Answer:
a) i = 0.746 A, b) # _electron = 2.44 10¹⁹ electrons, c) E = 1.87 10⁴ J
Explanation:
a) The definition of current is the charge per unit of time
i = Q / t
i = 1.56 / 2.09
i = 0.746 A
b) Let's look for the cargo in passing at this time
i = Q / t
Q = i t
Q = 0.746 5.24
Q = 3.904 C
an electron has a charge e = -1.6 10⁻¹⁹ C, let's use a direct proportions rule
# _electron = 3.904 C (1 electron / 1.6 10⁻¹⁹)
# _electron = 2.44 10¹⁹ electrons
the number of electrons has to be an integer
c) In this part you are asked to calculate the power
P = V i
P = 12 0.746
P = 8.952 W
P = E/t
E = P t
E = 8.952 2.09
E = 1.87 10⁴ J
A bicyclist rides 5.0 km due east, while the resistive forcefrom the air has a magnitude of 3.0 N and points due west. Therider then turns around and rides 5.0 km due west, back to herstarting point. The resistive force from the air on the return triphas a magnitude of 3.0 N and points due east.
a) Find the work done by the resistive force during the roundtrip.
Based on answer in part A.
b) Is the resistive force a conservative force? explain.
Answer:
a) Find the work done by the resistive force during the roundtrip.
W=-30kJ
b) Is the resistive force a conservative force? explain.
The resistive force is not a conservative force since the work done during the round trip is not zero
Explanation:
The worf done on object y a constant force F is given by:
W= (F cos ∅)S
Where S is the displacement and ∅ is the angle between the force and the displacement.
The displacement of the bicycle during each part of the trip is s=5000m and teh magnitude of teh resistance force is F=3.0N
∅1=180° he angle between the displacement and the force
W1=W2
W1 = (3.0 cos180) 5000m
W1=-15.O kJ
W=W1+W2
W=-30kJ
The resistive force is not a conservative force since the work done during the round trip is not zero
(a) The work done by the resistive force is 15,000 J
(b) The work done the resistive force is non-conservative since the resultant resistive force in not zero.
Work doneWork is said to be when an applied force displaces an object from its initial position.
Work done by resistive forceThe work done by the resistive force is calculated as follows;
W = FΔr
W = 3 x (5,000 - 0)
W = 15,000 J
Thus, the work done the resistive force is non-conservative since the resultant resistive force in not zero.
Learn more about conservative force here: https://brainly.com/question/15357875
If an object has a mass of 210g and the net force acting upon it is 5.0N, what is the acceleration of that object?
Answer:
24ms^-2 (2 sig figs)
Explanation:
F = ma
This means that the sum of all forces (or the net force) acting upon an object is equal to its mass x accelleration.
Its important to convert all parts of this equations in to SI units such that Force (N), Mass (kg) and Accelleration (ms^-2) to make sure that your answer is in the correct units.
F = ma so 5 = 0.21a
a = 5/0.21
a = 23.810 ms^-2 (5 sig figs)
Candice is examining a cell under a microscope. She has identified a cell wall, a nucleus, and a chloroplast. What type of organism does this most likely belong to?
A. A plant B. An animal C. A fungus D. A bacterium
Answer:
A plant
Explanation:
because animals don't have cell walls, and fungus and bacteria dont have chloroplasts
Captain Jack Sparrow has been marooned on an island in the Atlantic by his crew, and decides to builda raft to escape. The wind seems quite steady, and first blows him due east for 11km, and then 6km ina direction 6degrees north of east. Confident that he will eventually find himself in safety, he fallsasleep. When he wakes up, he notices the wind is now blowing him gently 11degrees south of east -but after traveling for 21km, he finds himself back on the island.
Variable Name Min Max Step Sample Value
thetab 5 10 1 6
a 10 20 11 1
b 5 15 1 6
c 20 30 1 21
thetac 10 15 11 1
Required:
How far (in km) did the wind blow him while he was sleeping?
Answer:
d₃ = 37,729 km, θ= 5.1º North of West
Explanation:
This is a velocity addition problem, the easiest way to solve it is to decompose the velocities in a Cartesian system, the x-axis coincides with the West-East direction and the y-axis with the South-North direction
* first displacement is
d₁ₓ = 11 km
* second offset is
cos 6 = d₂ₓ / d₂
sin 6 = d_{2y} / d₂
d₂ₓ = d₂ cos 6
d_{2y} = d₂ sin 6
d₂ₓ = 6 cos 6 = 5.967 km
d_{2y} = 6 sin 6 = 0.6272 km
* third displacement is unknown
* fourth and last displacement
cos (-11) = d₄ₓ / d₄
sin (-11) = d_{4y} / d₄
d₄ₓ = d₄ cos (-11)
d_{4y} = d₄ sin (-11)
d₄ₓ = 21 cos (-11) = 20.61 km
d_{4y} = 21 sin (-11) = -4.007 km
They tell us that at the end of the tour you are back on the island, so the displacement must be zero
X axis
x = d₁ₓ + d₂ₓ + d₃ₓ + d₄ₓ
0 = 11 +5.967 + d₃ₓ + 20.61
d₃ₓ = -11 - 5.967 - 20.61
d₃ₓ = -37.577 km
Y axis
y = d_{1y} + d_{2y} + d_{3y} + d_{4y}
0 = 0 + 0.6272 + d_{3y} -4.007
d_{3y} = 4.007 - 0.6272
d_{3y} = 3.3798 km
This distance can be given in the form of module and angle
Let's use the Pythagorean theorem for the module
d₃ = [tex]\sqrt{d_{3x}^2 + d_{3y}^2}[/tex]
d₃ = [tex]\sqrt{37.577^2 + 3.3798^2}[/tex]
d₃ = 37,729 km
Let's use trigonometry for the angle
tan θ = d_{3y} / d₃ₓ
θ = tan⁻¹ [tex]\frac{d_{3y}}{d_{3x}}[/tex]
θ = tan-1 (-3.3798 / 37.577)
θ = 5.1º
Since the y coordinate is positive and the x coordinate is negative, this angle is in the second quadrant, so the direction given in the form of cardinal coordinates is
θ= 5.1º North of West
The resistivity of blood is related to its hematocrit, the volume fraction of red blood cells in the blood. A commonly used equation relating the hematocrit h to the blood resistivity rho (in Ω⋅m) is rho=1.32/(1−h)−0.79. In one experiment, blood filled a graduated cylinder with an inner diameter of 0.90 cm. The resistance of the blood between the 1.0 cm and 2.0 cm marks of the cylinder was measured to be 198 Ω.
Required:
What was the hematocrit for this blood?
Answer:
[tex]0.35598[/tex]
Explanation:
r = Radius = [tex]\dfrac{0.9}{2}=0.45\ \text{cm}[/tex]
R = Resistance = [tex]198\ \Omega[/tex]
A = Area = [tex]\pi r^2[/tex]
l = Length of blood in cylinder = 1 cm
h = Hematocrit of the blood
Resistivity is given by
[tex]\rho=\dfrac{1.32}{1-h}-0.79[/tex]
Resistance is given by
[tex]R=(\dfrac{1.32}{1-h}-0.79)\dfrac{l}{\pi r^2}\\\Rightarrow h=1-\dfrac{1.32}{\dfrac{R\pi r^2}{l}+0.79}\\\Rightarrow h=1-\dfrac{1.32}{\dfrac{198\times \pi\times (0.45\times 10^{-2})^2}{0.01}+0.79}\\\Rightarrow h=0.35598[/tex]
The hematocrit of the blood is [tex]0.35598[/tex].
An object is placed in material a at point P, as shown in the diagram. The light is refracted when it strikes the interface with material b. When viewed from material b, at which point will the image appear?
List down the types of centripetal force?
Answer: Just a few examples are the tension in the rope on a tether ball, the force of Earth's gravity on the Moon, friction between roller skates and a rink floor, a banked roadway's force on a car, and forces on the tube of a spinning centrifuge. Any net force causing uniform circular motion is called a centripetal force.
Answer:
roller skates and a rink floor, a banked roadway's force on a car, and forces on the tube of a spinning centrifuge
Explanation:
The Great Sandini is a 60 kg circus performer who is shot from a cannon (actually a spring gun). You don't find many men of his caliber, so you help him design a new gun. This new gun has a very large spring with a very small mass and a force constant of 1300 N/m that he will compress with a force of 6500 N. The inside of the gun barrel is coated with Teflon, so the average friction force will be only 50 N during the 5.0 mm he moves in the barrel.
Required:
At what speed will he emerge from the end of the barrel, 2.5 mabove his initial rest position?
Answer:
22m/s
Explanation:
Mass, m=60 kg
Force constant, k=1300N/m
Restoring force, Fx=6500 N
Average friction force, f=50 N
Length of barrel, l=5m
y=2.5 m
Initial velocity, u=0
[tex]F_x=kx[/tex]
Substitute the values
[tex]6500=1300x[/tex]
[tex]x=\frac{6500}{1300}=5[/tex]m
Work done due to friction force
[tex]W_f=fscos\theta[/tex]
We have [tex]\theta=180^{\circ}[/tex]
Substitute the values
[tex]W_f=50\times 5cos180^{\circ}[/tex]
[tex]W_f=-250J[/tex]
Initial kinetic energy, Ki=0
Initial gravitational energy, [tex]U_{grav,1}=0[/tex]\
Initial elastic potential energy
[tex]U_{el,1}=\frac{1}{2}kx^2=\frac{1}{2}(1300)(5^2)[/tex]
[tex]U_{el,1}=16250J[/tex]
Final elastic energy,[tex]U_{el,2}=0[/tex]
Final kinetic energy, [tex]K_f=\frac{1}{2}(60)v^2=30v^2[/tex]
Final gravitational energy, [tex]U_{grav,2}=mgh=60\times 9.8\times 2.5[/tex]
Final gravitational energy, [tex]U_{grav,2}=1470J[/tex]
Using work-energy theorem
[tex]K_i+U_{grav,1}+U_{el,1}+W_f=K_f+U_{grav,2}+U_{el,2}[/tex]
Substitute the values
[tex]0+0+16250-250=30v^2+1470+0[/tex]
[tex]16000-1470=30v^2[/tex]
[tex]14530=30v^2[/tex]
[tex]v^2=\frac{14530}{30}[/tex]
[tex]v=\sqrt{\frac{14530}{30}}[/tex]
[tex]v=22m/s[/tex]
A dog finds a toy at rest on the floor. The dog pushes the toy horizontally on a frictionless floor with a net force of 2.0 Newtons for 3.0 meters. How much kinetic energy does the toy gain? Round your answer to the nearest whole number.
Answer:
the kinetic energy gained by the toy is 6J.
Explanation:
Given;
net applied to the toy by dog, F = 2 N
distance moved by the toy, d = 3 m
Apply the principle of work-energy theorem to determine the kinetic energy gained by the toy.
ΔK.E = W
= F x d
= 2 x 3
= 6 J
Therefore, the kinetic energy gained by the toy is 6J.
Ocean waves crash on the beach at a velocity of 3.5 m/s. If the distance between the crests of each wave is 4 m, find the frequency of the waves.
a. 0.0088 Hz
b. 14.0 Hz
c. 1.14 Hz
d. 0.88 Hz
Answer:
d
Explanation:
velocity=frequency × wavelength
frequency=speed/wavelength
frequency=3.5÷4
=0.875~0.88
The frequency of the waves is (d) 0.88 Hz. So, correct answer is option (d).
What is frequency of wave?The frequency of a sinusoidal wave is the number of full oscillations performed by any wave constituent in a unit of time. According to the definition of frequency, if a body is moving periodically, it has completed one cycle after going through a number of situations or postures and then returning to its initial position. Therefore, frequency is a quantity that describes the rate of oscillation and vibration.
Given parameter,
Velocity of the waves = 3.5 m/s.
distance between the crests of each wave, that is, wavelength of the waves = 4 m.
We know that, for a wave transmission,
velocity of wave =frequency of wave × wavelength of wave
⇒ frequency of wave=speed of wave/wavelength of wave
⇒ frequency of wave =3.5 m/s ÷4m
=0.875 Hz
≈ 0.88 Hz
Hence, the frequency of the waves is 0.88 Hz.
Learn more about frequency here:
https://brainly.com/question/5102661
#SPJ2
A potter’s wheel moves from rest to an angular speed of 0.10 rev/s in 36.5 s.
Assuming constant angular acceleration,
what is its angular acceleration in rad/s2?
Answer in units of rad/s2
.
Answer:
please find attached pdf
Explanation:
The spring is unstretched at the position x = 0. under the action of a force p, the cart moves from the initial position x1 = -8 in. to the final position x2 = 5 in. determine (a) the work done on the cart by the spring and (b) the work done on the cart by its weight.
This question is incomplete, the missing diagram is uploaded along this Answer below.
Answer:
a) the work done on the cart by the spring is 4.875 lb-ft
b) the work done on the cart by its weight is - 3.935 lb-ft
Explanation:
Given the data in the question;
(a) determine the work done on the cart by the spring
we calculate the work done on the cart by the spring as follows;
[tex]W_{spring}[/tex] = 1/2×k( [tex]x^{2} _{1}[/tex] - [tex]x^{2} _{2}[/tex] )
where k is spring constant ( 3 lb/in )
we substitute
[tex]W_{spring}[/tex] = 1/2 × 3( (-8)² - (5)² )
[tex]W_{spring}[/tex] = 1/2 × 3( 64 - 25 )
[tex]W_{spring}[/tex] = 1/2 × 3( 39 )
[tex]W_{spring}[/tex] = 58.5 lb-in
we convert to pound force-foot
[tex]W_{spring}[/tex] = 58.5 × 0.0833333 lb-ft
[tex]W_{spring}[/tex] = 4.875 lb-ft
Therefore, the work done on the cart by the spring is 4.875 lb-ft
b) the work done on the cart by its weight
work done by its weight;
[tex]W_{gravity}[/tex] = -mgsin∅( x₂ - x₁ )
we substitute in of values from the image below;
[tex]W_{gravity}[/tex] = -14 × sin(15°)( 5 - (-8) )
[tex]W_{gravity}[/tex] = -14 × 0.2588 × 13
[tex]W_{gravity}[/tex] = -47.1 lb-in
we convert to pound force-foot
[tex]W_{gravity}[/tex] = -47.1 × 0.0833333 lb-ft
[tex]W_{gravity}[/tex] = - 3.935 lb-ft
Therefore, the work done on the cart by its weight is - 3.935 lb-ft
a) the work done on the cart by the spring is 4.875 lb-ft.
b) the work done on the cart by its weight is - 3.935 lb-ft.
Calculation of the work done:a. The work done on the cart by the spring is
= 1/2 × 3( (-8)² - (5)² )
= 1/2 × 3( 64 - 25 )
= 1/2 × 3( 39 )
= 58.5 lb-in
Now we have to convert to pound force-foot
So,
= 58.5 × 0.0833333 lb-ft
= 4.875 lb-ft
b) Now
work done by its weight;
= -mgsin∅( x₂ - x₁ )
So,
= -14 × sin(15°)( 5 - (-8) )
= -14 × 0.2588 × 13
= -47.1 lb-in
Now we convert to pound force-foot
= -47.1 × 0.0833333 lb-ft
= - 3.935 lb-ft
Learn more about spring here: https://brainly.com/question/16060099
What type of bond is CO2?||
Answer:
Lol
Explanation:
If the diameter of a moose eye is 40 mm, what is the total refractive power of the anterior portion of the eye?
Answer:
-the ratio of the speed of light
in air to the speed of light in the substance.
-speed of light in air 300,000 km/sec, which decreases when it passes through a transparent substance.
-e.g.. speed of light in substance = 200,000 km/sec, R.I. = 300,000/200,000 = 1.5
Explanation:
The work is calculated by replacing pressure with nRT/V then pulling nRT outside the integral. We are only allowed to pull T outside the integral in that example because:
a. we are always allowed to pull T outside a volume integral
b. T is constant for an isothermal process
c. it's an expansion not a compression
d. T has a positive value in that problem
Answer: b. T is constant for an isothermal process
Explanation:
In a general case for an ideal gas, we have the relation:
dW = -pdV.
If we integrate in both sides, we get:
W = ∫-pdV
Now, as the problem says, we can replace p by n*R*T/V
This is because of the equation for ideal gases.
p = n*R*T/V
replacing that in the equation we get
W = -∫pdV = -∫(n*R*T/V)dV
Now we want to take the n*R*T part outside of the integral.
But we only could do this if T does not depend on V.
If T is cosntant, then T does not depend on V, and we know that T is constant when we are in an isothermal process.
Where an isothermal process is a process where the temperature does not change, then T = constant.
Then n*R*T = constant = k
Because this is a constant, we could take it out of the integral so we get:
W = -∫(n*R*T/V)dV ) = -(n*R*T)∫(1/V)*dV
Then the correct option is option b.
b. T is constant for an isothermal process
Messages from the Perseverance Rover on Mars reach Earth in 11 min. The speed of light is 3.00 x 108 m/s. Using this information, how far is Mars from Earth?
Answer:
[tex]d=1.98\times 10^{11}\ m[/tex]
Explanation:
Messages from the Perseverance Rover on Mars reach Earth in 11 min i.e. time is 660 s
The speed of light is [tex]3\times 10^8\ m/s[/tex]
We need to find the distance between Mars and Earth. Let the distance be d.
We know that,
Distance = speed × time
So,
[tex]d=660\times 3\times 10^8\\\\d=1.98\times 10^{11}\ m[/tex]
So, Mars is [tex]1.98\times 10^{11}\ m[/tex] from the Earth.
A spring with a constant of 76 N/m is extended by 0.9 m. How much energy is stored in the extended spring?
Answer:
[tex]E=30.78\ J[/tex]
Explanation:
The force constant of the spring, k = 76 N/m
The extension in the spring, x = 0.9 m
We need to find the energy is stored in the extended spring. The energy stored in the spring is given by :
[tex]E=\dfrac{1}{2}kx^2\\\\E=\dfrac{1}{2}\times 76\times (0.9)^2\\\\E=30.78\ J[/tex]
So, 30.78 J of energy is stored in the spring.
1. A block with mass 20 kg is
sliding up a plane (Ukinetic=0.3,
inclined at 10°) at a speed of
2 m/s to the right (positive
X-direction). How far does it
go up along the plane before
it comes to rest momentarily?
Answer: 0.435 m
Explanation:
Given
mass m=20 kg
initial speed u=2 m/s
coefficient of kinetic friction [tex]\mu_k=0.3[/tex]
deceleration which opposes the motion is given by
[tex]\Rightarrow a=g\sin \theta+\mu_kg\cos \theta\\\Rightarrow a=g(\sin \theta +\mu_k\cos \theta)[/tex]
[tex]\Rightarrow a=9.8(\sin 10^{\circ}+0.3\times \cos 10^{\circ})\\\Rightarrow a=4.59\ m/s^2[/tex]
using [tex]v^2-u^2=2as[/tex]
[tex]\Rightarrow s=\dfrac{2^2}{2\times 4.59}=0.435\ m[/tex]
help please i will mark brainlist!!!
Answer:
.50 M
Explanation:
5*.50=2.5 + 2*.25=.5 = 3n
6*.50= 3N
Final answer is .50M
The resolution of a telescope is ultimately limited by the diameter of its objective lens or mirror. A typical amateur astronomer's telescope may have a 6.09 in diameter mirror. What is the minimum angular separation (in arc seconds) of two stars that can be resolved with a 6.09 in scope
Answer:
θ = 3.19 arc second
Explanation:
The resolution of a telescope is given by the rayleigh criterion, which establishes that two objects are separated if the principal maximum of diffraction of one of them coincides with the first minimum of diffraction of the second object, based on this the solution is given by the first diffraction minimum, the a slit is
a sin θ = m λ
with m = 1
in the case of circular apertures the equation must be found in polar coordinates, therefore a numerical constant is introduced
a sin θ = 1.22 λ
Angles are measured in radians and in these experiments they are small
sin θ = θ
θ= 1.22 λ / a
in this case a = 6.09 in, the wavelength is wrong = 550 10⁻⁹ m which is the maximum resolution of the human eye
l
et's reduce the magnitudes to the SI system
d = 6.09‘ 2.54 10⁻-2 m / 1 inch = 15.4686 10-2 m
let's calculate
θ = 1.22 550 10-9 / 15.468 10-2
θ = 15.5 10⁻⁶ rad
rad = 2.06 105 s
θ = 15.5 10⁻⁶ rad 2.06 105s/ 1 rad
θ = 3.19 s
what is the average velocity of a van that moves from 0 to 60 m east and 20 seconds
Explanation:
I have a lot to say it was very nice to meet my parents are u doing well I dont want too its been so much I love you so I was like u know I am not a man but you are the auditions I have been in a long long long life is a triangle and a chair for me and my parents think about the way I
How does Physics help you as a student?
Answer:
The goal of physics is to understand how things work from first principles. ... Courses in physics reveal the mathematical beauty of the universe at scales ranging from subatomic to cosmological. Studying physics strengthens quantitative reasoning and problem solving skills that are valuable in areas beyond physics
Answer:
you get to understand why things happen this way
Explanation:
for example, are you not curious about why when standing in the bus and when the bus stops, you will might feel like you are going to fall ,
why does this happen because....
newton's laws explains it,
inertia causes you to be reluctant to change your initial state of motion due to your mass so you fall because you are still moving at the 'speed of the bus ' , something in like that
hope this helps,
please mark also
A 50kg mass is sitting on a frictionless surface. An unknown constant force pushes the mass for 2 seconds until the mass reaches a velocity of 3m/s. What was the force acting on the mass?
Answer:
75N
Explanation:
a = v/t = 3/2
F = ma = 50(3/2) = 75
State three factors affecting pressure in liquids
Answer:
Density of liquid
Depth of liquid
Acceleration due to gravity
4. Which of these is exerted by an engine?
(1 Point)
Thrust
Water resistance
Friction
Air resistance
Air resistance is exerted by an engine
Standing at a crosswalk, you hear a frequency of 530 Hz from the siren of an approaching ambulance. After the ambulance passes, the observed frequency of the siren is 424 Hz. Determine the ambulance's speed from these observations.
Answer:
_s = 37.77 m / s
Explanation:
This is an exercise of the Doppler effect that the change in the frequency of the sound due to the relative speed of the source and the observer, in this case the observer is still and the source is the one that moves closer to the observer, for which relation that describes the process is
f ’= f₀ [tex]\frac{v}{v - v_s}[/tex]
where d ’= 530 Make
when the ambulance passes away from the observer the relationship is
f ’’ = f₀ [tex]\frac{v}{v + v_s}[/tex]
where d ’’ = 424 beam
let's write the two expressions
f ’ (v-v_s) = fo v
f ’’ (v + v_s) = fo v
let's solve the system, subtract the two equations
v (f ’- f’ ’) - v_s (f’ + f ’’) = 0
v_s = v [tex]\frac{ f' - f''}{ f' + f''}[/tex]
the speed of sound is v = 340 m / s
let's calculate
v_s = 340 [tex](\frac{ 530 -424}{530+424} )[/tex]
v_s = 340 [tex](\frac{106}{954}[/tex])
v_s = 37.77 m / s
In the absence of friction, if a force acting on a moving object stops acting, the object will
Answer:
Keep on moving
Explanation:
Newton's first law states "that, if a body is at rest or moving at a constant speed in a straight line, it will remain at rest or keep moving in a straight line at constant speed unless it is acted upon by a force."
You are standing on the bottom of a lake with your torso above water. Which statement is correct?
a. You feel a buoyant force only when you momentarily jump up from the bottom of the lake.
b. There is a buoyant force that is proportional to the weight of your body below the water level.
c. There is a buoyant force that is proportional to the volume of your body that is below the level of the water.
d. There is no buoyant force on you since you are supported by the lake bottom.
Answer:
c. There is a buoyant force that is proportional to the volume of your body that is below the level of the water.
Explanation:
Buoyancy can be defined as a force which is created by the water displaced by an object.
Simply stated, buoyancy is directly proportional to the amount of water that is being displaced by an object.
Hence, the greater the amount of water an object displaces; the greater is the force of buoyancy pushing the object up.
The buoyancy of an object is given by the formula;
[tex] Fb = pgV [/tex]
[tex] But, \; V = Ah [/tex]
[tex] Hence, \; Fb = pgAh [/tex]
Where;
Fb = buoyant force of a liquid acting on an object.
g = acceleration due to gravity.
p = density of the liquid.
v = volume of the liquid displaced.
h = height of liquid (water) displaced by an object.
A = surface area of the floating object.
The unit of measurement for buoyancy is Newton (N).
In this scenario, you are standing on the bottom of a lake with your torso above water. Thus, there is a buoyant force that is proportional to the volume of your body that is below the level of the water.
help plz! what vibrates in following types of wave motion 1)light wave 2)sound waves 3)x-rays 4)water waves
Answer:
I believe it's 2) sound waves
Explanation:
With sound waves, the energy travels along in the same direction as the particles vibrate. This type of wave is known as a longitudinal wave, so named because the energy travels along the direction of vibration of the particles.
If the magnitude of vector A⃗ is less than the magnitude of vectorB⃗ , then the x component of A⃗ is less than the x component ofB⃗ . If the magnitude of vector is less than the magnitude of vector, then the component of is less than the component of.
a. True
b. False