Use reduction of order (NOT the integral formula we developed) to find the general solution of the nonhomogeneous linear DE, showing all work. Also clearly state the particular solution yp that you obtain using the reduction of order process and show a clear check that your particular solution yp satisfies the original nonhomogeneous DE. [Do NOT use the Method of Undetermined Coefficients here!]
''y + 6y' + 9y + 4e^x
Note: Use the characteristic polynomial to find a first solution yi of the associated homogencous DE.)

Answers

Answer 1

Answer:

[tex]y = (e^{4x}{4} + kx+d) \cdot c_1e^{-3x} =  \frac{e^{x}}{4} + Ae^{-3x}+Bxe^{-3x}[/tex] where A,B are constants.

Step-by-step explanation:

Consider the differential equation [tex]y''+6y'+9y = 4e^{x}[/tex]. To find the homogeneus solution, we assume that [tex]y = Ae^{rt}[/tex] and replace it in the equation [tex]y''+6y'+9y = 0[/tex]. If we do so, after using some properties of derivatives and the properties of the exponential function we end up with the equation

[tex]r^2+6r+9 = 0 = (r+3)^2[/tex]

which leads to r = -3. So, one solution of the homogeneus equation is [tex]y_h = c_1e^{-3x}[/tex], where c_1 is a constant.

To use the order reduction method, assume

[tex] y = v(x)y_h(x)[/tex]

where v(x) is an appropiate function. Using this, we get

[tex]y'= v'y+y'v[/tex]

[tex]y''=v''y+y'v'+y''v+v'y'=v''y+2v'y'+y''v[/tex]

Plugging this in the original equation we get

[tex]v''y+2v'y'+y''v + 6(v'y+y'v) +9vy=4e^{x}[/tex]

re arranging the left side we get

[tex]v''y+2v'y'+6v'y+v(y''+6y'+9y)=4e^{x}[/tex]

Since y is a solution of the homogeneus equation, we get that [tex]y''+6y'+9y=0[/tex]. Then we get the equation

[tex]yv''+(2y'+6y)v' = 4e^{x}[/tex]

We can change the variable as w = v' and w' = v'', and replacing y with y_h, we get that the final equation to be solved is

[tex] e^{-3x}w'+(6e^{-3x}-6e^{-3x})w =4e^{x}[/tex]

Or equivalently

[tex]w' = 4e^{4x}[/tex]

By integration on both sides, we get that w = e^{4x}+ k[/tex] where k is a constant.

So by integration we get that v = [tex]e^{4x}{4} + kx+d[/tex] where d is another constant.

Then, the final solution is

[tex]y = (e^{4x}{4} + kx+d) \cdot c_1e^{-3x} =  \frac{e^{x}}{4} + Ae^{-3x}+Bxe^{-3x}[/tex] where A,B are constants


Related Questions

The FDA regulates that fresh Albacore tuna fish that is consumed is allowed to contain 0.82 ppm of mercury or less. A laboratory is estimating the amount of mercury in tuna fish for a new company and needs to have a margin of error within 0.023 ppm of mercury with 97% confidence. Assume the population standard deviation is 0.143 ppm of mercury. What sample size is needed? Round up to the nearest integer, do not include any decimals. Answer:

Answers

Answer:

[tex]n=(\frac{2.17(0.143)}{0.023})^2 =182.03 \approx 183[/tex]

So the answer for this case would be n=183 rounded up to the nearest integer

Step-by-step explanation:

Information provided

[tex]\bar X[/tex] represent the sample mean

[tex]\mu[/tex] population mean (variable of interest)

[tex]\sigma = 0.143[/tex] represent the population standard deviation

n represent the sample size  

[tex] ME = 0.023[/tex] the margin of error desired

Solution to the problem

The margin of error is given by this formula:

[tex] ME=z_{\alpha/2}\frac{\sigma}{\sqrt{n}}[/tex]    (a)

And on this case we have that ME =0.023 and we are interested in order to find the value of n, if we solve n from equation (a) we got:

[tex]n=(\frac{z_{\alpha/2} \sigma}{ME})^2[/tex]   (b)

The confidence level is 97% or 0.97 and the significance would be [tex]\alpha=1-0.97=0.03[/tex] and [tex]\alpha/2 = 0.015[/tex] then the critical value would be: [tex]z_{\alpha/2}=2.17[/tex], replacing into formula (5) we got:

[tex]n=(\frac{2.17(0.143)}{0.023})^2 =182.03 \approx 183[/tex]

So the answer for this case would be n=183 rounded up to the nearest integer

Please answer this correctly

Answers

Answer:

The number of employees classified into groups as shown below:

1 - 10: 3 6 (2companies)

11-20: 16 (1 company)

21-30: 25, 26, 27 (3 companies)

31-40: 34, 35, 35, 35, 36 (5 companies)

41-50: 41, 43, 48, 48 (4 companies)

Hope this helps!

Answer:

11-20 is 1

31-40 is 5

Step-by-step explanation:

Just count the amount

Hope that helps :D

Justin spent $23 on fruit at grocery store. He spent a total of $25 at the store. What percentage of the total did he spend on fruit?

Answers

Step-by-step explanation:

In my opinion maybe he has spent 98%

An elementary school is offering 3 language classes: one in Spanish, one in French, and one in German. The classes are open to any of the 100 students in the school. There are 28 students in the Spanish class, 26 in the French class, and 16 in the German class. There are 12 students who are in both Spanish and French, 4 who are in both Spanish and German, and 6 who are in both French and German. In addition, there are 2 students taking all 3 classes. If two students are randomly chosen, what is the probability that at exactly one of them does exactly two language classes.

Answers

Answer:

The probability that at exactly one of them does exactly two language classes is 0.32.

Step-by-step explanation:

We can model this variable as a binomial random variable with sample size n=2.

The probability of success, meaning the probability that a student is in exactly two language classes can be calculated as the division between the number of students that are taking exactly two classes and the total number of students.

The number of students that are taking exactly two classes is equal to the sum of the number of students that are taking two classes, minus the number of students that are taking the three classes:

[tex]N_2=F\&S+S\&G+F\&G-F\&S\&G=12+4+6-2=20[/tex]

Then, the probabilty of success p is:

[tex]p=20/100=0.2[/tex]

The probability that k students are in exactly two classes can be calcualted as:

[tex]P(x=k) = \dbinom{n}{k} p^{k}(1-p)^{n-k}\\\\\\P(x=k) = \dbinom{2}{k} 0.2^{k} 0.8^{2-k}\\\\\\[/tex]

Then, the probability that at exactly one of them does exactly two language classes is:

[tex]P(x=1) = \dbinom{2}{1} p^{1}(1-p)^{1}=2*0.2*0.8=0.32\\\\\\[/tex]

100 pts You have a bag of 15 marbles: 5 blue, 3 red, 4 green, and 3 yellow. You draw 3 marbles without replacement. Which action, performed before the draws, increases the probability of drawing 3 green marbles in a row?

Answers

Answer:

see below

Step-by-step explanation:

You can remove one or more of the other color marbles to increase the probability of drawing a green marble

or

You can add  one or more green marbles to have more green marbles in the bag

y= -3/2x-6 x=15 plssssssssssssssssssssssss help

Answers

Answer:

-45/2 - 12/2 = -57/2

Step-by-step explanation:

Substitute 15 for x in the given equation:  y = (-3/2)x - 6 becomes

y = (-3/2)(15) - 6 = -45/2  -  6 when x = 15.  This is equivalent to -57/2

You're pretty sure that your candidate for class president has about 6565​% of the votes in the entire school. But​ you're worried that only 100100 students will show up to vote. How often will the underdog​ (the one with 3535​% ​support) win? To find​ out, you

Answers

Answer:

You're pretty sure that your candidate for class president has about 55% of the votes in the entire school. but you're worried that only 100 students will show up to vote. how often will the underdog (the one with 45% support) win? to find out, you set up a simulation.

a. describe-how-you-will-simulate a component.

b. describe-how-you-will-simulate a trial.

c. describe-the-response-variable

Step-by-step explanation:

Part A:

A component is one voter's voting. An outcome is a vote in favor of our candidate.

Since there are 100 voters, we can stimulate the component by using two random digits from 00 - 99, where the digits 00 - 64 represents a vote for our candidate and the digits 65 - 99 represents a vote for the under dog.

Part B:

A trial is 100 votes. We can stimulate the trial by randomly picking 100 two-digits numbers from 00 - 99.

And counted how many people voted for each candidate.  Whoever gets the majority of the votes wins the trial.

Part C:

The response variable is whether the underdog  wins or not.

To calculate the experimental probability, divide the number of trials in which the simulated underdog wins by the total number of trials.

A student said that the y-intercept of the function y = 3 · 4x is 4. What is their mistake? What is the actual y-intercept?

Answers

Answer:

The y intercept is 0

Step-by-step explanation:

the equation of a line is given as

[tex]y= mx+c[/tex]

where

m= is the slope

c= is the y intercept

their mistake is that they did not recall that if the "c" is not shown, it is assumed to be zero (0)

Margo borrows $1700, agreeing to pay it back with 4% annual interest after 6 months. How much interest

will she pay?

Round your answer to the nearest cent, if necessary.

Answers

Answer:

$1733.67

Step-by-step explanation:

Simple interest rate formula: A = P(1 + r)^t

Simply plug in your known variables

A = 1700(1 + 0.04)^0.5

A = 1733.67

Remember that t is time in years.

there are only red counters and blue counters in a bag. Jim takes at random a counter from a bag. the probability that the counter is red is 0.45 Jim puts the counter back into the bag. Molly takes at random a counter from the bag. She puts the counter back in the bag. What is the probability that Jim and Molly take counters of different colours? Give your answer as a decimal

Answers

Answer:

0.495 probability that Jim and Molly take counters of different colours

Step-by-step explanation:

For each trial, there are only two possible outcomes. Either a blue counter is picked, or a red counter is picked. The counter is put back in the bag after it is taken, which means that we can use the binomial probability distribution to solve this question.

Binomial probability distribution

The binomial probability is the probability of exactly x successes on n repeated trials, and X can only have two outcomes.

[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]

In which [tex]C_{n,x}[/tex] is the number of different combinations of x objects from a set of n elements, given by the following formula.

[tex]C_{n,x} = \frac{n!}{x!(n-x)!}[/tex]

And p is the probability of X happening.

The probability that the counter is red is 0.45

This means that [tex]p = 0.45[/tex]

Jim taken a counter, then Molly:

Two trials, so [tex]n = 2[/tex]

What is the probability that Jim and Molly take counters of different colours?

One red and one blue. So this is P(X = 1).

[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]

[tex]P(X = 1) = C_{2,1}.(0.45)^{1}.(0.55)^{1} = 0.495[/tex]

0.495 probability that Jim and Molly take counters of different colours

Where is my phone? I seem to have lost my phone. I know where I last saw it but it has been moved since then and I need help to locate it. It started at the following coordinates A (14, -12); B (14, -19); C (10, -19); D (10, -14); E (13, -14); F (13, -12). My Mom told me she translated it 6 units to the left Then my little brother said he had reflected it over the Y-axis My friend many found it and translated it 9 units up Dad said he tripped over it and reflected it over the X-axis My sister then rotated it 900 clockwise Uncle Jose translated it 5 units left and 4 units down Cousin Michelle then said she rotated it 900 clockwise Finally my dog picked it up and translated it 5 units down and 10 units to the right Where is my phone? Using the scenario on this page do the following. Graph the preimage using the given points. Label points (A, B, C, ...)​ Transform the objects using the information provided. Show each transformation and label. (A', B', C', ...) Determine the final location. Write a 2 to 3 sentence explain on how you found the phone location.

Answers

Answer:

  see attached

Step-by-step explanation:

The attachments show the initial (brown) and final (blue) positions of the phone. The spreadsheet shows all the intermediate locations and the formulas used to determine them.

The two reflections cancel the total of 180° of CW rotation, so the net result is simply a translation. That translation is up by 9 units.

__

Translation up adds to the y-coefficient; translation right adds to the x-coefficient. Down or left use negative values.

90° CW does this: (x, y) ⇒ (y, -x)

Reflection across y does this: (x, y) ⇒ (-x, y)

Reflection across x does this: (x, y) ⇒ (x, -y)

Make a the subject of the formula: T= a + 4

Answers

Answer:

a = T - 4

Step-by-step explanation:

Simply just subtract 4 on both sides to get the answer!

Answer:

a=T-4

Step-by-step explanation:

subtract 4

At the U.S. Open Tennis Championship a statistician keeps track of every serve that a player hits during the tournament. The statistician reported that the mean serve speed was 100 miles per hour (mph) and the standard deviation of the serve speeds was 15 mph. Assume that the statistician also gave us the information that the distribution of serve speeds was mound- shaped and symmetric. What percentage of the player's serves were between 115 mph and 145 mph

Answers

Answer:

15.74% of the player's serves were between 115 mph and 145 mph

Step-by-step explanation:

When the distribution is normal, we use the z-score formula.

In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the zscore of a measure X is given by:

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.

In this question, we have that:

[tex]\mu = 100, \sigma = 15[/tex]

What percentage of the player's serves were between 115 mph and 145 mph

This is the pvalue of Z when X = 145 subtracted by the pvalue of Z when X = 115.

X = 145

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

[tex]Z = \frac{145 - 100}{15}[/tex]

[tex]Z = 3[/tex]

[tex]Z = 3[/tex] has a pvalue of 0.9987

X = 115

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

[tex]Z = \frac{115 - 100}{15}[/tex]

[tex]Z = 1[/tex]

[tex]Z = 1[/tex] has a pvalue of 0.8413

0.9987 - 0.8413 = 0.1574

15.74% of the player's serves were between 115 mph and 145 mph

A company makes wax candles shaped like rectangular prisms. Each candle is 7cm long, 2cm wide, and 10cm tall. If they used 5740cm^3 of wax, how many candles did they make?

Answers

Answer: 41 candles

Step-by-step explanation:

Multiply the dimensions of the candle first.

V = l*w*h

7 * 2 = 14

14 * 10 = 140

Now, divide the total amount of wax used by the amount of wax used for one candle.

5,740 / 140 = 41

Given that 9 x − 4 y = 20 Find y when x = − 2 Give your answer as an improper fraction in its simplest form

Answers

Answer:

[tex]\boxed{\df\ \dfrac{-19}{2}}[/tex]

Step-by-step explanation:

Hi,

x=-2

it gives

9*(-2)-4y=20

<=> -18-4y=20

<=> 18-18-4y=20+18=38

<=> -4y=38

<=> y = -38/4=-19/2

hope this helps

6 identical toys weigh 1.8kg how much would 4 weigh

Answers

Answer:

1.2kg

Step-by-step explanation:

6 identical toys weigh 1.8kg.

1 toy would weigh:

1.8/6 = 0.3

0.3 kg.

Multiply 0.3 with 4 to find how much 4 identical toys would weigh.

0.3 × 4 = 1.2

4 identical toys would weigh 1.2kg

Answer:

[tex]1.2kg[/tex]

Step-by-step explanation:

6 identical toys weigh = 1.8kg

Let's find the weight of 1 toy ,

[tex]1.8 \div 6 = 0.3[/tex]

Now, lets find the weigh of 6 toys,

[tex]0.3 \times 4 = 1.2kg[/tex]

Find the vertex of the graphed function.
f(x) = |x-4| +3
AY
00
6
4
2
Y
4
The vertex is at

Answers

Answer:

The x-coordinate is the solution to x - 4 = 0, which is x = 4 and the y-coordinate is 3 so the answer is (4, 3).

Please help !! Correct and first answer I’ll give you brainesttttt ! What is the equation of the line?

Answers

Step-by-step explanation:

can u give image PlZzzzz ....

Answer:

Hey!

Your answer should be Y=2x+4

Step-by-step explanation:

Hope this helps!

Solve for x: −3x + 3 < 6

Answers

Answer:x>-1

Step-by-step explanation:

Step 1: Subtract 3 from both sides.

-3x+3-3<6-3

-3x<3

Step 2: Divide both sides by -3.

-3x/-3<3/3

X>-1

According to the National Association of Theater Owners, the average price for a movie in the United States in 2012 was $7.96. Assume the population standard deviation is $0.50 and that a sample of 30 theaters was randomly selected.

Required:
a. Calculate the standard error of the mean.
b. What is the probability that the sample mean will be less than $7.75?
c. What is the probability that the sample mean will be less than $8.10?
d. What is the probability that the sample mean will be more than $8.20?

Answers

Answer:

(a) The standard error of the mean is 0.091.

(b) The probability that the sample mean will be less than $7.75 is 0.0107.

(c) The probability that the sample mean will be less than $8.10 is 0.9369.

(d) The probability that the sample mean will be more than $8.20 is 0.0043.

Step-by-step explanation:

We are given that the average price for a movie in the United States in 2012 was $7.96.

Assume the population standard deviation is $0.50 and that a sample of 30 theaters was randomly selected.

Let [tex]\bar X[/tex] = sample mean price for a movie in the United States

The z-score probability distribution for the sample mean is given by;

                              Z  =  [tex]\frac{\bar X-\mu}{\frac{\sigma}{\sqrt{n} } }[/tex]  ~ N(0,1)

where,  [tex]\mu[/tex] = population mean price for a movie = $7.96

            [tex]\sigma[/tex] = population standard deviation = $0.50

            n = sample of theaters = 30

(a) The standard error of the mean is given by;

     Standard error  =  [tex]\frac{\sigma}{\sqrt{n} }[/tex]  =  [tex]\frac{0.50}{\sqrt{30} }[/tex]

                                =  0.091

(b) The probability that the sample mean will be less than $7.75 is given by = P([tex]\bar X[/tex] < $7.75)

  P([tex]\bar X[/tex] < $7.75) = P( [tex]\frac{\bar X-\mu}{\frac{\sigma}{\sqrt{n} } }[/tex] < [tex]\frac{7.75-7.96}{\frac{0.50}\sqrt{30} } }[/tex] ) = P(Z < -2.30) = 1 - P(Z [tex]\leq[/tex] 2.30)

                                                         = 1 - 0.9893 = 0.0107

The above probability is calculated by looking at the value of x = 2.30 in the z table which has an area of 0.9893.

(c) The probability that the sample mean will be less than $8.10 is given by = P([tex]\bar X[/tex] < $8.10)

  P([tex]\bar X[/tex] < $8.10) = P( [tex]\frac{\bar X-\mu}{\frac{\sigma}{\sqrt{n} } }[/tex] < [tex]\frac{8.10-7.96}{\frac{0.50}\sqrt{30} } }[/tex] ) = P(Z < 1.53) = 0.9369

The above probability is calculated by looking at the value of x = 1.53 in the z table which has an area of 0.9369.

(d) The probability that the sample mean will be more than $8.20 is given by = P([tex]\bar X[/tex] > $8.20)

  P([tex]\bar X[/tex] > $8.20) = P( [tex]\frac{\bar X-\mu}{\frac{\sigma}{\sqrt{n} } }[/tex] > [tex]\frac{8.20-7.96}{\frac{0.50}\sqrt{30} } }[/tex] ) = P(Z > 2.63) = 1 - P(Z [tex]\leq[/tex] 2.63)

                                                         = 1 - 0.9957 = 0.0043

The above probability is calculated by looking at the value of x = 2.63 in the z table which has an area of 0.9957.

The number of bacteria in a refrigerated food product is given by N ( T ) = 22 T 2 − 123 T + 40 , 6 < T < 36 , where T is the temperature of the food. When the food is removed from the refrigerator, the temperature is given by T ( t ) = 8 t + 1.7 , where t is the time in hours. Find the composite function N ( T ( t ) ) : N ( T ( t ) ) = Find the time when the bacteria count reaches 8019. Time Needed = hours

Answers

Answer:

[tex]N(T(t)) = 1408t^2 - 385.6t - 105.52[/tex]

Time for bacteria count reaching 8019: t = 2.543 hours

Step-by-step explanation:

To find the composite function N(T(t)), we just need to use the value of T(t) for each T in the function N(T). So we have that:

[tex]N(T(t)) = 22 * (8t + 1.7)^2 - 123 * (8t + 1.7) + 40[/tex]

[tex]N(T(t)) = 22 * (64t^2 + 27.2t + 2.89) - 984t - 209.1 + 40[/tex]

[tex]N(T(t)) = 1408t^2 + 598.4t + 63.58 - 984t - 169.1[/tex]

[tex]N(T(t)) = 1408t^2 - 385.6t - 105.52[/tex]

Now, to find the time when the bacteria count reaches 8019, we just need to use N(T(t)) = 8019 and then find the value of t:

[tex]8019 = 1408t^2 - 385.6t - 105.52[/tex]

[tex]1408t^2 - 385.6t - 8124.52 = 0[/tex]

Solving this quadratic equation, we have that t = 2.543 hours, so that is the time needed to the bacteria count reaching 8019.

Use the sample data and confidence level given below to complete parts​ (a) through​ (d). A research institute poll asked respondents if they felt vulnerable to identity theft. In the​ poll, n equals 1036 and x equals 583 who said​ "yes." Use a 90 % confidence level.

Required:
a. Find the best point estimate of the population proportion p.
b. Identify the value of the margin of error E =_______
c. Construct the confidence interval.
d. Write a statement that correctly interprets the confidence interval.

1. One has 99​% confidence that the sample proportion is equal to the population proportion.
2. There is a 99​% chance that the true value of the population proportion will fall between the lower bound and the upper bound.
3. One has 99​% confidence that the interval from the lower bound to the upper bound actually does contain the true value of the population proportion.

Answers

Answer:

a. p=0.562

b. E = 0.0253

c. The 90% confidence interval for the population proportion is (0.537, 0.587).

d. We have 90% confidence that the interval (0.537, 0.587) contains the true value of the population proportion.

Step-by-step explanation:

We have to calculate a 90% confidence interval for the proportion.

The sample proportion is p=0.562.

[tex]p=X/n=583/1038=0.562[/tex]

The standard error of the proportion is:

[tex]\sigma_p=\sqrt{\dfrac{p(1-p)}{n}}=\sqrt{\dfrac{0.562*0.438}{1038}}\\\\\\ \sigma_p=\sqrt{0.000237}=0.0154[/tex]

The critical z-value for a 90% confidence interval is z=1.645.

The margin of error (MOE) can be calculated as:

[tex]MOE=z\cdot \sigma_p=1.645 \cdot 0.0154=0.0253[/tex]

Then, the lower and upper bounds of the confidence interval are:

[tex]LL=p-z \cdot \sigma_p = 0.562-0.0253=0.537\\\\UL=p+z \cdot \sigma_p = 0.562+0.0253=0.587[/tex]

The 90% confidence interval for the population proportion is (0.537, 0.587).

We have 90% confidence that the interval contains the true value of the population proportion.

2.
√3x + 7 + √x + 1 =2​

Answers

Answer:

  x = -1

Step-by-step explanation:

The usual approach to these is to square the radicals until they are gone.

  [tex]\displaystyle\sqrt{3x+7}+\sqrt{x+1}=2\\\\(3x+7) +2\sqrt{(3x+7)(x+1)}+(x+1) = 4\qquad\text{square both sides}\\\\2\sqrt{(3x+7)(x+1)}=-4x-4\qquad\text{subtract $4x+8$}\\\\(3x+7)(x+1)=(-2x-2)^2\qquad\text{divide by 2, square again}\\\\3x^2+10x +7=4x^2+8x+4\qquad\text{simplify}\\\\x^2-2x-3=0\qquad\text{subtract the left expression}\\\\(x-3)(x+1)=0\qquad\text{factor}\\\\x=3,\ x=-1\qquad\text{solutions to the quadratic}[/tex]

Each time the equation is squared, the possibility of an extraneous root is introduced. Here, x=3 is extraneous: it does not satisfy the original equation.

The solution is x = -1.

_____

Using a graphing calculator to solve the original equation can avoid extraneous solutions. The attachment shows only the solution x = -1. Rather than use f(x) = 2, we have rewritten the equation to f(x)-2 = 0. The graphing calculator is really good at showing the function values at the x-intercepts.

The answer to – 7x + y = -10

Answers

Step-by-step explanation:

y=7x-10

Answer:

[tex]\huge \boxed{y=7x-10}[/tex]

Step-by-step explanation:

[tex]-7x+y=-10[/tex]

[tex]\sf Add \ 7x \ on \ both \ sides.[/tex]

[tex]-7x+y+7x=-10+7x[/tex]

[tex]y=7x-10[/tex]

Imagine you have a rectangular wooden block with dimensions of 10 cm x 3 cm x 8 cm (L x W x H). Required:a. What is the volume of your wooden block?b. What is the density of this wooden block if it has a mass of 168 g?

Answers

Answer:

a) The volume of the wooden block is 240 cm^3.

b) The density of the wooden block is 0.7 g/cm^3.

Step-by-step explanation:

The volume of the rectangular wooden block can be calculated as the multiplication of the length in each dimension: length, wide and height.

With dimensions 10 cm x 3 cm x 8 cm, the volume is:

[tex]V=L\cdot W\cdot H = 10\cdot 3\cdot 8=240[/tex]

The volume of the wooden block is 240 cm^3.

If we know that the mass of the wooden block is 168 g, we can calculate the density as:

[tex]\rho = \dfrac{M}{V}=\dfrac{168}{240}=0.7[/tex]

The density of the wooden block is 0.7 g/cm^3.

Construct a boxplot for the given data. Include values of the 5-number summary in all boxplots. The test scores of 40 students are listed below. Construct a boxplot for the data set.
25 35 43 44 47 48 54 55 56 57
59 62 63 65 66 68 69 69 71 72
72 73 74 76 77 77 78 79 80 81
81 82 83 85 89 92 93 94 97 98

Answers

Answer:

Minimum = 25

First quartile = 58

Second quartile = 72

Third quartile = 80

Maximum = 98

Step-by-step explanation:

I NEED HELP ASAP PLEASE!!! I REALLY NEED HELP!

Answers

Answer:

D.

Step-by-step explanation:

One slope is positive and one negative, so one line should go up and one down. B or D.

y = 1/2 x - 1 line goes up and y-int. = - 1.  Answer D.

y = - 1/2 x + 3 line goes up and y-int. = 3.  Answer D.

Factor completely 6x to the second power - 36xy + 12x

Answers

Answer:

6x(x - 6y +2)

Step-by-step explanation:

Step 1: Write out expression

6x² - 36xy + 12x

Step 2: Factor out x

x(6x - 36y + 12)

Step 3: Factor out 6

6x(x - 6y + 2)

That is the most we can do. We can only take GCF to factor. Since we don't have an y² term we do not have binomial factors.

Dr. Miriam Johnson has been teaching accounting for over 20 years. From her experience, she knows that 60% of her students do homework regularly. Moreover, 95% of the students who do their homework regularly generally pass the course. She also knows that 85% of her students pass the course.

a. What is the probability that a student will do homework regularly and also pass the course?

b. What is the probability that a student will neither do homework regularly nor will pass the course?

c. Are the events "pass the course" and "do homework regularly" mutually exclusive? Explain.

d. Are the events "pass the course" and "do homework regularly" independent? Explain.

Answers

Answer:

a) The probability that a student will do homework regularly and also pass the course = P(H n P) = 0.57

b) The probability that a student will neither do homework regularly nor will pass the course = P(H' n P') = 0.12

c) The two events, pass the course and do homework regularly, aren't mutually exclusive. Check Explanation for reasons why.

d) The two events, pass the course and do homework regularly, aren't independent. Check Explanation for reasons why.

Step-by-step explanation:

Let the event that a student does homework regularly be H.

The event that a student passes the course be P.

- 60% of her students do homework regularly

P(H) = 60% = 0.60

- 95% of the students who do their homework regularly generally pass the course

P(P|H) = 95% = 0.95

- She also knows that 85% of her students pass the course.

P(P) = 85% = 0.85

a) The probability that a student will do homework regularly and also pass the course = P(H n P)

The conditional probability of A occurring given that B has occurred, P(A|B), is given as

P(A|B) = P(A n B) ÷ P(B)

And we can write that

P(A n B) = P(A|B) × P(B)

Hence,

P(H n P) = P(P n H) = P(P|H) × P(H) = 0.95 × 0.60 = 0.57

b) The probability that a student will neither do homework regularly nor will pass the course = P(H' n P')

From Sets Theory,

P(H n P') + P(H' n P) + P(H n P) + P(H' n P') = 1

P(H n P) = 0.57 (from (a))

Note also that

P(H) = P(H n P') + P(H n P) (since the events P and P' are mutually exclusive)

0.60 = P(H n P') + 0.57

P(H n P') = 0.60 - 0.57

Also

P(P) = P(H' n P) + P(H n P) (since the events H and H' are mutually exclusive)

0.85 = P(H' n P) + 0.57

P(H' n P) = 0.85 - 0.57 = 0.28

So,

P(H n P') + P(H' n P) + P(H n P) + P(H' n P') = 1

Becomes

0.03 + 0.28 + 0.57 + P(H' n P') = 1

P(H' n P') = 1 - 0.03 - 0.57 - 0.28 = 0.12

c) Are the events "pass the course" and "do homework regularly" mutually exclusive? Explain.

Two events are said to be mutually exclusive if the two events cannot take place at the same time. The mathematical statement used to confirm the mutual exclusivity of two events A and B is that if A and B are mutually exclusive,

P(A n B) = 0.

But, P(H n P) has been calculated to be 0.57, P(H n P) = 0.57 ≠ 0.

Hence, the two events aren't mutually exclusive.

d. Are the events "pass the course" and "do homework regularly" independent? Explain

Two events are said to be independent of the probabilty of one occurring dowant depend on the probability of the other one occurring. It sis proven mathematically that two events A and B are independent when

P(A|B) = P(A)

P(B|A) = P(B)

P(A n B) = P(A) × P(B)

To check if the events pass the course and do homework regularly are mutually exclusive now.

P(P|H) = 0.95

P(P) = 0.85

P(H|P) = P(P n H) ÷ P(P) = 0.57 ÷ 0.85 = 0.671

P(H) = 0.60

P(H n P) = P(P n H)

P(P|H) = 0.95 ≠ 0.85 = P(P)

P(H|P) = 0.671 ≠ 0.60 = P(H)

P(P)×P(H) = 0.85 × 0.60 = 0.51 ≠ 0.57 = P(P n H)

None of the conditions is satisfied, hence, we can conclude that the two events are not independent.

Hope this Helps!!!

B
Round your answer to the nearest hundredth.
A
9
B
5

Answers

Answer:

  56.25°

Step-by-step explanation:

The definition of the cosine function tells you that

  cos(B) = BC/BA

  B = arccos(BC/BA) = arccos(5/9)

  B ≈ 56.25°

Other Questions
In each figure below, find m1 and m2 if a||b. Show your work with statements. How can posture help convey the appearance of confidence? The volume of a trianglular prism is 54 cubic units. What is the value of x?3579 Pastina Company sells various types of pasta to grocery chains as private label brands. The company's reporting year-end is December 31. The unadjusted trial balance as of December 31, 2021, appears below.Account Title Debits Credits Cash 32,000 Accounts receivable 40,600 Supplies 1,800 Inventory 60,600 Notes receivable 20,600 Interest receivable 0 Prepaid rent 1,200 Prepaid insurance 6,600 Office equipment 82,400 Accumulated depreciation 30,900 Accounts payable 31,600 Salaries payable 0 Notes payable 50,600 Interest payable 0 Deferred sales revenue 2,300 Common stock 64,200 Retained earnings 30,000 Dividends 4,600 Sales revenue 149,000 Interest revenue 0 Cost of goods sold 73,000 Salaries expense 19,200 Rent expense 11,300 Depreciation expense 0 Interest expense 0 Supplies expense 1,400 Insurance expense 0 Advertising expense 3,300 Totals 358,600 358,600 Information necessary to prepare the year-end adjusting entries appears below.Depreciation on the office equipment for the year is $10,300.Employee salaries are paid twice a month, on the 22nd for salaries earned from the 1st through the 15th, and on the 7th of the following month for salaries earned from the 16th through the end of the month. Salaries earned from December 16 through December 31, 2021, were $900.On October 1, 2021, Pastina borrowed $50,600 from a local bank and signed a note. The note requires interest to be paid annually on September 30 at 12%. The principal is due in 10 years.On March 1, 2021, the company lent a supplier $20,600 and a note was signed requiring principal and interest at 8% to be paid on February 28, 2022.On April 1, 2021, the company paid an insurance company $6,600 for a two-year fire insurance policy. The entire $6,600 was debited to prepaid insurance.$560 of supplies remained on hand at December 31, 2021.A customer paid Pastina $2,300 in December for 900 pounds of spaghetti to be delivered in January 2022. Pastina credited deferred sales revenue.On December 1, 2021, $1,200 rent was paid to the owner of the building. The payment represented rent for December 2021 and January 2022 at $600 per month. The entire amount was debited to prepaid rent.Required:1. Prepare an income statement and a statement of shareholders equity for the year ended December 31, 2021, and a classified balance sheet as of December 31, 2021. Assume that no common stock was issued during the year and that $4,600 in cash dividends were paid to shareholders during the year.2. Prepare the statement of shareholders' equity for the year ended December 31, 2021.3. Prepare the classified balance sheet for the year ended December 31, 2021. (Amounts to be deducted should be indicated by a minus sign.) Predict the arrangement of the following substances in decreasing order of pH value Orange juice || Bitter gourd juice || Hydrochloric acid || Mineral water Which common arguments were given in support of the American colonists' declaration of independence? Select all correct answers. A: Parliament did not have the right to impose taxes on the colonists. B: The British government had become more democratic. C: Britain was doing fine without the resources North America could provide. D: It was ridiculous for an island to govern a continent. Who wants to help I really really need it Mendeleev's periodic table of elements was created in 1901.O A. TrueO B. False Tasha wants to take money out of the ATM for a taxi fare. She wants to do a quick estimate to see if taking $120 out of her bank account will overdraw it. She knows she had $325 in the account this morning when she checked her balance. Today she bought lunch for $19, a dress for $76, a pair of shoes for $53, and a necklace for $23. She also saw a movie with a friend for $12. Rounding each of her expenses to the nearest tens place, estimate how much money Tasha has left in her account before she goes to the ATM. Do not include the $ in your answer. For which equations is 8 a solution? Check all that apply.Ox+6=2X+2 - 10ox-4-4Ox-2-100 2x=43x - 24O - 16 describe the difference between aristocracy and new middle class Read and choose the option that best completes the sentence. man with his face and hand painted in blue Tu nombre es Ral y ________. eres azul eres azules soy azul soy azules Which of these best describes why mainstream media might be called more "accountable" or "responsible" for reports? -Censorship prevents access to certain information and keeps the public safe. -Events are covered round the clock -There are clear-cut procedures for fact-checking and consequences for breaking these rules A company will pay a $2 per share dividend in 1 year. The dividend in 2 years will be $4 per share, and it is expected that dividends will grow at 5% per year thereafter. The expected rate of return on the stock is 12%.Required:a. What is the current price of the stock? b. What is the expected price of the stock in a year? c. Show that the expected return, 12%, equals dividend yield plus capital appreciation. PLEASE ANSWER ASAP 10 POINTS!!!!!!! Fifteen years ago, Mr. Fairhold paid $50,000 for a single-premium annuity contract. This year, he began receiving a $1,300 monthly payment that will continue for his life. On the basis of his age, he can expect to receive $312,000. How much of each monthly payment is taxable income to Mr. Fairhold Find the measure of each marked angle.X degree= ? Degree(X+50) Degree =? Degree(180-3x) Degree =? Degree(Simplify your answers. Type an integer or a fraction.) Arrange the events from act II of Romeo and Juliet in the order in which they occur in the play. Romeo and Juliet declare their love for each other at Juliets balcony and make plans to get married. Romeo is joking around with Mercutio and Benvolio when Juliets nurse arrives to find out about his plans. Juliet arrives at Friar Laurences cell, and he marries the young couple in the hope that their love will end their families feud. After the Capulets ball, Romeo hides from Mercutio and Benvolio and goes looking for Juliet. Romeo leaves Juliet to find Friar Laurence and convince him to help them get married in secret. Juliets nurse conveys Romeos message and helps Juliet secretly go to Friar Laurences cell. WILL MARK BRAINLIEST Scientists have been studying threats to coral reefs. The percent of reefs affected by various threats are shown in the figure below. A future global temperature increase may affect all categories on the figure. Predict which category would change the most from global temperature increases and propose a testable question that scientists could study. a. The biggest effect will be on the far right column that includes thermal stress with a greater percentage of reefs falling into the low and medium threat categories. Scientists could test whether reefs that have greater fishing risk also have greater thermal risk. b. The biggest effect will be on the far right column that includes thermal stress, with a greater percentage of reefs falling into the high and very high threat categories. Scientists could test whether reefs that have greater temperature changes have greater increases in watershed-based pollution. c. The biggest effect will be on the far left column that includes fishing, with a greater percentage of reefs falling into the high and very high threat categories. Scientists could test whether increased fishing causes increased marine-based pollution. d. The biggest effect will be on the far left column that includes fishing, with a greater percentage of reefs falling into the low and medium threat categories. Scientists could test whether reefs that have greater temperature changes have greater increases in fishing threats. Which is an example of a story an investigative journalist would cover?A. A roofing company using shoddy materials in repairsB. A festival brings thousands of tourists to townC. A politician votes for a law that supports his beliefsD. A criminal is caught and sent to jail