value 0.228 is not significant and so does not strongly suggest that mu>6.0. O The P-value 0.228 is significant and so strongly suggests that mu>6.0.

Answers

The P-value 0.228 is not significant and so does not strongly suggest that mu > 6.0. Option 9

How to determine the correct conclusion

First, calculate the p-value and compare it to the given significance level

The observed value (6.346) if the null hypothesis is true (mu = 6.0).

To calculate the p - value, we have;

t =[tex]\frac{mean - mu}{\frac{s}{\sqrt{n} } }[/tex]

Such that the parameters are;

s is the standard deviationn is the sample size

Substitute the values, we have;

= (6.346 - 6.0) / (1.748 /√15)

expand the bracket and find the square root, we have;

=  0.346 / 0.451

Divide the values

=  0.767

The degree of freedom is given as;

(n -1)= (15 -1 ) = 14

Then, we have that the p- value is 0.228.

The P-value 0.228 is not significant and so does not strongly suggest that mu > 6.0.

Learn more about standard deviation at: https://brainly.com/question/24298037

#SPJ4

Evaluate the definite integral. [^; 4 dx 1x + 6

Answers

We need to evaluate the definite integral [tex]\int\frac{dx}{x+6}[/tex]. The definite integral is a mathematical operation that calculates the signed area between the curve of a function and the x-axis over a given interval.

To evaluate the definite integral [tex]\int\frac{dx}{x+6}[/tex], we can apply the fundamental theorem of calculus. The integral represents the area under the curve of the function [tex]\frac{1}{x+6}[/tex] over the interval from x = 0 to x = 4.

To find the antiderivative of [tex]\frac{1}{x+6}[/tex] , we can use the natural logarithm function. Applying the logarithmic property, we can rewrite the integral as ln|x + 6| evaluated from x = 0 to x = 4. The antiderivative is ln|x + 6|.

Applying the fundamental theorem of calculus, the definite integral evaluates to ln|4 + 6| - ln|0 + 6|. Simplifying further, we get ln(10) - ln(6).

The final result of the definite integral is ln(10) - ln(6), which represents the area under the curve of the function [tex]\frac{1}{x+6}[/tex]from x = 0 to x = 4.

Learn more about definite integral here:

brainly.com/question/30760284

#SPJ11

Could someone please help with these problems! Thanks so much!
Question 21 For any angle,sin+com²0- A) B) Not enough information. D) 0 Question 22" If tanz-1, then cot z A) 1 B) T C) 0 D) Cannot be determined. Question 23 Simplify (-3¹) A) B) C) D) 90 Question

Answers

A geometric shape known as an angle is created by two rays or line segments that meet at a location known as the vertex. The sides of the angle are the rays or line segments. Correct answer is b.

Angles are commonly expressed as radians (rad) or degrees (°).

For any angle,

sin²θ + cos²θ = 1.

sin²θ + cos²θ = 1 - cos²θ.

Therefore, sin²θ - cos²θ = 1 - 2cos²θ. Hence, the answer is (B).

Question 22: If tanz = 1, then z = 45°. Therefore,

cotz = cosz/sinz. When

sinz = 1/√2 and

cosz = 1/√2, then

cotz = 1. Hence, the answer is (A)

.Question 23: Simplify (-3¹). (-3¹) = -3. Therefore, the answer is (A). Thus, the answers for the given questions are- 21. B22. A23. A

To know more about Geometric Shape visit:

https://brainly.com/question/24088263

#SPJ11

Let A = [¹] [24] a. Determine P that diagonalizes A. b. Can you predict the diagonal matrix D without further calculations? c. Calculate D = P-¹AP by calculating the inverse of P and multiplying the 3 matrices.

Answers

A. The required matrix answer is-

P = [x₁ x₂]

= [23 25] [-1 1]
P⁻¹ = (1/48) [-25 -25] [1 23]

B. We can predict the diagonalatrix

D = [23 0] [0 -25]

C. D = P-¹AP

By calculating the inverse of P and multiplying the 3 matrices.

D = [-575 0] [0 575]

Given matrix is

A = [¹] [24]a.

a. Diagonalizing A:


A = [¹] [24]


To diagonalize A, we have to find its eigenvalues and eigenvectors.
|A - λI| = 0
|[¹ - λ] [24] | = 0
| [24] [¹ - λ]|
(1 - λ)(1 - λ) - 24.24 = 0
λ² - 2λ - 575 = 0
(λ - 23)(λ + 25) = 0

Eigenvalues are λ₁ = 23 and λ₂ = -25.

Eigenvector for λ₁ = 23:
(A - λ₁I)x = 0
[¹ - 23] [24] [x₁] = [0]
[0] [¹ - 23] [x₂] [0]
x₁ - 23x₂ = 0
x₁ = 23x₂

Eigenvector for λ₂ = -25:
(A - λ₂I)x = 0
[¹ + 25] [24] [x₁] = [0]
[0] [¹ + 25] [x₂]=[0]
x₁ + 25x₂ = 0
x₁ = -25x₂
Let P = [x₁ x₂] be the matrix of eigenvectors.

Then P⁻¹AP = D is the diagonal matrix whose diagonal entries are the eigenvalues of A.
P = [x₁ x₂]

= [23 25] [-1 1]
P⁻¹ = (1/48) [-25 -25] [1 23]
b. Diagonal matrix D:


We can predict the diagonal matrix D without further calculations because D is obtained by replacing the eigenvalues of A along the diagonal of a square matrix of size n.

Therefore,

D = [23 0] [0 -25]


c. D = P⁻¹AP:


D = P⁻¹AP
D = (1/48) [-25 -25] [1 23] [¹ 24] [23 -25]
D = (1/48) [-25 -25] [1 23] [23 24(25)] [-23 24(23)]
D = [-575 0] [0 575]

To know more about matrix visit:

https://brainly.com/question/27929071

#SPJ11

Other Questions
the vertical slope of the long-run aggregate supply curve is based on the assumption that: Using a decomposition model, we find the following relationship for trend and quarterly seasonality factors: TR= 1.5+ 2.2 t SN Q1 0.7 SN Q2 1.2 SN Q3 1.6 SN Q4 0.5 What is the forecasted demand for the "2nd" quarter of the fifth year? Hint: 1. t is the sequential period numbers. Find what is the value of t for the second quarter of the fifth year (if in doubt, you enumerate the quarters starting from the first year). 1. Work team and Sport teams are very similar. True or False2. An organization can form teams made up all its ____________skills to meet goals and correct problems. atoms in one molecule of trinitrotoluene (tnt), ch3c6h2(no2)3 2 Investment and Capital Stock (15 points) When disucssing the business cycles, and introducing the IS curve, we stated that investment demand is the most volatile part of expenditure. In this exercise, you are going to work through an example that helps explaining why investment might be so volatile, and sheds some light on how the IS curve is based on the actual optimizing decisions made by firms.Consider a simple model of a representative firm, similiar to the one we discussed in Chapter 4. The firm currently has a stock of capital K and has to decide about its stock of capital in the next period (say, year - lets call it period 2), K0 . The firm determines the desired level of K0 based on two parameters: expected future productivity z, and the real interest rate R it faces. Once the firm decides how much capital next period it wants (what is the desired level K0 ), the firm undertakes investment I to achieve this level of capital. K0 is determined through a standard law of motion for capital, like the one we used in the Solow model:K0 = (1 )K + I where is the depreciation rate.Next period, the firm uses the capital stock K0 it achieved to produce output Y using a Cobb-Douglas production function: Y = z(K0 ) - we assume that the labor input N is constant over time, so we dont have to worry about it. From Chapter 4, we know that the marginal product of capital (MPK) for this production function is given by: MPK = z(K0 ) 1 . It can be shown that the the optimal amount of capital is given by the standard condition: MPK = R .a. Use the optimality condition (MPK = R) to derive the optimal level of future capital K0 for this firm as a function of parameters and prices (K, , z, R, and ). This should take the form of an equation where you have K0 on the left-hand side, and all the parameters on the right-hand side. Does the optimal amount of capital in period 2 (K0 ), depend on the initial value of capital (K)? Suppose f(x) = loga (x) and f(4)= 6. Determine the function value. f- (-6) f(-6)= (Type an integer or a simplifed fraction.) C "1. Total cost functionsa. Cannot be in log log formb. Can be in log linear log formc. Cannot be in nonlinear log formd. Can be in natural log form3. The R squared value measuresa. the coefficientb. The ratio between the coefficient and standard errorc. The ratio between the standard error andd. How close the data points around the fitted line4. In statistics, data pointsa. Do not mean a sampling sizeb. Mean total number of parameter estimatesc. Mean total number of cases in a studyd. Mean total number of variables5. Studying economics of nonprofit information institutions is the same as studying for-profit organizations except fora. Improving organizations customer market sharesb. Improving organizational lucrativenessc. Improving organizational efficiency" find the taylor series for f(x) centered at the given value of a. [assume that f has a power series expansion. do not show that rn(x) 0.] f(x) = 6 x , a = 4 As demonstrated in class, for the purposes of estimating capacity requirements, to calculate labor requirements, one does not need to knowa) Number of workers required to staff each machine (piece of equipment)b) Hourly wage per employeec) Capacity of each machine or piece of equipment (in units) per unit timed) Number of machines (pieces of equipment availablee) Product line forecast n units) per time period Fluorine reacts with zinc chloride. Give the full and half reactions. Economists represent a good/service which has a fixedsize/amount with a vertical (linear) supply curveno matter how themarket price may change, the amount of the good does not. A commonexample i the nurse is monitoring the status of a client's fat emulsion (lipid) infusion and notes that the infusion is 1 hour behind. which action would the nurse Instructions: Symbols have their usual meanings. Attempt any Six questions but Question 1 is compulsory. All questions carry equal marks. Q. (1) Mark each of the following statements true or false (T for true and F for false): (i) For a bounded function f on [a,b], the integrals afdr and ffdr always exist; (ii) If f, g are bounded and integrable over [a, b], such that fg then ffdx f gdr when b a; (iii) The statement f fdr exists implies that the function f is bounded and integrable on [a.b]: (iv) A bounded function f having a finite number of points of discontinuity on [a, b], is Riemann integrable on [a, b]; (v) A sequence of functions defined on closed interval which is not pointwise convergent can be uniformly convergent. a) [3 marks]: Construct a slicing tree and matrix for the following layout given below: 3 3 8 1 5 6 4 4 7 2 b) [3 marks]: Construct an alternative slicing tree for the layout given in part (a) Below are some scores from students in an MBA program who had to take a Statistics course in college. Use it to answer the questions that follow. Numerical answers only. 4,0, 11, 36, 28, 47, 40, 44, 44, 39, 33, 33, 32, 48, 34, 38, 27, 40, 37, 41, 42, 38, 48, 43, 35, 37, 37, 25 a. Find the 60th percentile score = b. Find the 90th percentile score = c. Find the score at the 50th percentile d. Find the percentile for a score of 33 - percentile e. How many people scored above the 92nd percentile? Stephanie purchased 100 shares of Novell stock for $12 a share on September 10, 2019. On August 28, 2020, the price had fallen to $9. Concerned that the price might decline further, Stephanie sold all her shares that day. She later regretted this move, and on September 24, 2020, she repurchased the stock when it was $11 a share. What is Stephanie's 2020 capital gain or loss on these transactions? No gain or loss. $100 short-term loss. $300 short-term loss. O $300 long-term loss. The average cost in terms of quantity is given as C(q) =q-3q +100, the margina profit is given as MP(q) = 3q - 1. Find the revenue. (Hint: C(q) = C(q)/q ,R(0) = 0) the nurse is preparing to document care provided to the client during the day shift. the nurse documents that the client experienced an increased pain level while ambulating which required an extra dose of pain medication; took a shower; visited with family; and ate a small lunch. which information is important to include during the oral end-of-shift or handoff reporting? select all that apply. "Bob, a representative at Company XYZ, headquartered in the USA has been tasked with helping XYZ expand abroad to capitalize on the emerging economies. However, bribery, kickbacks and corruption are commonplace. Bob has been told numerous times that to be successful he should expect to pay such necessary fees. "When in Rome do as the Romans" has been echoed to him."What would you do if you were Bob?Outline the issues at hand. Step-by-step Error Analysis Section 0.5: Exponents and Power FunctionsIdentify each error, step-by-step, that is made in the following attempt to solve the problem. I am NOT asking you for the correct solution to the problem. Do not just say the final answer is wrong. Go step by step from the beginning. Describe what was done incorrectly (if anything) from one step to the next. Explain what the student did incorrectly and what should have been done instead; not just that an error was made. After an error has been made, the next step should be judged based on what is written in the previous step (not on what should have been written). Some steps may not have an error.Reply to 2 other students responses in your group. Confirm the errors the other student identified correctly, add any errors the student did not identify, and explain any errors the student listed that you disagree with. You must comment on each step.The Problem: A corporation issues a bond costing $600 and paying interest compounded quarterly. After 5 years the bond is worth $800. What is the annual interest rate as a percent rounded to 1 decimal place?A partially incorrect attempt to solve the problem is below: (Read Example 8, page 38 of the textbook for a similar problem with a correct solution.)Steps to analyze:A=P1+rnnt600=8001+r420600=800+200r20600-800=200r20-200=200r20400=r20r=400r = 20The annual interest rate is 20.0%Grading:Part 1: (63 points possible)7 points for each step in which the error is accurately identified with a correct explanation of what should have been done (or correctly stated no error)4 points for each step in which the error or explanation is only partially correct.5% per day late penaltyPart 2: (37 points possible)Up to 37 points for a complete response to 2 studentsUp to 18 points for a complete response to only 1 student5% per day late penalty