Use this definition to compute the derivative of the function at the given value. f(x)=4x ^2−x, x=3
f'(3)=

Answers

Answer 1

The derivative of the function f(x)=4x²−x is 8x - 1. By substituting x = 3, we get f'(3) = 8(3) - 1 = 23.  The slope of the tangent to the curve of the function at x = 3 is 23. The derivative of a function gives the instantaneous rate of change of the function at a particular point.

Given: f(x) = 4x^2 - x

Now, let's differentiate f(x) with respect to x:

f'(x) = d/dx (4x^2 - x)

Applying the power rule, we get:

f'(x) = 2 * 4x^(2-1) - 1 * x^(1-1)

Simplifying further:

f'(x) = 8x - 1

To find f'(3), substitute x = 3 into the derivative function:

f'(3) = 8(3) - 1

f'(3) = 24 - 1

f'(3) = 23

Therefore, f'(3) = 23.

The derivative of the function f(x) = 4x² - x can be obtained by differentiating the function with respect to x. Using the power rule, the derivative of f(x) is: f'(x) = 8x - 1. By substituting x = 3, we can get the derivative of the function at x = 3 as: f'(3) = 8(3) - 1 = 23, The derivative of a function at a particular value can be obtained by substituting the value of x into the derivative formula of the function. In this case, the function f(x) = 4x² - x has the derivative: f'(x) = 8x - 1.

To get the derivative of the function at x = 3, we need to substitute x = 3 into the derivative formula: f'(3) = 8(3) - 1 = 24 - 1 = 23. Therefore, the derivative of the function f(x) = 4x² - x at x = 3 is 23. This means that the rate of change of the function at x = 3 is 23. The slope of the tangent to the curve of the function at x = 3 is 23. The derivative of a function gives the instantaneous rate of change of the function at a particular point.

To know more about derivatives, visit:

https://brainly.com/question/25324584

#SPJ11


Related Questions

A conditional statement is not logically equivalent to its converse or inverse. But it is logically equivalent to its contrapositive. Use the laws of propositional logic to prove this. The first step of the proof is given. Prove:p → q ≡ ¬q → ¬p

Answers

As we can see from the truth tables, the column for p → q is the same as the column for ¬q → ¬p. Therefore, we can conclude that p → q is logically equivalent to ¬q → ¬p, proving the desired result.

Note: The converse and inverse of a conditional statement are not logically equivalent to the original statement.

To prove that a conditional statement is logically equivalent to its contrapositive, we'll use the laws of propositional logic. Let's start with the given statement:

p → q

To prove its logical equivalence with the contrapositive, ¬q → ¬p, we'll show that they have the same truth table.

First, let's construct the truth table for p → q:

p q p → q

T T T

T F F

F T T

F F T

Next, let's construct the truth table for ¬q → ¬p:

p q ¬p ¬q ¬q → ¬p

T T F F T

T F F T T

F T T F F

F F T T T

As we can see from the truth tables, the column for p → q is the same as the column for ¬q → ¬p. Therefore, we can conclude that p → q is logically equivalent to ¬q → ¬p, proving the desired result.

Note: The converse and inverse of a conditional statement are not logically equivalent to the original statement.

To know more about the word conditional, visit:

https://brainly.com/question/19258518

#SPJ11

i keep getting the answer 510, but it is incorrect. what am i
doing wrong?
Consider the following equation for profit: \[ P=5 X+6 Y \] Subject to: \[ 2 X+Y \leq 120 \] \[ 2 X+3 Y \leq 240 \] \[ X-Y \geq 0 \] \[ X, Y \geq 0 \] Use either graphical method to solve the problem

Answers

The optimal solution for maximizing profit is X = 80, Y = 80, with a profit of 880.

To solve the given problem using the graphical method, we can plot the feasible region determined by the constraints and then identify the optimal solution by maximizing the profit function within that region.

Let's start by graphing the feasible region:

1. Plot the lines determined by the inequalities:

  - First inequality: 2X + Y ≤ 120

  - Second inequality: 2X + 3Y ≤ 240

  - Third inequality: X - Y ≥ 0

2. Convert the inequalities into equations to plot the boundary lines:

  - First inequality: 2X + Y = 120

  - Second inequality: 2X + 3Y = 240

  - Third inequality: X - Y = 0

3. Find the intersection points of the boundary lines:

  - Intersection of the first and third lines: X = 40, Y = 40

  - Intersection of the second and third lines: X = 80, Y = 80

4. Plot the feasible region by shading the area bounded by the lines and satisfying the non-negativity constraints (X ≥ 0, Y ≥ 0).

Now that we have the feasible region, we need to find the maximum value of the profit function within that region.

1. Evaluate the profit function at the vertices or corner points of the feasible region:

  - Point A (0, 0): P = 5(0) + 6(0) = 0

  - Point B (40, 40): P = 5(40) + 6(40) = 400

  - Point C (80, 80): P = 5(80) + 6(80) = 880

2. Compare the profit values at these points to determine the maximum profit.

From the above calculations, we can see that the maximum profit is achieved at Point C (80, 80), where P = 880.

Therefore, the combination of X = 80 and Y = 80 yields the highest profit of 880.

Learn more about profit on:

https://brainly.com/question/1078746

#SPJ11

define a function log that calulates the base 10 logarithm of the list num val. using the list comprehension method, write a for loop that applies the log function to only the odd values in the list.

Answers

Function that calculates the base 10 log of the list num_val.

C Code:

#include <stdio.h>

int log_10(int a)

{

   return (a > 9)

           ? 1 + log_10(a / 10)

           : 0;

}

int main()

{

   int i;

   int num_val[10] = {15, 29, 76, 18, 23, 7, 39, 32, 40, 44};

   for(i=0; i<10; i++)

   {

       if(num_val[i]%2!=0)

       {

           printf("%d ", log_10(num_val[i]));

       }

   }

   return 0;

}

Know more about C language,

https://brainly.com/question/33334224

#SPJ4

Verify that the given differential equation is exact; then solve it. (6x ^2 y ^3 +y ^4 )dx+(6x ^3y ^2+y ^4+4xy ^3)dy=0 Select the correct choice below and, if necessary, fill in the answer box to complete your choice. A. The equation is exact and an implicit solution in the form F(x,y)=C is =C, where C is an arbitrary constant. (Type an expression using x and y as the variables.) B. The equation is not exact.

Answers

The correct choice is: A. The equation is exact and an implicit solution in the form F(x, y) = C is F(x, y) = 2x^3y^3 + xy^4 + (1/5)y^5 + C, where C is an arbitrary constant.

To verify if the given differential equation is exact, we need to check if the following condition is satisfied:

∂(M)/∂(y) = ∂(N)/∂(x)

where M and N are the coefficients of dx and dy, respectively.

The given differential equation is:

(6x^2y^3 + y^4)dx + (6x^3y^2 + y^4 + 4xy^3)dy = 0

Taking the partial derivative of M with respect to y:

∂(M)/∂(y) = ∂(6x^2y^3 + y^4)/∂(y)

          = 18x^2y^2 + 4y^3

Taking the partial derivative of N with respect to x:

∂(N)/∂(x) = ∂(6x^3y^2 + y^4 + 4xy^3)/∂(x)

          = 18x^2y^2 + 4xy^3

Comparing ∂(M)/∂(y) and ∂(N)/∂(x), we see that they are equal. Therefore, the given differential equation is exact.

To solve the exact differential equation, we need to find a function F(x, y) such that ∂(F)/∂(x) = M and ∂(F)/∂(y) = N.

For this case, integrating M with respect to x will give us F(x, y):

F(x, y) = ∫(6x^2y^3 + y^4)dx

       = 2x^3y^3 + xy^4 + g(y)

Here, g(y) represents an arbitrary function of y that arises due to the integration with respect to x. To find g(y), we differentiate F(x, y) with respect to y and equate it to N:

∂(F)/∂(y) = 6x^2y^2 + 4xy^3 + ∂(g)/∂(y)

Comparing this with N = 6x^3y^2 + y^4 + 4xy^3, we see that ∂(g)/∂(y) = y^4. Integrating y^4 with respect to y, we get:

g(y) = (1/5)y^5 + C

where C is an arbitrary constant.

Therefore, the implicit solution in the form F(x, y) = C is:

2x^3y^3 + xy^4 + (1/5)y^5 = C

Hence, the correct choice is A. The equation is exact and an implicit solution in the form F(x, y) = C is 2x^3y^3 + xy^4 + (1/5)y^5 = C, where C is an arbitrary constant.

To know more about differential equation, visit:

https://brainly.com/question/25731911

#SPJ11

Assuming that the equation below defines y as a differentiable function of x, find the value of dy/dx at the given point
4x²+xy+y^2-19=0, (2,1)

Answers

At the point (2,1), the value of dy/dx for the equation 4x²+xy+y²-19=0 is -17/4.

To differentiate the equation implicitly, we'll treat y as a function of x and differentiate both sides of the equation with respect to x. The derivative of the equation 4x²+xy+y²-19=0 with respect to x is:

d/dx(4x²+xy+y²-19) = d/dx(0)

Differentiating each term with respect to x, we get:

8x + y + x(dy/dx) + 2y(dy/dx) = 0

Now we can substitute the values x=2 and y=1 into this equation and solve for dy/dx:

8(2) + (1) + 2(2)(dy/dx) = 0

16 + 1 + 4(dy/dx) = 0

4(dy/dx) = -17

dy/dx = -17/4

Therefore, at the point (2,1), the value of dy/dx for the equation 4x²+xy+y²-19=0 is -17/4.

Implicit differentiation allows us to find the derivative of a function implicitly defined by an equation involving both x and y. In this case, we differentiate both sides of the equation with respect to x, treating y as a function of x. The chain rule is applied to terms involving y to find the derivative dy/dx. By substituting the given values of x=2 and y=1 into the derived equation, we can solve for the value of dy/dx at the point (2,1), which is -17/4. This value represents the rate of change of y with respect to x at that specific point.

Learn more about chain rule here:
brainly.com/question/30764359

#SPJ11

A study by the television industry has determined that the average sports fan watches 10 hours per week watching sports on TV with a standard deviation of 3.3 hours. Vancouver TV is considering establishing a specialty sports channel and takes a random sample of 36 sports fans.
(a) Describe the shape of the sample mean distribution. Circle the correct one: [2 marks]
A. Normally distributed because sample size bigger than 30
B. Cannot be determined because sample size is bigger than 30
C. Cannot be determined because the population distribution is unknown
D. Normally distributed because the population distribution is unknown
(b) What is the mean and standard deviation of the sample means? [5 marks)

Answers

The mean of the sample means is 10 and the standard deviation of the sample means is 0.55

(a) A study by the television industry has determined that the average sports fan watches 10 hours per week watching sports on TV with a standard deviation of 3.3 hours.

Vancouver TV is considering establishing a specialty sports channel and takes a random sample of 36 sports fans.

The shape of the sample mean distribution is normally distributed because the sample size is greater than 30 and central limit theorem states that when a sample size is greater than 30, the sampling distribution of the sample means is normally distributed.

(b) The mean and standard deviation of the sample means can be calculated as follows:

The sample size, n = 36

The mean of the sample means = Mean of the population = 10

The standard deviation of the sample means = Standard deviation of the population / Square root of sample size

= 3.3 / √36

= 3.3 / 6

= 0.55Therefore, the mean of the sample means is 10 and the standard deviation of the sample means is 0.55.

For more related questions on sample means:

https://brainly.com/question/33323852

#SPJ8

Find the volume of the parallelepiped with one vertex at the origin and adjacent vertices at (4,0,−3),(1,5,3), and (5,3,0). The volume of the parallelepiped is (Type an integer or a decimal.)

Answers

The triple product (and therefore the volume of the parallelepiped) is:$-9 + 0 + 15 = 6$, the volume of the parallelepiped is 6 cubic units.

A parallelepiped is a three-dimensional shape with six faces, each of which is a parallelogram.

We can calculate the volume of a parallelepiped by taking the triple product of its three adjacent edges.

The triple product is the determinant of a 3x3 matrix where the columns are the three edges of the parallelepiped in order.

Let's use this method to find the volume of the parallelepiped with one vertex at the origin and adjacent vertices at (4,0,−3), (1,5,3), and (5,3,0).

From the origin to (4,0,-3)

We can find this edge by subtracting the coordinates of the origin from the coordinates of (4,0,-3):

[tex]$\begin{pmatrix}4\\0\\-3\end{pmatrix} - \begin{pmatrix}0\\0\\0\end{pmatrix} = \begin{pmatrix}4\\0\\-3\end{pmatrix}$[/tex]

Tthe origin to (1,5,3)We can find this edge by subtracting the coordinates of the origin from the coordinates of (1,5,3):

[tex]$\begin{pmatrix}1\\5\\3\end{pmatrix} - \begin{pmatrix}0\\0\\0\end{pmatrix} = \begin{pmatrix}1\\5\\3\end{pmatrix}$[/tex]

The origin to (5,3,0)We can find this edge by subtracting the coordinates of the origin from the coordinates of (5,3,0):

[tex]$\begin{pmatrix}5\\3\\0\end{pmatrix} - \begin{pmatrix}0\\0\\0\end{pmatrix} = \begin{pmatrix}5\\3\\0\end{pmatrix}$[/tex]

Now we'll take the triple product of these edges. We'll start by writing the matrix whose determinant we need to calculate:

[tex]$\begin{vmatrix}4 & 1 & 5\\0 & 5 & 3\\-3 & 3 & 0\end{vmatrix}$[/tex]

We can expand this determinant along the first row to get:

[tex]$\begin{vmatrix}5 & 3\\3 & 0\end{vmatrix} - 4\begin{vmatrix}0 & 3\\-3 & 0\end{vmatrix} + \begin{vmatrix}0 & 5\\-3 & 3\end{vmatrix}$[/tex]

Evaluating these determinants gives:

[tex]\begin{vmatrix}5 & 3\\3 & 0\end{vmatrix} = -9$ $\begin{vmatrix}0 & 3\\-3 & 0\end{vmatrix} = 0$ $\begin{vmatrix}0 & 5\\-3 & 3\end{vmatrix} = 15$[/tex]

For more related questions on triple product:

https://brainly.com/question/29842757

#SPJ8

Justin has $1200 in his savings account after the first month. The savings account pays no interest. He deposits an additional $60 each month thereafter. Which function (s) model the scenario?

Answers

Since the savings account pays no interest, we only need to use the linear function given above to model the scenario.

Given that Justin has $1200 in his savings account after the first month and deposits an additional $60 each month thereafter. We have to determine which function (s) model the scenario.The initial amount in Justin's account after the first month is $1200.

Depositing an additional $60 each month thereafter means that Justin's savings account increases by $60 every month.Therefore, the amount in Justin's account after n months is given by:

$$\text{Amount after n months} = 1200 + 60n$$

This is a linear function with a slope of 60, indicating that the amount in Justin's account increases by $60 every month.If the savings account had an interest rate, we would need to use a different function to model the scenario.

For example, if the account had a fixed annual interest rate, the amount in Justin's account after n years would be given by the compound interest formula:

$$\text{Amount after n years} = 1200(1+r)^n$$

where r is the annual interest rate as a decimal and n is the number of years.

However, since the savings account pays no interest, we only need to use the linear function given above to model the scenario.

For more such questions on linear function, click on:

https://brainly.com/question/2248255

#SPJ8

Vesterday, (5)/(7) of the 42 students in a centest gave their speeches. How many students gave their speeches? Write your answer in simplest form.

Answers

Students that gave their speeches are 30.

To find the number of students who gave their speeches, we can multiply the fraction of students who gave their speeches by the total number of students.

Given that (5/7) of the 42 students gave their speeches, we can calculate:

Number of students who gave speeches = (5/7) * 42

To simplify this fraction, we can multiply the numerator and denominator by a common factor. In this case, we can multiply both by 6:

Number of students who gave speeches = (5/7) * 42 * (6/6)

Simplifying further:

Number of students who gave speeches = (5 * 42 * 6) / (7 * 6)

                                  = (5 * 42) / 7

                                  = 210 / 7

                                  = 30

Therefore, 30 students gave their speeches.

To know more about speeches refer here:

https://brainly.com/question/31881621#

#SPJ11

The median weight of a boy whose age is between 0 and 36 months can be approximated by the function w(t)=8.65+1.25t−0.0046t ^2 +0.000749t^3 ,where t is measured in months and w is measured in pounds. Use this approximation to find the following for a boy with median weight in parts a) through c) below. a) The rate of change of weight with respect to time. w ′
(t)=

Answers

Therefore, the rate of change of weight with respect to time is [tex]w'(t) = 1.25 - 0.0092t + 0.002247t^2.[/tex]

To find the rate of change of weight with respect to time, we need to differentiate the function w(t) with respect to t. Differentiating each term of the function, we get:

[tex]w'(t) = d/dt (8.65) + d/dt (1.25t) - d/dt (0.0046t^2) + d/dt (0.000749t^3)[/tex]

The derivative of a constant term is zero, so the first term, d/dt (8.65), becomes 0.

The derivative of 1.25t with respect to t is simply 1.25.

The derivative of [tex]-0.0046t^2[/tex] with respect to t is -0.0092t.

The derivative of [tex]0.000749t^3[/tex] with respect to t is [tex]0.002247t^2.[/tex]

Putting it all together, we have:

[tex]w'(t) = 1.25 - 0.0092t + 0.002247t^2[/tex]

To know more about rate of change,

https://brainly.com/question/30338132

#SPJ11

may not convert these predicates to variables (no ∀x∈D,p→q - use the same words that are already in the statement): ∀n∈Z, if n 2
−2n−15>0, then n>5 or n<−3. A. State the negation of the given statement. B. State the contraposition of the given statement. C. State the converse of the given statement. D. State the inverse of the given statement. E. Which statements in A.-D. are logically equivalent? You may give the name(s) or letter(s) of the statements.

Answers

A predicate is a statement or a proposition that contains variables and becomes a proposition when specific values are assigned to those variables. Variables, on the other hand, are symbols that represent unspecified or arbitrary elements within a statement or equation. They are placeholders that can take on different values.

Given, For all n in Z, if n2 - 2n - 15 > 0, then n > 5 or n < -3. We are required to answer the following: State the negation of the given statement. State the contraposition of the given statement. State the converse of the given statement. State the inverse of the given statement. Which statements in A.-D. are logically equivalent? Negation of the given statement:∃ n ∈ Z, n2 - 2n - 15 ≤ 0 and n > 5 or n < -3

Contrapositive of the given statement: For all n in Z, if n ≤ 5 and n ≥ -3, then n2 - 2n - 15 ≤ 0 Converse of the given statement: For all n in Z, if n > 5 or n < -3, then n2 - 2n - 15 > 0 Inverse of the given statement: For all n in Z, if n2 - 2n - 15 ≤ 0, then n ≤ 5 or n ≥ -3. From the given statements, we can conclude that the contrapositive and inverse statements are logically equivalent. Therefore, statements B and D are logically equivalent.

For similar logical reasoning problems visit:

https://brainly.com/question/30659571

#SPJ11

Please explain step by step thank you
Calculate the cause-specific mortality rate for heart disease in 2019 - Total world population July 1, 2021, = 7.87 billion - Total world population July 1, 2020, = 7.753 billion - Total w

Answers

Calculate the cause-specific mortality rate for heart disease in 2019 using population data from July 2020 and July 2021.

Obtain the total world population on July 1, 2021, which is 7.87 billion, and the total world population on July 1, 2020, which is 7.753 billion.

Determine the change in population from 2020 to 2021 by subtracting the population in 2020 from the population in 2021. The change in population is 7.87 billion - 7.753 billion = 0.117 billion (or 117 million).Collect data on the number of deaths due to heart disease in 2019. This data should specify the number of deaths worldwide caused by heart disease during that year.Divide the number of deaths due to heart disease in 2019 by the change in population during that period. For example, if there were 2 million deaths due to heart disease in 2019, the cause-specific mortality rate would be 2 million / 0.117 billion = 17.1 deaths per million people.The result represents the cause-specific mortality rate for heart disease in 2019, expressed as the number of deaths per million people.

To learn more about “mortality rate” refer to the https://brainly.com/question/26105007

#SPJ11

The radioactive isotope Pu-238, used in pacemakers, has a half -life of 87.7 years. If 1.8 milligrams of Pu-238 is initially present in the pacemaker, how much of this isotope (in milligrams ) will re

Answers

After 87.7 years, approximately 0.9 milligrams of Pu-238 will remain in the pacemaker.

The half-life of Pu-238 is 87.7 years, which means that after each half-life, half of the initial amount will decay. To calculate the remaining amount after a given time, we can use the formula:

Remaining amount = Initial amount × (1/2)^(time / half-life)

In this case, the initial amount is 1.8 milligrams, and the time is 87.7 years. Plugging these values into the formula, we get:

Remaining amount = 1.8 mg × (1/2)^(87.7 years / 87.7 years)

               ≈ 1.8 mg × (1/2)^1

               ≈ 1.8 mg × 0.5

               ≈ 0.9 mg

Therefore, approximately 0.9 milligrams of Pu-238 will remain in the pacemaker after 87.7 years.

Over a period of 87.7 years, the amount of Pu-238 in the pacemaker will be reduced by half, leaving approximately 0.9 milligrams of the isotope remaining. It's important to note that radioactive decay is a probabilistic process, and the half-life represents the average time it takes for half of the isotope to decay.

To know more about pacemaker follow the link:

https://brainly.com/question/31320367

#SPJ11

You choose to invest your $3,360 income tax refund check (rather than spend it) in an account earning 6% compounded annually. How much will the account be worth in 30 years? (Use the Table provided.) Note: Round your answer to the nearest cent.

Answers

The account will be worth $14,974.48 in 30 years.

Compound interest is interest that is added to the principal amount of a loan or deposit, and then interest is added to that new sum, resulting in the accumulation of interest on top of interest.

In other words, compound interest is the interest earned on both the principal sum and the previously accrued interest.

Simple interest, on the other hand, is the interest charged or earned only on the original principal amount. The interest does not change over time, and it is always calculated as a percentage of the principal.

This is distinct from compound interest, in which the interest rate changes as the amount on which interest is charged changes. Therefore, $3,360 invested at 6% compounded annually for 30 years would result in an account worth $14,974.48.

Know more about Compound interest, here:

https://brainly.com/question/14295570

#SPJ11

Suppose we have one red, one blue, and one yellow box. In the red box we have 3 apples and 5 oranges, in the blue box we have 4 apples and 4 oranges, and in the yellow box we have 3 apples and 1 orange. Now suppose we randomly selected one of the boxes and picked a fruit. If the picked fruit is an apple, what is the probability that it was picked from the yellow box?
Note that the chances of picking the red, blue, and yellow boxes are 50%, 30%, and 20% respectively and the selection chance for any of the pieces from a box is equal for all the pieces in that box. Please show your work in your report
b)Consider the following dataset.
outlook = overcast, rain , rain , rain , overcast ,sunny , rain , sunny, rain, rain
humidity = high , high , normal , normal , normal , high , normal ,normal , high , high
play = yes yes yes no yes no yes yes no no
1.Using naive Bayes, estimate the probability of Yes if the outlook is Rain and the humidity is Normal.
2.What is the true probability of Yes in a random choice of one of the three cases where the outlook is Rain and the humidity is Normal?

Answers

The true probability of Yes in a random choice of one of the three cases is 2/3 or approximately 0.6667.

Suppose we have one red, one blue, and one yellow box. In the red box we have 3 apples and 5 oranges, in the blue box we have 4 apples and 4 oranges, and in the yellow box we have 3 apples and 1 orange. If we have randomly selected one of the boxes and picked a fruit, the probability that it was picked from the yellow box if the picked fruit is an apple can be calculated as follows:

Let A be the event that an apple was picked and B be the event that the fruit was picked from the yellow box.

Probability that an apple was picked: P(A)= (1/2)(3/8) + (3/10)(4/8) + (1/5)(3/4) = 0.425

Probability that the fruit was picked from the yellow box: P(B) = 1/5

Probability that an apple was picked from the yellow box: P(A and B) = (1/5)(3/4) = 0.15

Therefore, the probability that the picked fruit was an apple if it was picked from the yellow box is

P(B|A) = P(A and B) / P(A) = 0.15 / 0.425 ≈ 0.3529

Consider the following dataset:

outlook = overcast, rain , rain , rain , overcast ,sunny , rain , sunny, rain, rain

humidity = high , high , normal , normal , normal , high , normal ,normal , high , high

play = yes yes yes no yes no yes yes no no

Using naive Bayes, estimate the probability of Yes if the outlook is Rain and the humidity is Normal.

P(Yes | Rain, Normal) = P(Rain, Normal | Yes) P(Yes) / P(Rain, Normal)

P(Yes) = 7/10

P(Rain, Normal) = P(Rain, Normal | Yes)

P(Yes) + P(Rain, Normal | No) P(No)= (3/7 × 7/10) + (2/3 × 3/10) = 27/70

P(Rain, Normal | Yes) = (2/5) × (3/7) / (27/70) ≈ 0.2857

P(Yes | Rain, Normal) = 0.2857 × (7/10) / (27/70) ≈ 0.6667

What is the true probability of Yes in a random choice of one of the three cases where the outlook is Rain and the humidity is Normal?

In the three cases where the outlook is Rain and the humidity is Normal, the play variable is Yes in 2 of them.

Therefore, the true probability of Yes in a random choice of one of the three cases is 2/3 or approximately 0.6667.

Learn more about probability visit:

brainly.com/question/31828911

#SPJ11

solve for F(s) and apply inver laplace transforms.
l(f′(t)+Bf(t)=A) sF(s)−f(0)−BF(s)= A/S

Answers

To solve for F(s) and apply inverse Laplace transforms of the given differential equation: l(f′(t) + Bf(t)

= A)sF(s) − f(0) − BF(s) = A/S

We start by solving the differential equation;

Step 1: Move all the terms to one side and factorize the f(t) term.

This gives: (s + B)F(s) = A/S + f(0)Then, solving for F(s) gives: F(s) = A/(s(s + B)) + f(0)/(s + B)

Step 2: We then apply the inverse Laplace transforms of each of the terms in the equation to get the solution to the differential equation.

We know that the inverse Laplace transform of 1/s is u(t) while that of 1/(s + a) is e^(-at)u(t).

Therefore, applying the inverse Laplace transform to the equation in Step 1, we get: f(t) = A/B[1 − e^(−Bt)] + f(0)e^(-Bt)

Thus, the solution to the given differential equation is f(t) = A/B[1 − e^(−Bt)] + f(0)e^(-Bt).

To know more about Laplace transforms visit:

https://brainly.com/question/31689149

#SPJ11

However, for the ODE problems in Exercises 1-4. Each of these problems is called a boundary-value problem, and we will study these problems in detail in Section 1.7. For now, decide whether each of these problems is well- posed, in terms of existence and uniqueness of solutions.
1. y" + y = 0, y(0) = y(2) = 0,0≤ x ≤2
2. y" + y = 0, y(0) = у(π) = 0,0 ≤ x ≤ π

Answers

For the problem y" + y = 0, y(0) = y(2) = 0, 0 ≤ x ≤ 2 there is a unique solution and For the problem y" + y = 0, y(0) = у(π) = 0, 0 ≤ x ≤ π there is a unique solution.

To determine whether each of the given boundary-value problems is well-posed in terms of the existence and uniqueness of solutions, we need to analyze if the problem satisfies certain conditions.

For the problem y" + y = 0, y(0) = y(2) = 0, 0 ≤ x ≤ 2:

This problem is well-posed. The existence of a solution is guaranteed because the second-order linear differential equation is homogeneous and has constant coefficients. The boundary conditions y(0) = y(2) = 0 specify the values of the solution at the boundary points. Since the equation is linear and the homogeneous boundary conditions are given at distinct points, there is a unique solution.

For the problem y" + y = 0, y(0) = у(π) = 0, 0 ≤ x ≤ π:

This problem is also well-posed. The existence of a solution is assured due to the homogeneous nature and constant coefficients of the second-order linear differential equation. The boundary conditions y(0) = у(π) = 0 specify the values of the solution at the boundary points. Similarly to the first problem, the linearity of the equation and the distinct homogeneous boundary conditions guarantee a unique solution.

In both cases, the problems are well-posed because they satisfy the conditions for existence and uniqueness of solutions. The existence is guaranteed by the linearity and properties of the differential equation, while the uniqueness is ensured by the distinct boundary conditions at different points. These concepts are further explored and studied in detail in Section 1.7 of the material.

Learn more about second-order linear differential equation here:

brainly.com/question/32924482

#SPJ11

pick 1
On a table are three coins-two fair nickels and one unfair nickel for which Pr (H)=3 / 4 . An experiment consists of randomly selecting one coin from the tabie and flipping it one time, noting wh

Answers

The required probability is 0.25, which means that there is a 25% chance of getting a tail on the given coin.

Firstly, we will identify the sample space of the given experiment. The sample space is defined as the set of all possible outcomes of the experiment. Here, the experiment consists of randomly selecting one coin from the table and flipping it one time, noting whether it is a head or a tail. Therefore, the sample space for the given experiment is S = {H, T}.

The given probability states that the probability of obtaining a head on the unfair nickel is Pr(H) = 3/4. As the given coin is unfair, it means that the probability of obtaining a tail on this coin is

Pr(T) = 1 - Pr(H) = 1 - 3/4 = 1/4.

Hence, the probability of obtaining a tail on the given coin is 1/4 or 0.25.

Therefore, the required probability is 0.25, which means that there is a 25% chance of getting a tail on the given coin.

Know more about  probability here,

https://brainly.com/question/31828911

#SPJ11

consider the following list of numbers. 127, 686, 122, 514, 608, 51, 45 place the numbers, in the order given, into a binary search tree.

Answers

The binary search tree is constructed using the given list of numbers: 127, 122, 51, 45, 686, 514, 608.

To construct a binary search tree (BST) using the given list of numbers, we start with an empty tree and insert the numbers one by one according to the rules of a BST.

Here is the step-by-step process to construct the BST:

1. Start with an empty binary search tree.

2. Insert the first number, 127, as the root of the tree.

3. Insert the second number, 686. Since 686 is greater than 127, it becomes the right child of the root.

4. Insert the third number, 122. Since 122 is less than 127, it becomes the left child of the root.

5. Insert the fourth number, 514. Since 514 is greater than 127 and less than 686, it becomes the right child of 122.

6. Insert the fifth number, 608. Since 608 is greater than 127 and less than 686, it becomes the right child of 514.

7. Insert the sixth number, 51. Since 51 is less than 127 and less than 122, it becomes the left child of 122.

8. Insert the seventh number, 45. Since 45 is less than 127 and less than 122, it becomes the left child of 51.

The resulting binary search tree would look like this.

To know more about binary search tree, refer here:

https://brainly.com/question/13152677

#SPJ4

At 6:00 AM, a hiker begins hiking up a mountain beside Lake Tahoe, whose base sits 6,224 feet above sea level. At 10:00 AM, the hiker reaches an altitude of 6,854 feet above sea level. Let "A" be the altitude (in feet) and let " t " be the number of minutes hiked. a) ( 2 points) What is the hiker's rate of ascent up the mountain (in feet per minute)? Assume that the rate is linear/constant. b) Write an equation of the fo A=mt+b that represents the altitude after t minutes. c) Estimate the hiker's altitude at 9:00 AM

Answers

a) The hiker's rate of ascent up the mountain is approximately 0.65625 feet per minute.

b) The equation representing the altitude after t minutes is A = 0.65625t + 6,224.

c) The hiker's estimated altitude at 9:00 AM is approximately 6,662.5 feet.

a) To find the hiker's rate of ascent, we need to calculate the change in altitude divided by the time taken. The hiker's starting altitude is 6,224 feet, and after 4 hours (240 minutes), the altitude is 6,854 feet. The change in altitude is:

Change in altitude = Final altitude - Initial altitude

= 6,854 ft - 6,224 ft

= 630 ft

The time taken is 240 minutes. Therefore, the rate of ascent is:

Rate of ascent = Change in altitude / Time taken

= 630 ft / 240 min

≈ 2.625 ft/min

b) We are given that the rate of ascent is linear/constant. We can use the slope-intercept form of a linear equation, y = mx + b, where y represents the altitude (A), x represents the time in minutes (t), m represents the slope (rate of ascent), and b represents the initial altitude.

From part (a), we found that the rate of ascent is approximately 2.625 ft/min. The initial altitude (b) is given as 6,224 ft. Therefore, the equation representing the altitude after t minutes is:

A = 2.625t + 6,224

c) To estimate the hiker's altitude at 9:00 AM, we need to find the number of minutes from 6:00 AM to 9:00 AM. The time difference is 3 hours, which is equal to 180 minutes. Substituting this value into the equation from part (b), we can estimate the altitude:

A = 2.625(180) + 6,224

≈ 524.25 + 6,224

≈ 6,748.25 ft

Therefore, the hiker's estimated altitude at 9:00 AM is approximately 6,748.25 feet above sea level.

for such more question on rate

https://brainly.com/question/23377525

#SPJ8

In the equation Ci i

+1=(ai i

bi i

)+(ai i

+b i

)⋅Ci i

, the generate term is (ai.bi) (ai+bi) (a i

+b i

)⋅C i

None of the above

Answers

In the equation Ci+1 = (ai bi) + (ai+bi)⋅Ci, the term (ai bi)⋅(ai+bi) is the generate term.

In the equation Ci+1 = (ai bi) + (ai+bi)⋅Ci, the term (ai bi)⋅(ai+bi) is not the generate term.

Let's break down the equation to understand its components:

Ci+1 represents the value of the i+1-th term.

(ai bi) is the propagate term, which is the result of multiplying the values ai and bi.

(ai+bi)⋅Ci is the generate term, where Ci represents the value of the i-th term. The generate term is multiplied by (ai+bi) to generate the next term Ci+1.

Therefore, in the given equation, the term (ai+bi)⋅Ci is the generate term, not (ai bi)⋅(ai+bi).

Learn more about equation from

https://brainly.com/question/29174899

#SPJ11

All questions in Part A are worth 10 marks each.
Q. Evaluate the statement: "The following is a valid probability weighting function."
0 if 1 if p=0 p=1 0.6 if 0

Answers

Therefore, the statement that the given function is a valid probability weighting function is false.

To evaluate the statement, let's examine the given probability weighting function:

0 if 1 if p = 0

p = 1

0.6 if 0

This probability weighting function is not valid because it does not satisfy the properties of a valid probability weighting function. In a valid probability weighting function, the assigned weights should satisfy the following conditions:

The weights should be non-negative: In the given function, the weight of 0.6 violates this condition since it is a negative weight.

The sum of the weights should be equal to 1: The given function does not provide weights for all possible values of p, and the weights assigned (0, 1, and 0.6) do not sum up to 1.

Learn more about function here

https://brainly.com/question/30721594

#SPJ11

Consider a survey involving the cookie preferences of a sample of 1,214 adults. If 24 % answered "peanut butter, find the decimal and reduced fraction of that percentage. decimalreduced fractio

Answers

Decimal of 24%:

Decimal means per hundred.

So, the decimal form of 24% can be found by dividing it by 100,

24/100 = 0.24

Therefore, the decimal of 24% is 0.24.

Reduced Fraction of 24%:

To find the reduced fraction of 24%, we have to convert the percentage into a fraction and simplify it.

In fraction form, 24% can be written as 24/100.

We simplify it by dividing both the numerator and denominator by their greatest common factor (GCF),

which is 4.24/100 = (24 ÷ 4)/(100 ÷ 4) = 6/25

Therefore, the reduced fraction of 24% is 6/25.

reduced fraction is:

https://brainly.com/question/33645097

#SPJ11

(2) [5{pt}] (a) (\sim 2.1 .8{a}) Let x, y be rational numbers. Prove that x y, x-y are rational numbers. (Hint: Start by writing x=\frac{m}{n}, y=\frac{k}{l}

Answers

If x and y are rational numbers, then the product xy and the difference x-y are also rational numbers.

To prove that the product xy and the difference x-y of two rational numbers x and y are also rational numbers, we can start by expressing x and y as fractions.

Let x = m/n and

y = k/l, where m, n, k, and l are integers and n and l are non-zero.

Product of xy:

The product of xy is given by:

xy = (m/n) * (k/l)

= (mk) / (nl)

Since mk and nl are both integers and nl is non-zero, the product xy can be expressed as a fraction of two integers, making it a rational number.

Difference of x-y:

The difference of x-y is given by:

x - y = (m/n) - (k/l)

= (ml - nk) / (nl)

Since ml - nk and nl are both integers and nl is non-zero, the difference x-y can be expressed as a fraction of two integers, making it a rational number.

Therefore, we have shown that both the product xy and the difference x-y of two rational numbers x and y are rational numbers.

If x and y are rational numbers, then the product xy and the difference x-y are also rational numbers.

To know more about Rational Numbers, visit

brainly.com/question/12088221

#SPJ11

With the universe of discourse for x as the set of all people living in the USA and the universe of discourse for y as the set of all other countries of the world, we define the following predicate: V(x,y) represents "Person x wants to visit country y." Indicate which symbolic expression accurately uses quantifiers with the given predicate to express this statement: "There is at least one other country of the world that every person living in the USA wants to visit." ∃x∀y V(x,y)
∀y∃x V(x,y)
∃y∀x V(x,y)
∀x∃y V(x,y)

Answers

The symbolic expression that accurately uses quantifiers to express the statement is: ∀x∃y V(x,y).

Let's break down the statement and analyze it step by step.

Statement: "There is at least one other country of the world that every person living in the USA wants to visit."

1. "There is at least one other country of the world": This part of the statement suggests the existence of a country that satisfies the condition.

2. "Every person living in the USA wants to visit": This implies that for each person living in the USA, there exists a country they want to visit.

Now, let's translate these conditions into symbolic expressions using quantifiers:

∃x: There exists a person living in the USA (represented by x).

∀y: For all countries of the world (represented by y).

V(x,y): Person x wants to visit country y.

To accurately represent the statement, we need to ensure that for every person living in the USA (∀x), there exists a country they want to visit (∃y). Therefore, the correct symbolic expression is:

∀x∃y V(x,y)

To know more about symbolic expression follow the link:

https://brainly.com/question/16357941

#SPJ11

We can expand the O,Ω,Θ notation to the case of two 1
parameters, n and m, that can grow independently at different rates. For example if g:N 2
→R +
then O(g(n,m))={f(n,m)∣(∃c,n 0
,m 0
>0)(∀n≥n 0
,m≥m 0
)[f(n,m)≤cg(n,m)]} Give similar definitions for Ω(g(n,m)) and Θ(g(n,m)). (Note: The easy answer for Θ is fine.)

Answers

Ω(g(n, m)) is defined as the set of all functions that are greater than or equal to c times g(n, m) for all n ≥ n0 and m ≥ m0, where c, n0, and m0 are positive constants. Given that the function is g : N2→ R+, let's first define O(g(n,m)), Ω(g(n,m)), and Θ(g(n,m)) below:

O(g(n, m)) ={f(n, m)| (∃ c, n0, m0 > 0) (∀n ≥ n0, m ≥ m0) [f(n, m) ≤ cg(n, m)]}

Ω(g(n, m)) ={f(n, m)| (∃ c, n0, m0 > 0) (∀n ≥ n0, m ≥ m0) [f(n, m) ≥ cg(n, m)]}

Θ(g(n, m)) = {f(n, m)| O(g(n, m)) and Ω(g(n, m))}

Thus, Ω(g(n, m)) is defined as the set of all functions that are greater than or equal to c times g(n, m) for all n ≥ n0 and m ≥ m0, where c, n0, and m0 are positive constants.

Learn more about functions: https://brainly.com/question/29633660

#SPJ11

During a restaurant promotion, 3 out of every 25 customers receive a $10 coupon to use on their next visit. If there were 150 customers at the restaurant today, what was the total value of the coupons that were given out?.

Answers

Answer:

Step-by-step explanation:

First we need to know how many customers in total received a coupon the day that there were 150 customers.

If for each 25 customers, 3 received a coupon. 0.12 of customers received a coupon ([tex]\frac{3}{25}[/tex] = 0.12)

You can multiply this value by 150 to get 0.12 x 150 = 18 people

Another way you can think about this is 150/25 = 6 and 6 x 3 = 18 people

Now that we know how many people received coupons, we need to find the monetary value of these coupons. To do this, we multiply 18 by $10. Therefore, the total value of the coupons that were given out was $180.

Answer: $180

Answer:

18 people

Step-by-step explanation:

3/25 = x/150

3 times 150 / 25

= 450/25

= 18 people

Please mark me as brainliest

A square garden is 10 feet long. A square walkway 3 feet wide goes all the way around the garden. How many feet of fence is needed to go around the walkway?

Answers

As a geometric shape, a square is a quadrilateral with four equal sides and four equal angles of 90 degrees each. 64 feet of fence is needed to go around the walkway.

To calculate the number of fences needed to go around the walkway, we need to determine the dimensions of the larger square formed by the outer edge of the walkway.

The original square garden is 10 feet long on each side. Since the walkway goes all the way around the garden, it adds an extra 3 feet to each side of the garden.

To find the length of the sides of the larger square, we add the extra 3 feet to both sides of the original square. This gives us 10 feet + 3 feet + 3 feet = 16 feet on each side.

Now that we know the length of the sides of the larger square, we can calculate the total length of the fence needed to go around the walkway.

Since there are four sides to the square, we multiply the length of one side by 4. This gives us 16 feet × 4 = 64 feet.

Therefore, 64 feet of fence is needed to go around the walkway.

To know more about the word original square, visit:

https://brainly.com/question/19210653

#SPJ11

A process is currently producing a part with the following specifications: LSL = 8 and USL 26 inches. What should be the standard deviation (sigma) of the process (in inch) in order to to achieve a +-

Answers

The standard deviation of the process should be 3 inches in order to achieve a process capability of ±1 inch.

To achieve a process capability of ±1 inch, we need to calculate the process capability index (Cpk) and use it to determine the required standard deviation (sigma) of the process.

The formula for Cpk is:

Cpk = min((USL - μ)/(3σ), (μ - LSL)/(3σ))

where μ is the mean of the process.

Since the target value is at the center of the specification limits, the mean of the process should be (USL + LSL)/2 = (26 + 8)/2 = 17 inches.

Substituting the given values into the formula for Cpk, we get:

1 = min((26 - 17)/(3σ), (17 - 8)/(3σ))

Simplifying the right-hand side of the equation, we get:

1 = min(3/σ, 3/σ)

Since the minimum of two equal values is the value itself, we can simplify further to:

1 = 3/σ

Solving for sigma, we get:

σ = 3

Therefore, the standard deviation of the process should be 3 inches in order to achieve a process capability of ±1 inch.

Learn more about "standard deviation" : https://brainly.com/question/475676

#SPJ11

Use synthetic division to find the result when 4x^(4)-9x^(3)+14x^(2)-12x-1 is divided by x-1. If there is a remainder, express the Fesult in the form q(x)+(r(x))/(b(x)).

Answers

A synthetic division to find the result q(x) + (r(x))/(b(x)) the result is 4x³ - 5x² + 9x - 3 - 4/(x - 1)

To perform synthetic division, to set up the polynomial and the divisor in the correct format.

Given polynomial: 4x² - 9x³ + 14x² - 12x - 1

Divisor: x - 1

To set up the synthetic division, the coefficients of the polynomial in descending order of powers of x, including zero coefficients if any term is missing.

Coefficients: 4, -9, 14, -12, -1 (Note that the coefficient of x^3 is -9, not 0)

Next,  the synthetic division tableau:

The numbers in the row beneath the line represent the coefficients of the quotient polynomial. The last number, -4, is the remainder.

Therefore, the result of dividing 4x² - 9x³ + 14x² - 12x - 1 by x - 1 is:

Quotient: 4x³- 5x²+ 9x - 3

Remainder: -4

To know more about  synthetic here

https://brainly.com/question/31673428

#SPJ4

Other Questions
gravity has the greatest effect on the vehicle shown in picture the practice of combining public relations, marketing, advertising, and promotion into a seamless campaign is known as? group of answer choices all of these are correct. public relations media mix. incorporated public relations. integrated marketing communication. viral marketing. The workers' union at a certain university is quite strong. About 96% of all workers employed by the university belong to the workers' union. Recently, the workers went on strike, and now a local TV station plans to interview a sample of 20 workers, chosen at random, to get their opinions on the strike.Answer the following.(If necessary, consult a list of formulas.)(a) Estimate the number of workers in the sample who are union members by giving the mean of the relevant distribution (that is, the expectation of the relevant random variable). Do not round your response.(b) Quantify the uncertainty of your estimate by giving the standard deviation of the distribution. Round your response to at least three decimal places. For the next fiscal year, you forecast net income of $49,600 and ending assets of $505,800. Your firm's payout ratio is 10.2%. Your beginning stockholders' equity is $297,500, and your beginning total liabilities are $126,800. Your non-debt liabilities such as accounts payable are forecasted to increase by $10,200. Assume your beginning debt is $106,800. What amount of equity and what amount of debt would you need to issue to cover the net new financing in order to keep your debt-equity ratio constant? The amount of debt to issue will be $ (Round to the nearest dollar.) The amount of equity to issue will be $ (Round to the nearest dollar.) 1) Determine whether the argument is valid, and give a reason why.Punishment for crime is never justified. This is because we know from a great deal of carefully assembled and analysed empirical data that punishment is not a deterrent. And punishment for crimes is justified if it actually deters people from committing them.Select one: a) The argument is valid, follows the valid form of modus tollens.b)The argument is invalid, even if the premises were true, punishment might still be justified for other reasons.c)The argument is valid, if the premises are true, it's impossible for punishment to be justified.d)The argument is invalid, it commits the fallacy of denying the antecedent - there might be other reasons why crime is a deterrent.e)The argument is invalid, punishment might still be a deterrent.f)The argument is valid, the premises are true, so the conclusion is also.2) Choose the generalised form that represents the argument.A = punishment is justified B = punishment deters people from committing crimesSelect one:1. If B then A. 2. Not B. Therefore, C: Not A1. If A then B. 2. Not B. Therefore, C: Not A.1. If B then A. 2. Not A. Therefore, C: Not B1. If A then B. 2. Not A. Therefore, C: Not B. If schools were to embrace Sherrys argument and begin flunking students who are not performing at expected levels, the default expectation that every student will pass might be reversed. What risks, if any, would such a change pose for students? What changes might be implemented to help students overcome the risks? Determine whether the given function is continuous. You can verify your conclusions by graphing the function with a graphing utility. g(x)=(9x^(2)+8x+7)/(x+7) The function is continuous. The functio A street vendor has a total of 350 short and long sleeve T-shirts. If she sells the short sleeve shirts for $12 each and the long sleeve shirts for $16 each, how many of each did she sell if she sold angular momentum in magnitude Differentiate between the following concepts. Marks will be awarded for your ability to show how these two concepts are different.Q.1.1 Stock variables and flow variables.Q.1.2 Goods market and factor market.Q.1.3 Surplus units and deficit units.Q.1.4 Money as a medium of exchange and money as a store of value.Q.1.5 M1 and M3. parapets or banding used on or above the roof level of large commercial structures are A used piece of rental equipment has 4(1/2) years of useful life remaining. When rented, the equipment brings in $200 per month(paid at the beginning of the month). If the equipment is sold now and money is worth 4.4%, compounded monthly, what must the selling price be to recoup the income that the rental company loses by selling the equipment "early"?(a) Decide whether the problem relates to an ordinary annuity or an annuity due.annuity dueordinary annuity(b) Solve the problem. (Round your answer to the nearest cent.)$= More if-else In this program, you MUST use the C-style printf/scanf functions to write/read. You need to compute the bonus for a salesperson based on the following conditions. - The minimum bonus is 100.00, irrespective of the amount of sales. 1 - If the number of years of experience is >=10 years, the bonus is 3% of the sales, otherwise it is 2% of the sales. - If the amount of sales if over $100000.00, there is additional bonus of $500.00 Write a program that inputs the total amount of sales by a salesperson and compute their bonus. Then display the computed bonus with a suitable message. There must be EXACTLY 2 numbers after the decimal point and a $ sign in front of the bonus value. Once you complete your program, save the file as Lab4B. pp, making sure it compiles and that it outputs the correct output. Note that you will submit this file to Canvas. C. Switch-Case switch statements are commonly, and easily, compared to if-else statements. They both hold similar tree branching logic, but their syntax and usability are different. switch statements are powerful when you are considering one variable, especially when there are several different outcomes for that variable. It is important to understand that a break statement should be used for each case that requires a different outcome, or the code may "leak" into the other cases. However, be sure to note that the outcome for different cases may be shared by omitting the break. Write a complete C++ program called Lab4C. app that prompts the user to enter a character to represent the season: 'S' for Summer, ' F ' for fall, ' W ' for winter and ' G ' for spring. Declare an enumeration constant with the following set of values: Summer, Fall, Winter and Spring and assign letters ' S ', ' F ', ' W ' and ' G ' to them, respectively. You will use these seasons as case constants in your switch-case block. Ask the user for their choice of season using a suitable message. Then, using a switch-case block, display the following: - If the user enters sor S, display: It is rather hot outside. - If the user enters for F, display: The weather looks good. - If the user enters w or W, display: It is rather cold outside. - If the user enters, g or G display: The flowers are blooming. - If the user enters anything else, display: Wrong choice. You must write this program using a switch-case block. Use the toupper() fuction to convert the character to uppercase, so that your program works for both lowercase and uppercase inputs. Q2. St Lawrence Bus Lines is offered a contract for busing schoolchildren that will produce an annual profit of $70,000 for 7 years. To fulfill the contract, St Lawrence Bus Lines would have to buy buses at a total cost of $433,000. At the end of the contract, the resale value of the buses will be $80,000. Using NPV, decide if St Lawrence Bus Lines should sign the contract if the cost of capital is4.45% p.a . b) 9.75 % p.a. Find the IRR (Internal Rate of Return) , correct to two decimal places.a)b)c)IRR= which formal approach to pricing is a commercial real estate agent most likely to use for pricing an office building? a. gross rent multiplier b. market data c. income d. cost Roadside Inc's new product would sell for $37.39. Variable costof production would be $14.53 per unit. Setting up production wouldentail relevant fixed costs of $285,789. The project cannot goforwa Betty Boop has saved enough money to go back to grad school. She is planning to put the money in a money market account where it will earn 2.5 percent. If she anticipates slowly drawing the money out over the course of her time in grad school at a constant rate of $29,000 per year, but is charged a commission of $7.95 every time she sells shares, how much should she take out of the mutual fund at a time?Multiple Choice $4,589.52 $4,437.04 $4,294.65 $4,101.83 mplement Your Own Logarithmic Time Function Similar to Problem 1, write two functions related to logarithmic time complexity. Questions: 1. Write your_logn_func such that its running time is log2(n) ops ( ) as n grows. 2. Write your_nlogn_func such that its running time is nlog2(n) ops ( ) as n grows. up attaining a inspection warrant what will the judicial offcier want to know?why the particular occupancy was selected for inspection to start with there is a population of frogs with male:female occurring in 50:50 ratio. there are two patches of ground near you, one containing a single frog, the other containing two frogs. your survival depends on you finding a female frog in one of these two patches, but you only get to make one attempt. you cannot tell which frogs are which in advance, except that you know that one of the frogs in the patch with two frogs in is male. if you go towards the patch with two frogs, what is your chance of surviving?