using the following portion of the activity series for oxidation half-reactions, determine which combination of reactants will result in a reaction. na(s) → na (aq) e- cr(s) → cr3 (aq) 3e-

Answers

Answer 1

A reaction will occur between sodium (Na) and chromium (Cr) ions. Na is more likely to get oxidized, it can reduce Cr3+ to Cr(s). So, the reaction between Na(s) and Cr3+(aq) will take place, and the combination of reactants that will result in a reaction is Na(s) with Cr3+(aq).


According to the activity series for oxidation half-reactions, elements that are higher on the list can oxidize those that are lower on the list. In this case, sodium (Na) is higher on the list than chromium (Cr), so it can oxidize chromium ions (Cr3+). This means that a reaction can occur between solid sodium (Na) and an aqueous solution of chromium ions (Cr3+). The half-reactions for this reaction would be:
Na(s) → Na+(aq) + e- (oxidation half-reaction)
Cr3+(aq) + 3e- → Cr(s) (reduction half-reaction)

In the given activity series, we have two half-reactions:
1. Na(s) → Na+(aq) + e-
2. Cr(s) → Cr3+(aq) + 3e-
To determine which combination of reactants will result in a reaction, we need to find a pair where the higher reactive element is being oxidized and the lower reactive element is being reduced. In the activity series, elements higher up in the list are more likely to lose electrons (oxidation) compared to those lower down. Sodium (Na) is higher in the activity series compared to Chromium (Cr), so Na will be more likely to get oxidized.
To know more about reaction visit:

https://brainly.com/question/28984750

#SPJ11


Related Questions

Calculate the hydrogen ion concentration for an aqueous solution that has a ph of 3.45. 1. 0.54 m.

Answers

The hydrogen ion concentration ([H+]) is a measure of the acidity of an aqueous solution. It represents the concentration of hydrogen ions, which are positively charged ions formed when water molecules (H2O) dissociate into their component parts: hydrogen ions (H+) and hydroxide ions (OH-). In pure water, the concentration of [H+] is equal to the concentration of [OH-], and both are very small, approximately 1 x [tex]10^{-7 }[/tex]M, at 25°C.

The pH scale is a logarithmic scale that expresses the acidity or basicity of a solution. It ranges from 0 to 14, where a pH of 7 is considered neutral, a pH below 7 is acidic, and a pH above 7 is basic.

The pH of a solution can be calculated from the [H+] using the equation pH = -log[H+].

In the case of the given solution with a pH of 3.45, the [H+] is 3.55 x [tex]10^{-4 }[/tex]M, indicating that the solution is acidic. This means that there are more hydrogen ions than hydroxide ions in the solution, and the pH is lower than 7.

The concentration of a solution is typically expressed in units of molarity (M), which is defined as the number of moles of solute per liter of solution.

The molarity of a solution is directly proportional to the number of particles present, and can be used to calculate other properties of the solution, such as its density or osmotic pressure.

In summary, the hydrogen ion concentration is a fundamental property of aqueous solutions that influences their acidity and pH.

It is related to the molarity of the solution, which is a measure of the number of solute particles present per unit volume.

To know more about hydrogen ion refer here

https://brainly.com/question/12845664#

#SPJ11

Explain how delta T would be affected if a greater amount of surrounding solvent (water) is used, assuming the mass of salt remains constant? b. Explain how q_reaction would be affected if a greater amount of surrounding solvent (water) is used? Explain. If the following enthalpies are known: A + 2B rightarrow 2C + D delta H = -95 kJ B + X rightarrow C delta H = +50kJ What is delta H for the following reaction? A rightarrow 2X + D

Answers

ΔH for the reaction A → 2X + D is +5 kJ.

a. If a greater amount of surrounding solvent (water) is used, the delta T will decrease.

This is because the specific heat capacity of water is much higher than the solute, so a greater amount of water will absorb more heat for a given temperature change, resulting in a smaller delta T.

b. The amount of surrounding solvent (water) used does not affect [tex]q_{reaction[/tex]. This is because [tex]q_{reaction[/tex] is a function of the amount of heat released or absorbed by the chemical reaction, and not the amount of surrounding solvent.

To determine ΔH for the reaction A → 2X + D, we can use the Hess's Law. We can add the two given reactions in such a way that the desired reaction is obtained.

A + 2B → 2C + D,

ΔH = -95 kJ

B + X → C,

ΔH = +50 kJ

Multiplying the second equation by 2 gives:

2B + 2X → 2C,

ΔH = +100 kJ

Now we can cancel out C from both reactions, which gives us:

A + 2B + 2X → D,

ΔH = -95 kJ + (+100 kJ)

    = +5 kJ

Therefore, ΔH for the reaction A → 2X + D is +5 kJ.

To know more about surrounding solvent refer here

brainly.com/question/12568957#

#SPJ11

upon analysis, the mole ratio between al3 and c2o42- in the compound was found to be 1 to 2. what is a tentative formula for the compound?

Answers

Based on the given mole ratio of 1:2 between Al³⁺and C²O⁴²⁻, in the compound was found to be 1 to 2. The tentative formula for the compound is  Al(C²O)3/2.

We can assume that the compound contains one Al³+ ion and two C²O⁴²- ions. To determine the tentative formula, we need to find the chemical formula that contains these ions in this ratio.  First, we need to determine the charges of the ions involved. Al³⁺ has a charge of +3, while C²O⁴²- has a charge of -4. To balance the charges, we need two C²O⁴²- ions for every Al³+ ion, giving us the formula Al²(C²O⁴)3.

However, we need to simplify this formula by dividing all the subscripts by their greatest common factor, which is 2. This gives us the tentative formula Al(C²O⁴)1.5, which we can write as Al(C²O⁴)3/2. Therefore, the tentative formula for the compound with a mole ratio of 1:2 between Al³+ and C²O⁴²- is Al(C²O⁴)3/2.

Learn more about compound here:

https://brainly.com/question/14782984

#SPJ11

How many grams of magnesium chloride must be added to 766 mL of water to create a solution with an anion concentration equal to 0.898 M

Answers

To create a solution with an anion concentration equal to 0.898 M, you would need to add 58.32 grams of magnesium chloride to 766 mL of water.

To calculate the grams of magnesium chloride needed, we first need to determine the molar mass of magnesium chloride, which is 95.21 g/mol. We then convert the volume of water to liters by dividing 766 mL by 1000, giving us 0.766 L. Next, we use the formula for molarity, which is Molarity (M) = moles of solute / volume of solution in liters. Rearranging the formula, we find that moles of solute = Molarity × volume of solution in liters. Plugging in the values, we get moles of solute = 0.898 M × 0.766 L = 0.688668 mol.

Finally, we multiply the moles of solute by the molar mass to get the grams of magnesium chloride needed: 0.688668 mol × 95.21 g/mol ≈ 58.32 grams. Therefore, approximately 58.32 grams of magnesium chloride must be added to the water to create the desired solution.

To learn more about  molarity click here

brainly.com/question/13386686

#SPJ11

Benzene referring to your model, explain why there is no directionality for a substituent group coming off of benzene.

Answers

Benzene is a planar molecule with a delocalized π electron system. This means that the electrons are distributed over the entire molecule and there is no localized π bond. As a result, the substituent group can bond to any of the six carbon atoms in the ring and the electrons will be delocalized throughout the entire ring. Therefore, there is no directionality for a substituent group coming off of benzene. This is why benzene is often used as a reference molecule in organic chemistry.
Hi! I'd be happy to help you with your question. In reference to the benzene model, there is no directionality for a substituent group coming off of benzene because of the following reasons:

1. Benzene is a planar, hexagonal molecule with six carbon atoms connected by alternating single and double bonds.
2. The carbon atoms in benzene are sp2 hybridized, which means that they have three hybrid orbitals (one for each of the three sigma bonds with adjacent carbon atoms and hydrogen) and one unhybridized p orbital.
3. The p orbitals of adjacent carbon atoms overlap to form a delocalized pi electron cloud above and below the plane of the benzene ring. This delocalized pi cloud is responsible for the aromatic character and stability of benzene.
4. Since the electrons in the pi cloud are delocalized, there is no localized double bond or single bond in benzene. This means that when a substituent group is attached to a carbon atom in benzene, it doesn't change the electron density in any specific direction, resulting in a lack of directionality for the substituent group.

In summary, there is no directionality for a substituent group coming off of benzene because of its planar structure, sp2 hybridization, and the delocalization of pi electrons throughout the ring.

There is no directionality for a substituent group coming off of benzene because the delocalized electrons create a uniform electron distribution around the ring. This causes the substituent group to interact with the entire benzene ring rather than a specific carbon atom, leading to the lack of directionality for the substituent group.

The reason why there is no directionality for a substituent group coming off of benzene is due to the delocalization of electrons within the benzene ring. The six carbon atoms in the ring are sp2 hybridized, which means they have three electron domains arranged in a trigonal planar geometry. This allows for the formation of a pi-bond system, where the p orbitals of each carbon atom overlap to create a continuous ring of electron density.
This delocalized pi-bond system is responsible for the unique properties of benzene, including its stability and lack of reactivity towards electrophilic attack.
The electrons in the pi-bond system are delocalized, there is no specific location or orientation for the substituent group to interact with. Unlike in a typical alkane or alkene molecule, where the substituent group is attached to a specific carbon atom with a defined spatial orientation, in benzene the substituent group can interact with any of the carbon atoms in the ring. This lack of directionality is due to the symmetrical nature of the pi-bond system and the delocalization of electrons throughout the ring.
The delocalized pi-bond system in benzene is responsible for the lack of directionality for a substituent group coming off of the ring. Because the pi-electrons are spread out across the ring, the substituent group can interact with any carbon atom in the ring without a specific orientation or location.
Benzene is an aromatic compound with a planar, hexagonal ring structure consisting of alternating single and double carbon-carbon bonds. Due to its resonance structure, the electrons in the double bonds are delocalized over the entire ring, resulting in evenly distributed electron density.

To know more about electron visit:-

https://brainly.com/question/12001116

#SPJ11

Distinguish between Rayleigh and Raman scattering of photons. Rayleigh Raman elastic inelastic bulk of scattered photons small fraction of scattered photons scattered and incident photons have same energy and wavelength scattered and incident photons have different energy and wavelength high intensity weak intensityHow does the timescale for scattering compare to the timescale for fluorescence? scattering is 10^15 to 10^17 faster there is no difference scattering is 10^7 to 10^11 faster scattering is 10^ 7 to 10^11 slower scattering is 10^15 to 10^17 slower

Answers

Rayleigh and Raman scattering are two types of scattering of photons that occur when light interacts with matter. In Rayleigh scattering, the incident photons interact with molecules or atoms in the medium and are scattered in all directions, with the bulk of scattered photons having the same energy and wavelength as the incident photons.

This process is elastic and the scattered and incident photons have the same energy and wavelength. On the other hand, in Raman scattering, a small fraction of the incident photons interacts with the molecules or atoms in the medium and undergo a change in energy and wavelength, resulting in the scattered photons having different energy and wavelength than the incident photons. This process is inelastic and typically has a weaker intensity compared to Rayleigh scattering.

The timescale for scattering is much faster than that for fluorescence. Scattering occurs on the timescale of 10^15 to 10^17 seconds, while fluorescence occurs on the timescale of 10^7 to 10^11 seconds. This is because scattering involves the interaction of photons with the medium and does not involve the excitation and de-excitation of electrons, which is the process responsible for fluorescence. As a result, scattering occurs much more rapidly than fluorescence.

In summary, Rayleigh and Raman scattering are two types of scattering of photons that occur when light interacts with matter. Rayleigh scattering is elastic and results in the bulk of scattered photons having the same energy and wavelength as the incident photons, while Raman scattering is inelastic and results in a small fraction of scattered photons having different energy and wavelength than the incident photons. The timescale for scattering is much faster than that for fluorescence, as scattering does not involve the excitation and de-excitation of electrons.

To know more about Rayleigh and Raman click here:

https://brainly.com/question/30694232

#SPJ11




Which of the circled hydrogen atoms is the most acidic?

Answers

The hydrogen atom circled in the molecule with the most stable conjugate base will be the most acidic.

In organic chemistry, acidity is determined by the stability of the resulting conjugate base. The more stable the conjugate base, the more acidic the hydrogen atom. Stability can be influenced by factors such as resonance, electronegativity, and inductive effects.

When comparing the circled hydrogen atoms, we need to consider the stability of the corresponding conjugate bases. If one hydrogen atom is part of a molecule with a more stable conjugate base, it will be more acidic. Factors such as resonance and electron delocalization can enhance stability.

To identify the most acidic hydrogen atom, we should analyze the molecular structure and any potential resonance effects. Additionally, we can consider the electron-withdrawing or electron-donating groups present near the circled hydrogen atoms, as these can influence the acidity. Ultimately, the hydrogen atom in the molecule with the most stable conjugate base, due to resonance or other stabilizing effects, will be the most acidic.

Learn more about conjugate base here:

https://brainly.com/question/30086613

#SPJ11

In the Lab, you did the measurement of graduated



cylinder measurement. Your volume read is 5. 67ml, but the actual acceptable measurement should be: 5. 17ml. What is y percent error in your measurement data? 20PTS



Please show you the steps with the calculation formula

Answers

To calculate the percent error in your measurement data, you can use the following formula Percent Error = (|Experimental Value - Accepted Value| / Accepted Value) × 100.

In this case, the experimental value is 5.67 mL, and the accepted value is 5.17 mL.

Let's plug in the values into the formula:

Percent Error = (|5.67 mL - 5.17 mL| / 5.17 mL) × 100

Now let's calculate the numerator:

|5.67 mL - 5.17 mL| = 0.5 mL

Now we can substitute this value into the formula:

Percent Error = (0.5 mL / 5.17 mL) × 100

Calculating the division:

Percent Error = 0.0966 × 100

Percent Error = 9.66%

Therefore, the percent error in your measurement data is approximately 9.66%.

The existence or absence of a genuine zero point, which impacts the types of calculations that may be done with the data, is the primary distinction between data measured on a ratio scale and data recorded on an interval scale.

Learn more about measurement data here

https://brainly.com/question/31809255

#SPJ11

6. Give the concentration of each ion in a solution containing 0.25 M Na3PO4 and 0.10 M NaCl. LOREM 0 01

Answers

The solution contains 0.85 M Na+ ions, 0.25 M PO43- ions, and 0.10 M Cl- ions.

The concentration of each ion in a solution containing 0.25 M Na3PO4 and 0.10 M NaCl can be determined by breaking down the compounds into their individual ions. Na3PO4 dissociates into three Na+ ions and one PO43- ion, while NaCl dissociates into one Na+ ion and one Cl- ion.

Therefore, the concentration of Na+ ions in the solution is:

(3 x 0.25 M Na3PO4) + (1 x 0.10 M NaCl) = 0.85 M

The concentration of PO43- ions in the solution is:

1 x 0.25 M Na3PO4 = 0.25 M

The concentration of Cl- ions in the solution is:

1 x 0.10 M NaCl = 0.10 M

In summary, the solution contains 0.85 M Na+ ions, 0.25 M PO43- ions, and 0.10 M Cl- ions.

Know more about Molarity here:

https://brainly.com/question/8732513

#SPJ11

The rate constant for the second order reaction: 2NO2------> 2NO + O2 is 0.54m^-1s^-1 at 300 degrees C. How long in seconds would it take for the concentration of NO2 to decrease from 0.62 M to 0.28 M ?

Answers

It would take approximately 2.29 seconds for the concentration of NO2 to decrease from 0.62 M to 0.28 M at 300 degrees Celsius.

To calculate the time it takes for the concentration of NO2 to decrease from 0.62 M to 0.28 M for a second order reaction, you can use the integrated rate law formula:

1/[NO2]t - 1/[NO2]0 = kt

where [NO2]t is the final concentration (0.28 M), [NO2]0 is the initial concentration (0.62 M), k is the rate constant (0.54 m^-1s^-1), and t is the time in seconds.

1/0.28 - 1/0.62 = (0.54 m^-1s^-1) * t

Now solve for t:

t = (1/0.28 - 1/0.62) / (0.54 m^-1s^-1)

t ≈ 2.29 s

So, it would take approximately 2.29 seconds for the concentration of NO2 to decrease from 0.62 M to 0.28 M at 300 degrees Celsius.

To learn more about constant, refer below:

https://brainly.com/question/31730278

#SPJ11

predict the major product formed by 1,4-addition of hcl to 2-methyl-2,4-hexadiene.

Answers

The major product formed by 1,4-addition of HCl to 2-methyl-2,4-hexadiene would be 1-chloro-3-methylcyclohexene.

This is because the HCl adds to the conjugated system of the diene in a 1,4-manner, resulting in a cyclic intermediate.

The mechanism of this reaction involves the formation of a carbocation intermediate, which can then be attacked by the chloride ion. The intermediate then undergoes a hydride shift to form a more stable tertiary carbocation, which then reacts with the HCl to form the final product. The chlorine atom adds to the carbon that is more substituted, resulting in the formation of 1-chloro-3-methylcyclohexene as the major product.

The addition of HCl to 2-methyl-2,4-hexadiene occurs through Markovnikov addition, which means that the hydrogen (H) from HCl adds to the carbon atom with fewer hydrogen atoms, while the chloride (Cl) adds to the carbon atom with more hydrogen atoms. In this case, the H from HCl adds to the second carbon from the left, while the Cl adds to the fourth carbon from the left.

The product obtained after the addition of HCl is a 1,4-dihaloalkane. The double bonds of the 2-methyl-2,4-hexadiene are broken, and two halogen atoms are added to the carbon atoms at positions 2 and 4. Since only one molecule of HCl is added, only one of the two double bonds undergoes addition, leading to the formation of a monohaloalkane.

Therefore, the major product formed by 1,4-addition of HCl to 2-methyl-2,4-hexadiene is 2-chloro-3-methylpentane.

To get to know more about HCl addition visit: https://brainly.com/question/31591920

#SPJ11

Consider the interval 0≤x≤L. What is the second derivative, with respect to x, of the wave function ψn(x) in this interval? Express your answer in terms of n, x, L, and C as needed.d2dx2ψn(x) =

Answers

The second derivative of the wave function ψn(x) in the interval 0≤x≤L is given by the expression:
d2/dx2 ψn(x) = -C (nπ/L)^2 cos(nπx/L).


To find the second derivative of the wave function ψn(x), we need to first know what the wave function represents. In quantum mechanics, the wave function describes the probability amplitude of a particle's position in space. It is a mathematical representation of the wave-like behavior of a particle.
The wave function ψn(x) represents the probability amplitude of a particle in the nth energy state in the interval 0≤x≤L. The second derivative of the wave function with respect to x gives us information about the curvature of the wave.
To find the second derivative, we need to differentiate the wave function twice with respect to x. The first derivative of the wave function ψn(x) is given by:
d/dx ψn(x) = C sin(nπx/L)
Where C is a constant that depends on the normalization of the wave function. The second derivative is given by:
d2/dx2 ψn(x) = -C (nπ/L)^2 cos(nπx/L)
This expression tells us that the second derivative of the wave function is proportional to the negative of the square of the wave number (nπ/L)^2 and the cosine of the position x. This means that the wave function has a maximum curvature at the points where the cosine function equals 1 or -1. These points correspond to the nodes of the wave function.

To know more about wave visit:

brainly.com/question/31744195

#SPJ11

calculate the amount of heat necessary to raise the temperature of 12.0 g of water from 15.4°c to 29.5°c. the specific heat of water = 4.18 j/g·°c.

Answers

To calculate the amount of heat necessary to raise the temperature of water, we can use the formula:

Q = m * c * ΔT

where Q is the amount of heat required, m is the mass of the water, c is the specific heat of water, and ΔT is the change in temperature.

Substituting the given values, we get:

Q = 12.0 g * 4.18 J/g·°C * (29.5°C - 15.4°C)

Q = 12.0 g * 4.18 J/g·°C * 14.1°C

Q = 706.9 J

Therefore, the amount of heat necessary to raise the temperature of 12.0 g of water from 15.4°C to 29.5°C is 706.9 J.

For more questions on amount of heat: https://brainly.com/question/31296368

#SPJ11

The amount of heat necessary to raise the temperature of 12.0 g of water from 15.4°C to 29.5°C is 706.104 joules.

To calculate the amount of heat necessary to raise the temperature of water from one temperature to another, we use the formula:

q = m * c * ΔT

where q is the amount of heat required (in joules), m is the mass of the substance (in grams), c is the specific heat capacity of the substance (in joules per gram degree Celsius), and ΔT is the change in temperature (in degrees Celsius).

In this case, we are given the mass of water (12.0 g), the specific heat capacity of water (4.18 J/g·°C), and the initial and final temperatures of the water (15.4°C and 29.5°C, respectively).

So, substituting these values into the formula, we get:

q = 12.0 g * 4.18 J/g·°C * (29.5°C - 15.4°C)

q = 12.0 g * 4.18 J/g·°C * 14.1°C

q = 706.104 J

To learn more about heat

https://brainly.com/question/1429452

#SPJ4

Which species will reduce Ag+ but not Fe2+?
1. Cr
2. H2
3. V
4. Pt
5. Au

Answers

Out of the given species, only H2 will reduce Ag+ but not Fe2+.

This is because Ag+ has a higher reduction potential than H+ in the standard reduction potential table, so H2 can reduce Ag+ to form Ag solid. On the other hand, Fe2+ has a lower reduction potential than H+, so H2 cannot reduce Fe2+ to form Fe solid. The other species listed, including Cr, V, Pt, and Au, all have higher reduction potentials than H+, so they are capable of reducing Fe2+ to form Fe solid, as well as reducing Ag+ to form Ag solid. Therefore, the only species that will reduce Ag+ but not Fe2+ is H2.

To know more about H2 visit:

https://brainly.com/question/31647217

#SPJ11

Name: CH 103 - Introduction to Inorganic and Organic Chemistry Exp. 14 -Solutions and solubility INSTRUCTIONS 1. Print out these instructions and the report sheet. 2. Read the Background/Introduction section of the tab manual and watch the introductory video 3. Watch the video attached under experiment 4. Study the report sheet below and answer the three questions attached. REPORT SHEET Electrical Conductivity Solute Observation Observation 0 O 1 5 Distilled Water Tap Water 1 M Naci 0.1 M Naci Solute 0.1 M sucrose IMHCI 0.1 M HCI Glacial Acetic Acid 0.1 M Acetic Acid 5 4 4 0 1 M sucrose 0 1 Solubility Solvent Ethanol Solute Water Acetone S SS SS 1 Naci Sugar Napthalene S 1 SS 5 SUPPLEMENTARY QUESTIONS 1. Why is naphthalene more soluble in acetone than in water? 2. Why does HCL make the light bulb glow brighter than acetic acid of the same concentration? 3. A solute and a solvent are mixed together. How could you predict if the two items would form a solution?

Answers

Naphthalene is more soluble in acetone than water because it is a nonpolar hydrocarbon compound consisting of two fused benzene rings. Acetone is a polar solvent, whereas water is a highly polar solvent.

Polar solvents have a net dipole moment due to the presence of polar bonds, while nonpolar solvents do not have a net dipole moment.

When a solute dissolves in a solvent, it must overcome the intermolecular forces that hold the solvent molecules together. In general, a solute dissolves in a solvent if the intermolecular forces between the solute and the solvent are similar in strength to the intermolecular forces between the solvent molecules themselves.

In the case of naphthalene and acetone, the nonpolar naphthalene molecules can dissolve in the polar acetone solvent due to the presence of temporary dipole-induced dipole interactions between the nonpolar naphthalene molecules and the polar acetone molecules. These interactions, also known as London dispersion forces, are weak intermolecular forces that arise from the fluctuations in electron density within molecules.

In contrast, naphthalene is much less soluble in water, which is a polar solvent with strong hydrogen bonding between the water molecules. The nonpolar naphthalene molecules cannot easily overcome the strong hydrogen bonds between water molecules to dissolve in water. In addition, the polar water molecules do not form favorable interactions with the nonpolar naphthalene molecules.

In summary, naphthalene is more soluble in acetone than in water because acetone is a polar solvent that can form weak intermolecular interactions with the nonpolar naphthalene molecules, whereas water is a highly polar solvent that cannot form favorable interactions with the nonpolar naphthalene molecules due to the strength of its hydrogen bonding.

To learn more about Naphthalene refer here:

https://brainly.com/question/23779998

#SPJ11

The following unbalanced reaction describes the salicylic acid synthesis: C8H8O3 + NaOH + H2SO4 → C7H6O3 + Na2SO4 + CH3OH + H2O a. Given that the density of methyl salicylate is 1.18 g/mL, calculate the moles of methyl salicylate used during the synthesis. b. Use the volume and concentration of sodium hydroxide to calculate the mom sodium hydroxide added to the reaction mixture. c. Use the volume and concentration of sulfuric acid to calculate the moles of sulfuric acid added to the reaction mixture. d. Determine the limiting reactant.

Answers

A. To calculate the moles of methyl salicylate used during the synthesis, we first need to determine the mass of methyl salicylate produced. From the balanced equation, we can see that one mole of salicylic acid produces one mole of methyl salicylate.

B. To calculate the moles of sodium hydroxide added to the reaction mixture, we need to use its volume and concentration. The balanced equation shows that one mole of salicylic acid reacts with one mole of sodium hydroxide. Therefore, the moles of sodium hydroxide added will be equal to the moles of salicylic acid used.

We can calculate the moles of salicylic acid used as described in part (a), and then use the volume and concentration of sodium hydroxide to calculate the moles of sodium hydroxide added:

moles of sodium hydroxide = volume of sodium hydroxide x concentration of sodium hydroxide

C. To calculate the moles of sulfuric acid added to the reaction mixture, we can use its volume and concentration. The balanced equation shows that one mole of salicylic acid reacts with one mole of sulfuric acid.

Therefore, the moles of sulfuric acid added will be equal to the moles of salicylic acid used.

We can calculate the moles of salicylic acid used as described in part (a), and then use the volume and concentration of sulfuric acid to calculate the moles of sulfuric acid added:

moles of sulfuric acid = volume of sulfuric acid x concentration of sulfuric acid

D. To determine the limiting reactant, we need to compare the number of moles of each reactant used to the stoichiometric coefficients in the balanced equation. The reactant that is used up completely (i.e. has the smallest number of moles relative to its stoichiometric coefficient) is the limiting reactant.

For example, if we find that we used 0.05 moles of salicylic acid and 0.08 moles of methanol, we can see from the balanced equation that salicylic acid is the limiting reactant because it has a stoichiometric coefficient of 1, while methanol has a coefficient of 0.5.

The moles of methyl salicylate produced will be equal to the moles of salicylic acid used.

Assuming that we know the mass of salicylic acid used, we can convert it to moles using its molar mass:

moles of salicylic acid = mass of salicylic acid / molar mass of salicylic acid

Once we know the moles of salicylic acid used, we can calculate the moles of methyl salicylate produced.

moles of methyl salicylate = moles of salicylic acid

To know more about methyl salicylate refer here :-

https://brainly.com/question/29313137#

#SPJ11

A solution is made by dissolving 45.5 g of Ba(NO₂)₂ in 500.0 mL of water. Using Kb(NO₂⁻) = 2.2 × 10⁻¹¹, determine the pH of the solution.

Answers

The pH of the solution is approximately 8.74.

Ba(NO₂)₂ dissociates in water to produce Ba²⁺ and 2 NO₂⁻ ions. The NO₂⁻ ion can act as a weak base and undergo hydrolysis to produce OH⁻ ions:

NO₂⁻ + H₂O ⇌ HNO₂ + OH⁻

The equilibrium constant for this reaction is given by Kb(NO₂⁻) = [HNO₂][OH⁻] / [NO₂⁻]. We are given the mass of Ba(NO₂)₂ and the volume of water, so we can calculate the molarity of the solution: moles of Ba(NO₂)₂ = 45.5 g / 167.327 g/mol = 0.272 mol

Molarity = 0.272 mol / 0.500 L = 0.544 M

Since each Ba(NO₂)₂ molecule produces 2 NO₂⁻ ions, the initial concentration of NO₂⁻ is twice the molarity of Ba(NO₂)₂:

[NO₂⁻]i = 2 * 0.544 M = 1.088 M

At equilibrium, some of the NO₂⁻ ions will have reacted with water to form HNO₂ and OH⁻ ions. Let x be the concentration of OH⁻ ions produced by the hydrolysis of NO₂⁻. Then the concentration of HNO₂ is also x, and the concentration of NO₂⁻ remaining is [NO₂⁻]i - x.

The equilibrium constant expression for the hydrolysis reaction can be written as: Kb = [HNO₂][OH⁻] / [NO₂⁻] = x² / ([NO₂⁻]i - x)

Substituting the given values, we get: 2.2 × 10⁻¹¹ = x² / (1.088 - x). Solving for x using the quadratic formula, we get: x = 5.45 × 10⁻⁶ M

The concentration of OH⁻ ions is 5.45 × 10⁻⁶ M, so the pOH of the solution is: pOH = -log(5.45 × 10⁻⁶) = 5.26. Since pH + pOH = 14, the pH of the solution is: pH = 14 - pOH = 8.74

Therefore, the pH of the solution is approximately 8.74.

Know more about hydrolysis here

https://brainly.com/question/12237250#

#SPJ11

determine the ph in a 0.667 m nah solution. 0.12 14.18 13.82 0.18 13.88

Answers

The solution to determine the pH in a 0.667 M NaOH solution is to use the formula for calculating pH, which involves calculating the pOH first and then solving for pH using the equation pH + pOH = 14. The pH in this case is 13.82.

To determine the pH in a 0.667 M NaOH solution, you need to use the formula for calculating pH. First, calculate the pOH using the equation: pOH = -log[OH-]. In this case, [OH-] is 0.667 M, so pOH = -log(0.667) = 0.18.

Next, use the equation pH + pOH = 14 to calculate the pH. Rearrange the equation to solve for pH: pH = 14 - pOH.

Substituting the pOH value of 0.18, we get pH = 14 - 0.18 = 13.82. Therefore, the pH of a 0.667 M NaOH solution is 13.82.

In conclusion, the solution to determine the pH in a 0.667 M NaOH solution is to use the formula for calculating pH, which involves calculating the pOH first and then solving for pH using the equation pH + pOH = 14. The pH in this case is 13.82.

To know more about solution click here:

https://brainly.com/question/30665317

#SPJ11

.Identify the characteristic signals that you would expect in the diagnostic region of an IR spectrum of the following compound. Practice Problem 14.37b1 Identify the characteristic signals that you would expect in the diagnostic region of an IR spectrum of the following compound. Select all that apply. A. O−H
B. Csp −H
C. Cs2 −−H
D. C−C
E. C=O

Answers

In the IR spectrum of the given compound, the characteristic signals you would expect in the diagnostic region are A. O-H and E. C=O.

In an IR spectrum, different functional groups display characteristic signals based on their bond vibrations. For the given compound, the two most diagnostic signals are:

A. O-H: The presence of an O-H group (such as in alcohols or carboxylic acids) generates a strong and broad signal in the range of 3200-3600 cm-1, corresponding to the O-H stretching vibration.

E. C=O: The presence of a C=O group (such as in aldehydes, ketones, or carboxylic acids) generates a strong and sharp signal in the range of 1650-1750 cm-1, corresponding to the C=O stretching vibration.

These two signals are the most characteristic and informative in the diagnostic region of the compound's IR spectrum. Signals B, C, and D do not provide diagnostic information in this case.

To know more about IR spectrum click on below link:

https://brainly.com/question/31379317#

#SPJ11

when explaining chemical reactions to a friend, brianna models a reaction by combining ingredients to make a cake. which type of chemical reaction is brianna most likely explaining?

Answers

Synthesis since chemicals combine together to form a new product that contains them

Final answer:

Brianna is most likely explaining a combination or synthesis reaction when she models a reaction by combining ingredients to make a cake.

Explanation:

Brianna is most likely explaining a combination or synthesis reaction when she models a reaction by combining ingredients to make a cake. In a combination reaction, two or more reactants combine to form a single product. For example, when Brianna combines flour, sugar, eggs, and butter to make a cake batter, a new substance is formed.

Learn more about Chemical Reactions here:

https://brainly.com/question/34137415

#SPJ12

Using a table of E degree values, place sodium, magnesium and silver in the appropriate places in your activity series.

Answers

Sodium (Na) has an E degree value of -2.71, which indicates that it is more reactive than both magnesium (Mg) (-2.37) and silver (Ag) (0.80). Therefore, sodium will be at the top of the activity series, followed by magnesium, and then silver.

The activity series is a list of elements arranged in order of their reactivity, with the most reactive at the top and the least reactive at the bottom. The reactivity of an element is related to its ability to lose or gain electrons. In general, the more easily an element loses electrons, the more reactive it is.

The E degree value, or standard electrode potential, is a measure of an element's tendency to lose or gain electrons. A more negative E degree value indicates a greater tendency to lose electrons and, therefore, a higher reactivity.

In this case, sodium has the most negative E degree value, making it the most reactive of the three metals. Magnesium has a less negative E degree value, indicating that it is less reactive than sodium but more reactive than silver. Finally, silver has a positive E degree value, indicating that it is the least reactive of the three.

Learn more about magnesium here:

https://brainly.com/question/1533548

#SPJ11

the ________ ion has eight valence electrons. a) sc3. b) ti3. c) cr3. d) v3. e) mn3.

Answers

The mn3 ion has eight valence electrons.

Mn3+ ion has eight valence electrons. The element manganese (Mn) has an atomic number of 25, which means it has 25 electrons in total. When it loses three electrons, it forms the Mn3+ ion, which means it has 22 electrons. Mn has five valence electrons, but when it loses three electrons to form Mn3+, it has eight valence electrons. Valence electrons are the outermost electrons in an atom and play a crucial role in chemical bonding. Mn3+ ion has a charge of +3 since it has lost three electrons.
The Scandium (Sc3+) has eight valence electrons. Scandium (Sc) has an atomic number of 21 and is in group 3 of the periodic table. In its neutral state, Sc has 21 electrons. When it forms a +3 ion, it loses three electrons, leaving it with 18 electrons. Since Sc is in the fourth period, it has four electron shells, and the third shell serves as the valence shell. The third electron shell can hold a maximum of 18 electrons, and in the case of Sc3+, it has 8 valence electrons.

To know more about eight valence electrons visit:

https://brainly.com/question/7972997

#SPJ11

The .mn3 ion has eight valence electrons. The manganese ion has eight valence electrons in its outermost energy level.

This is because manganese has five electrons in its 3d orbital and three electrons in its 4s orbital, giving it a total of eight valence electrons. When manganese loses three electrons to become a 3+ ion, it retains the same electron configuration in its outermost energy level. This makes it easier for manganese to form chemical bonds with other atoms, as it is more likely to gain or lose electrons in order to achieve a full outer shell of electrons.

Manganese is a transition metal and is found in many minerals, including pyrolusite, rhodochrosite, and manganite. It is also an essential nutrient for many living organisms, including humans. Manganese plays a key role in many biological processes, including bone formation, wound healing, and the metabolism of carbohydrates and amino acids.

To know more about valence electrons visit

https://brainly.com/question/7972997

#SPJ11

the normal boiling points of toluene, benzene, and acetone are 110°c, 80°c, and 56°c, respectively. which has the lowest vapor pressure at room temperature?

Answers

In the given statement, Acetone has the lowest vapor pressure at room temperature.

To determine which of the three substances has the lowest vapor pressure at room temperature, we need to consider their boiling points. The substance with the higher boiling point will have the lower vapor pressure at a given temperature.
At room temperature (approximately 25°C), all three substances are in their liquid state. Toluene has the highest boiling point at 110°C, followed by benzene at 80°C and acetone at 56°C. Therefore, at room temperature, acetone will have the highest vapor pressure because it has the lowest boiling point.
In conclusion, acetone has the lowest boiling point and therefore the highest vapor pressure at room temperature among the three substances, while toluene has the highest boiling point and the lowest vapor pressure at the same temperature.

To know more about boiling points visit:

brainly.com/question/2153588

#SPJ11

in the electrochemical cell ni(s) | ni²⁺(1 m) || h⁺(1 m) | h₂(1 atm) | pt(s), which change will cause e of the cell to decrease?

Answers

The electrochemical cell given is a standard hydrogen electrode (SHE) coupled with a nickel electrode. Any change that decreases the potential of the nickel electrode or the standard electrode potential of the SHE will cause the E°cell of the cell to decrease.

The notation used to represent the cell is [tex]Ni(s) | Ni^{2} (1 M) || H+(1 M) | H^{2} (1 atm) | Pt(s).[/tex]In this notation, the double vertical lines (||) represent the boundary between the two half-cells of the cell, and the single vertical line (|) represents the phase boundary between the electrode and the electrolyte.

The standard cell potential (E°cell) of the cell is calculated using the Nernst equation: E°cell = E°cathode - E°anode, where E°cathode and E°anode are the standard electrode potentials of the cathode and anode, respectively.

In this case, the nickel electrode is the cathode and the SHE is the anode. The standard electrode potential of the SHE is defined as 0 volts by convention, so the E°cell of the cell is determined solely by the standard electrode potential of the nickel electrode, which is +0.25 volts.

If any change is made to the cell that decreases the potential of the nickel electrode, the E°cell of the cell will decrease. One possible change that could cause this is the addition of a stronger oxidizing agent than Ni2+ to the Ni2+ solution, which would result in the oxidation of nickel ions to nickel atoms.

This would decrease the concentration of Ni2+ ions in solution and shift the equilibrium towards the reactants, Ni(s) and Ni2+(1 M). This would cause the potential of the nickel electrode to decrease, and hence the E°cell of the cell would also decrease.

Another possible change that could decrease the potential of the nickel electrode is the increase in the concentration of H+ ions in the acidic electrolyte. This would increase the activity of the H+ ions and shift the equilibrium towards the reactants, H+ and H2. As a result, the potential of the SHE would decrease, and hence the E°cell of the cell would also decrease.

Know more about electrode potential here:

https://brainly.com/question/17060277

#SPJ11

What was the purpose of the extraction with dichloromethane ?what would have happened if these extractions were omitted "...in basic hydrolysis of benzonitrile

Answers

The purpose of the extraction with dichloromethane in the basic hydrolysis of benzonitrile is to remove impurities and isolate the desired product. Dichloromethane is a common organic solvent that is immiscible with water, making it useful for extracting organic compounds from aqueous solutions.

In this process, dichloromethane is used to extract the product from the reaction mixture, leaving behind any impurities or unreacted starting materials in the aqueous layer. The dichloromethane layer is then separated and evaporated to yield the purified product.

If the extractions with dichloromethane were omitted in the basic hydrolysis of benzonitrile, impurities and unreacted starting materials would remain in the final product, affecting its purity and yield. These impurities could also interfere with any subsequent reactions or analyses of the product.

Additionally, the product may not be able to be separated from the aqueous layer, leading to difficulty in isolating and purifying the product. Therefore, the extraction with dichloromethane is an important step in the overall synthesis of the desired product.

To know more about dichloromethane refer here:

https://brainly.com/question/31810080#

#SPJ11

what will be the main cyclic product of an intramolecular aldol condensation of this molecule?

Answers

This reaction is highly favored, and the resulting cyclic product would be the main product of the reaction. Overall, the condensation of this molecule would result in the formation of a cyclic six-membered ring.

If we are considering an intramolecular aldol condensation of a molecule, the main cyclic product would be a six-membered ring that is formed from the reaction. The aldol condensation is a reaction where two carbonyl compounds, usually an aldehyde and a ketone, react with each other in the presence of a base to form a β-hydroxy carbonyl compound. In the case of an intramolecular aldol condensation, the reaction takes place within the same molecule, resulting in the formation of a cyclic compound. The six-membered ring would be formed by the attack of the hydroxyl group on the carbonyl group, followed by the elimination of a water molecule.

to know more about intermolecular  molecule visit:

brainly.com/question/9828612

#SPJ11

For the following equation insert the correct coefficients that would balance the equation. If no coefficient is need please insert the NUMBER 1.



5. K3PO4 + HCl --> KCl + H3PO4

Answers

The balanced equation is K3PO4 + 3HCl --> 3KCl + H3PO4.

In order to balance the equation, coefficients must be added to each element or molecule in the equation so that the same number of atoms of each element is present on both sides.

Starting with the potassium ions (K), there are 3 on the left side and only 1 on the right side.

Therefore, a coefficient of 3 must be added to KCl to balance the K atoms. Next, the phosphorous ion (PO4) is already balanced with 1 on each side.

Finally, looking at the hydrogen ions (H), there are 3 on the left and 1 on the right, so a coefficient of 3 must be added to HCl to balance the H atoms. This results in the balanced equation: K3PO4 + 3HCl --> 3KCl + H3PO4.

Learn more about atoms here.

https://brainly.com/questions/1566330

#SPJ11

agbr(s) ⇄ ag (aq) br-(aq) ksp = 5.4 x 10-13 ag (aq) 2nh3(aq) ⇄ ag(nh3)2 (aq) kf = 1.7 x 107 calculate the molar solubility of agbr(s) in 5.00 m nh3 solution

Answers

The molar solubility of AgBr in a 5.00 M NH3 solution is the 5.29 x [tex]10^{-2[/tex] M.

The first step is to write the equilibrium equation for the dissolution of AgBr in [tex]NH_3[/tex]:

AgBr(s) + [tex]2NH_3(aq)[/tex] ⇄ [tex]Ag(NH_3)_2[/tex]+(aq) + Br-(aq)

Next, we need to calculate the equilibrium constant for this reaction using the Kf value given as below:

Kf = [Ag[tex][NH_3]^2[/tex]+] [Br-] / [AgBr] [tex][NH_3]^2[/tex]

Rearranging this equation gives:

[AgBr] = Kf [Ag[tex](NH_3)_2[/tex] +] [tex][NH_3]^2[/tex] / [Br-]

Plugging in the given values and solving gives:

[tex][AgBr] = (1.7 * 10^7) [Ag(NH3)2+] [NH3]^2 / 5.4 * 10^{-13} \\[/tex]

[AgBr] = 5.29 * [tex]10^{-2}[/tex] M

Therefore, the molar solubility of AgBr in a 5.00 M [tex]NH_3[/tex] solution is 5.29 * [tex]10^{-2}[/tex] M.

To know more about molar solubility, here

brainly.com/question/28170449

#SPJ4

You wish to plate out zinc metal from a zinc nitrate solution. Which metal, Al or Ni, could you place in the solution to accomplish this?A.Al B.Ni C.Both Al and Ni would work. D.Neither Al nor Ni would work. E.Cannot be determined.

Answers

You wish to plate out zinc metal from a zinc nitrate solution and you're considering whether Al, Ni, or both metals could be used for this purpose. The correct answer is A. Al (Aluminum).

To understand why, we need to consider the reactivity series of metals. The reactivity series is a list of metals arranged in the order of their decreasing reactivity. When it comes to displacement reactions, a more reactive metal can displace a less reactive metal from its salt solution.

In the reactivity series, aluminum is more reactive than zinc, while nickel is less reactive than zinc. So, when you place aluminum (Al) in a zinc nitrate solution, it will displace zinc metal due to its higher reactivity. However, if you place nickel (Ni) in the zinc nitrate solution, no reaction will occur since nickel is less reactive than zinc. Therefore, to plate out zinc metal from a zinc nitrate solution, you should use A. aluminum (Al) as the metal for the displacement reaction.

To learn more about reactivity series  here:

https://brainly.com/question/306704

#SPJ11

If the interview questions are not restricted but do provide an indication as to the direction of the interview, what type of interview is being conducted

Answers

The type of interview being conducted is likely a semi-structured or guided interview. In a semi-structured interview, the interviewer has a general set of topics to cover but allows for flexibility and exploration.

Based on the given information,The indication provided by the interview questions suggests that there is some direction or guidance provided, although not necessarily strict restrictions or a predetermined sequence of questions.

This type of interview allows for a balance between structure and flexibility. It provides the interviewer with a framework to ensure key areas are covered while still allowing for the interview to evolve based on the interviewee's responses and additional probing questions.

The flexibility in the interview questions enables the interviewer to explore specific areas of interest or delve deeper into relevant topics while maintaining some direction in the overall interview process.

To learn more about interviewer click here : brainly.com/question/31208254

#SPJ11

Other Questions
The diffraction grating uses the principle of interference to separate the patterns of light with different wavelengths. We know that interference maxima occur when the path length difference from adjacent slits is an integral number of the wavelengths: d sin = m i, sin = mild sin = y/(L2 + y2)1/2 = mild d is the slit spacing, is the direction from the beam axis to the bright spot at perpendicular distance y, 1 is the wavelength of light, L is the distance from the grating to the scale, m is the order of the diffracted light. Using the instrument we built above we see that we can measure the following: y, L, and d. For this Entire activity, we are only going to evaluate the first order, that is at all times m=1 a) Using the equations above, find an equation for the wavelength of light in terms of quantities we can measure. b) Our diffraction grating is made of lines such that there are 600 lines per millimeter. Knowing this, find the separation (d) between the slits (made by these lines) d= Mrs. Bailey and her daughter appear to have accepted the fact that medical interventions such as chemotherapy will not cure her illness, prolong, or save her life at this point. They have opted to forego further chemotherapy and instead to pursue comfort measures. Carole Bailey is the patient and chemotherapy no longer effectiveThe nurse speaks about this as an option: Calvary Hospital is described by Diane the RN as a place where people go at the end-of-life and they know they will "never ever leave." She describes the hospital as a place where people who are dying can have dignity and can die in a peaceful, beautiful way. Discuss how a hospital such as Calvary varies from an acute care setting in terms of care provided, goals of care, and possible patient expectations when being admitted to Calvary or any similar hospitalOften, we hear nurses say, "I know too much" when it comes to personal medical concerns. At times it may be difficult to separate a nurse's professional perspective from her/ his personal feelings about a patient or situation. Many factors, both conscious and subconscious may contribute to this phenomenon. For example, a patient who reminds the nurse of a family member or friend may affect the therapeutic relationship in some way. Having the same diagnosis as a patient may also be a factor in nurses' ability to separate their personal thoughts from the care they render.Reflect on how you, as a provider, care for patients who may have similar situations, diagnoses, or illnesses as yourself or a significant other. How do you deal with parallel personal issues when caring for patients?Since you have knowledge about these issues how may this affect the decisions you make in life?(Please provide lengthy answers to these questions such as a discussion post, thank you) evaluate the integral by interpreting it in terms of areas. 0 1 1 x2 dx 1 The following reaction is first order in N2O5: N2O5(g)NO3(g)+NO2(g) The rate constant for the reaction at a certain temperature is 0.053/s.Calculate the rate of the reaction when [N2O5]= 5.4102 M .What would the rate of the reaction be at the same concentration as in part a if the reaction were second order? (Assume the same numerical value for the rate constant with the appropriate units.)Zero order? calculate the molarity of potassium ions in a 0.526 m potassium phosphate (k3po4) solution. true or false? children without insurance are more likely to have developmental delays that often contribute to difficulties in education and gaining employment. What are some differences between Salem Poor and Peter Salem? Please explain your answer. Background information: In October 1933, the Reich passed an Editorial Law. According to this law, what was likely to happen to people who published negative articles about the Nazi Party? They would be removed from their position. They would be appointed to the position of editor. They would be elected as Reich Minister for Public Enlightenment. They would be labeled a Schriftleiter. You are given a file that contains movies. Each entry in the file consists of the movie title, release studio, release year and three critic ratings. For instanceIndependence Day: ResurgenceTSG Entertainment20164.3 3.5 2.8Each movie can be stored in a structure with the following typetypedef struct movie_s {char title[100]; // movie titlechar studio[50]; // release studioint year; // release yearfloat ratings[3]; // critic ratings} movie;Write a C program that Asks the user for the name of a movie data file to be imported. Reads the number of movies contained in the file from the first line of the file. Dynamically allocates an array of type movie to store all movies in the file. Loads the data from the file into the array of type movie. To load the data, it uses a function called readMovie. You are free to determine the prototype of this function. Displays the movie titles and release years for each movie in the database (see Sample Execution). Displays all the details of the movie with the highest average rating (see Sample Execution). It uses a function called printMovie to print the data of the movie with the highest average rating. You are free to determine the prototype of this function. Before exiting the code, makes sure that the data file is closed and that all dynamically allocated memory is freed up.Sample File: First integer value in the file indicates the number of movies.4Independence Day: ResurgenceTSG Entertainment20164.3 3.5 2.8Star Wars: The Force AwakensLucasfilm Ltd.20158.2 9.1 8.7National Treasure: Book of SecretsWalt Disney Pictures20074.8 1.1 2.3Iron Man 2Marvel Studios Fairview Entertainment20106.5 5.9 7.2Sample Code Execution: Red text indicates information entered by the user Enter the name of the input file: movies.txtThere are 4 movies in movies.txt1. Independence Day: Resurgence, 20162. Star Wars: The Force Awakens, 20153. National Treasure: Book of Secrets, 20074. Iron Man 2, 2010The movie with the highest average rating isStar Wars: The Force AwakensLucasfilm Ltd.20158.2 9.1 8.7It has an average rating of 8,67. Trigonometrical identities (1/1)-(1/cos2x) 30 points! how can pregnancy affect the reproductive system?please give sources thanks! a toroid has 250 turns of wire and carries a current of 20 a. its inner and outer radii are 8.0 and 9.0 cm. what are the values of its magnetic field at r = 8.1, 8.5, and 8.9 cm? 1. Choose a social issue or movement to research outside of the United States. You may select from the following: Women's rights in Afghanistan Internet access in China Untouchables in India. Children's rights in Africa2. Conduct research to address the following questions: Describe the issue, including key people and organizations active in addressing the cause. What methods and strategies are these groups, or advocates for them, using to gain civil rights? What similarities does this effort share with social movements in the United States? What differences do you recognize? Based on what you know of civil rights movements and the actions these groups are taking, what do you project will happen? Describe how theywill be successful and challenges they will face.. If you first identify what you believe successful means, it will help you frame your presentation. You are not required to explain yourunderstanding of success.3. Create a presentation in your choice of format that includes all the above information. Options include but are not limited to a photo story, podcast,PowerPoint, video, or editorial. Depending on the format you choose, be sure to follow recommended guidelines. As always, consider your audience. For instance, youraudience would not want to read paragraphs of information in a slideshow projected on a screen. In this case, you should incorporate visualrhetoric into your 21st century presentation skills (2 points) what is the systematic (iupac) name of the following molecule? bonus (2 points) what is the final product of the following reaction sequence? o oh o which motor proteins work with polar microtubules to elongate the spindle during anaphase? a flashing yellow light at an intersection means ______________. Find the area of the surface obtained by rotating the curve of parametric equations X = 20 COS^3 theta, y = 20sin^3 theta, 0 lessthanorequalto theta lessthanorequalto pi/2 about they axis. Surface area = the management mindset is driven by irrational thinking. True or False Mrs. Singer owns a profitable sole proprietorship. For each of the following cases, use a Schedule SE, Form 1040, to compute her 2020 self-employment tax and her income tax deduction for such tax. Required: Compute 2020 self-employment tax and the income tax deduction for such tax if Mrs. Singers net profit from Schedule C was $51,458. She had no other earned income. Compute 2020 self-employment tax and the income tax deduction for such tax if Mrs. Singers net profit from Schedule C was $51,458, and she received a $100,000 salary from an employer. Compute 2020 self-employment tax and the income tax deduction for such tax if Mrs. Singers net profit from Schedule C was $51,458, and she received a $145,000 salary from an employer. Using the job order cost system, service organizations are able to bill customers on a weekly or monthly basis, even when the job has not been completed.True or false?