Therefore, the solution expressed in inequality notation is x < 6 or x > 18. (C). In interval notation, this solution can be written as (-∞, 6) ∪ (18, +∞).
To solve the inequality [tex]x^2 + 27 > 12x[/tex], we can rearrange the equation to bring all terms to one side:
[tex]x^2 - 12x + 27 > 0[/tex]
Now, we can use a sign chart to analyze the inequality.
Step 1: Find the critical points by setting the expression equal to zero and solving for x:
[tex]x^2 - 12x + 27 = 0[/tex]
This equation does not factor nicely, so we can use the quadratic formula:
x = (-(-12) ± √[tex]((-12)^2 - 4(1)(27))[/tex]) / (2(1))
x = (12 ± √(144 - 108)) / 2
x = (12 ± √36) / 2
x = (12 ± 6) / 2
The critical points are x = 6 and x = 18.
Step 2: Create a sign chart using the critical points and test points within the intervals.
Interval (-∞, 6):
Choose a test point, e.g., x = 0:
Substitute the value into the inequality: [tex]0^2 + 27 > 12(0)[/tex]
27 > 0 (true)
The sign in this interval is positive (+).
Interval (6, 18):
Choose a test point, e.g., x = 10:
Substitute the value into the inequality: [tex]10^2 + 27 > 12(10)[/tex]
127 > 120 (true)
The sign in this interval is positive (+).
Interval (18, +∞):
Choose a test point, e.g., x = 20:
Substitute the value into the inequality: [tex]20^2 + 27 > 12(20)[/tex]
427 > 240 (true)
The sign in this interval is positive (+).
Step 3: Express the solution in inequality notation based on the sign chart:
Since the inequality is greater than (>) zero, the solution can be expressed as x < 6 or x > 18.
To know more about inequality,
https://brainly.com/question/32586449
#SPJ11
passing through the mid -point of the line segment joining (2,-6) and (-4,2) and perpendicular to the line y=-x+2
To find the equation of the line passing through the mid-point of the line segment joining (2, -6) and (-4, 2) and perpendicular to the line y = -x + 2, we need to follow the steps mentioned below.
What are the steps?Step 1: Find the mid-point of the line segment joining (2, -6) and (-4, 2).The mid-point of a line segment with endpoints (x1, y1) and (x2, y2) is given by[(x1 + x2)/2, (y1 + y2)/2].
So, the mid-point of the line segment joining (2, -6) and (-4, 2) is[((2 + (-4))/2), ((-6 + 2)/2)] = (-1, -2)
Step 2: Find the slope of the line perpendicular to y = -x + 2.
The slope of the line y = -x + 2 is -1, which is the slope of the line perpendicular to it.
Step 3: Find the equation of the line passing through the point (-1, -2) and having slope -1.
The equation of a line passing through the point (x1, y1) and having slope m is given byy - y1 = m(x - x1).
So, substituting the values of (x1, y1) and m in the above equation, we get the equation of the line passing through the point (-1, -2) and having slope -1 as:
[tex]y - (-2) = -1(x - (-1))⇒ y + 2[/tex]
[tex]= -x - 1⇒ y[/tex]
[tex]= -x - 3[/tex]
Hence, the equation of the line passing through the mid-point of the line segment joining (2, -6) and (-4, 2) and perpendicular to the line y = -x + 2 is
y = -x - 3.
To know more on Perpendicular visit:
https://brainly.com/question/12746252
#SPJ11
V=x^(3)+7x^(2)+10x, where x is the height of the prism. Find linear factors with integer here the length is longer than the width.
To find the linear factors with integer, here the length is longer than the width. Using the formula,
`Volume = length × width × height` or
`V = l × w × h.
Given, the volume of a prism `V = x^3 + 7x^2 + 10x` where x is the height of the prism. To find the linear factors with integer, here the length is longer than the width. Using the formula, `Volume = length × width × height` or `V = l × w × h` For simplicity, we can assume that the width of the prism is 1 unit as the product of length and width is equal to 10, we can write `l × w = 10`
and `w = 1`.
Now, `V = l × w × h
= l × h
= x^3 + 7x^2 + 10x`
Or, `l × h = x^3 + 7x^2 + 10x`
As we know `l × w = 10`,
then `l = 10/w`
or `l = 10`.
So, we can write the equation `l × h = x^3 + 7x^2 + 10x`
as `10h = x^3 + 7x^2 + 10x`
Or, `10h = x(x^2 + 7x + 10)`
Or, `10h = x(x + 5)(x + 2)`
As the length is greater than the width, the value of x + 5 will be the length and the value of x + 2 will be the width. So, the linear factors with integer are (x + 5), (x + 2) and 10. The length of the prism is x + 5 and the width of the prism is x + 2. The volume of the prism is V = l × w × h = 10h.
To know more about integer visit:
https://brainly.com/question/490943
#SPJ11
Use the rational zeros theorem to list all possible rational h(x)=-5x^(4)-7x^(3)+5x^(2)+4x+7
The only rational root of h(x) is x = -1.The rational zeros theorem gives a good starting point, but it may not give all possible rational roots of a polynomial.
The given polynomial is h(x)=-5x^(4)-7x^(3)+5x^(2)+4x+7.
We need to use the rational zeros theorem to list all possible rational roots of the given polynomial.
The rational zeros theorem states that if a polynomial h(x) = a_nx^n + a_{n-1}x^{n-1} + ... + a_1x + a_0 has any rational roots, they must be of the form p/q where p is a factor of the constant term a_0 and q is a factor of the leading coefficient a_n.
First, we determine the possible rational zeros by listing all the factors of 7 and 5. The factors of 7 are ±1 and ±7, and the factors of 5 are ±1 and ±5.
We now determine the possible rational zeros of the polynomial h(x) by dividing each factor of 7 by each factor of 5. We get ±1/5, ±1, ±7/5, and ±7 as possible rational zeros.
We can now check which of these possible rational zeros is a root of the polynomial h(x)=-5x^(4)-7x^(3)+5x^(2)+4x+7.
To check whether p/q is a root of h(x), we substitute x = p/q into h(x) and check whether the result is zero.
Using synthetic division for the first possible root, -7/5, gives a remainder of -4082/3125. It is not zero.
Using synthetic division for the second possible root, -1, gives a remainder of 0.
Therefore, x = -1 is a rational root of h(x).
Using synthetic division for the third possible root, 1/5, gives a remainder of -32/3125.It is not zero.
Using synthetic division for the fourth possible root, 1, gives a remainder of -2.It is not zero.
Using synthetic division for the fifth possible root, 7/5, gives a remainder of -12768/3125.It is not zero.
Using synthetic division for the sixth possible root, -7, gives a remainder of 8.It is not zero.
Therefore, the only rational root of h(x) is x = -1.
To know more about rational root click here:
https://brainly.com/question/29551180
#SPJ11
Determine which of the following subsets of R 3
are subspaces of R 3
. Consider the three requirements for a subspace, as in the previous problem. Select all which are subspaces. The set of all (b 1
,b 2
,b 3
) with b 3
=b 1
+b 2
The set of all (b 1
,b 2
,b 3
) with b 1
=0 The set of all (b 1
,b 2
,b 3
) with b 1
=1 The set of all (b 1
,b 2
,b 3
) with b 1
≤b 2
The set of all (b 1
,b 2
,b 3
) with b 1
+b 2
+b 3
=1 The set of all (b 1
,b 2
,b 3
) with b 2
=2b 3
none of the above
The subsets of R^3 that are subspaces of R^3 are:
The set of all (b1, b2, b3) with b1 = 0.
The set of all (b1, b2, b3) with b1 = 1.
The set of all (b1, b2, b3) with b1 ≤ b2.
The set of all (b1, b2, b3) with b1 + b2 + b3 = 1.
To determine whether a subset of R^3 is a subspace, we need to check three requirements:
The subset must contain the zero vector (0, 0, 0).
The subset must be closed under vector addition.
The subset must be closed under scalar multiplication.
Let's analyze each subset:
The set of all (b1, b2, b3) with b3 = b1 + b2:
Contains the zero vector (0, 0, 0) since b1 = b2 = b3 = 0 satisfies the condition.
Closed under vector addition: If (b1, b2, b3) and (c1, c2, c3) are in the subset, then (b1 + c1, b2 + c2, b3 + c3) is also in the subset since (b3 + c3) = (b1 + b2) + (c1 + c2).
Closed under scalar multiplication: If (b1, b2, b3) is in the subset and k is a scalar, then (kb1, kb2, kb3) is also in the subset since (kb3) = k(b1 + b2).
The set of all (b1, b2, b3) with b1 = 0:
Contains the zero vector (0, 0, 0).
Closed under vector addition: If (0, b2, b3) and (0, c2, c3) are in the subset, then (0, b2 + c2, b3 + c3) is also in the subset.
Closed under scalar multiplication: If (0, b2, b3) is in the subset and k is a scalar, then (0, kb2, kb3) is also in the subset.
The set of all (b1, b2, b3) with b1 = 1:
Does not contain the zero vector (0, 0, 0) since (b1 = 1) ≠ (0).
Not closed under vector addition: If (1, b2, b3) and (1, c2, c3) are in the subset, then (2, b2 + c2, b3 + c3) is not in the subset since (2 ≠ 1).
Not closed under scalar multiplication: If (1, b2, b3) is in the subset and k is a scalar, then (k, kb2, kb3) is not in the subset since (k ≠ 1).
The set of all (b1, b2, b3) with b1 ≤ b2:
Contains the zero vector (0, 0, 0) since (b1 = b2 = 0) satisfies the condition.
Closed under vector addition: If (b1, b2, b3) and (c1, c2, c3) are in the subset, then (b1 + c1, b2 + c2, b3 + c3) is also in the subset since (b1 + c1) ≤ (b2 + c2).
Closed under scalar multiplication: If (b1, b2, b3) is in the subset and k is a scalar, then (kb1, kb2, kb3) is also in the subset since (kb1) ≤ (kb2).
The set of all (b1, b2, b3) with b1 + b2 + b3 = 1:
Contains the zero vector (0, 0, 1) since (0 + 0 + 1 = 1).
Closed under vector addition: If (b1, b2, b3) and (c1, c2, c3) are in the subset, then (b1 + c1, b2 + c2, b3 + c3) is also in the subset since (b1 + c1) + (b2 + c2) + (b3 + c3) = (b1 + b2 + b3) + (c1 + c2 + c3)
= 1 + 1
= 2.
Closed under scalar multiplication: If (b1, b2, b3) is in the subset and k is a scalar, then (kb1, kb2, kb3) is also in the subset since (kb1) + (kb2) + (kb3) = k(b1 + b2 + b3)
= k(1)
= k.
The subsets that are subspaces of R^3 are:
The set of all (b1, b2, b3) with b1 = 0.
The set of all (b1, b2, b3) with b1 ≤ b2.
The set of all (b1, b2, b3) with b1 + b2 + b3 = 1.
To know more about subspace, visit
https://brainly.com/question/26727539
#SPJ11
The two triangles below are similar.
What is the scale factor from triangle V to
triangle W?
Give your answer as an integer or as a
fraction in its simplest form.
7 cm
34°
59° 4 cm
V
87°
6 cm
12 cm
87°
59°
W
34°
The scale factor from triangle V to triangle W is 48/7, implying that the related side lengths in triangle W are 48/7 times the comparing side lengths in triangle V.
How to determine the scale factor from triangle V to triangle WWe can compare the side lengths of the two triangles to determine the scale factor from triangle V to triangle W.
In triangle V, the side lengths are:
The side lengths of the triangle W are as follows:
VW = 7 cm
VX = 4 cm
VY = 6 cm
WX = 12 cm;
WY =?
The side lengths of the triangles are proportional due to their similarity.
We can set up an extent utilizing the side lengths:
Adding the values: VX/VW = WY/WX
4/7 = WY/12
Cross-increasing:
4 x 12 x 48 x 7WY divided by 7 on both sides:
48/7 = WY
From triangle V to triangle W, the scale factor is 48/7.
Learn more about scale factor here:
https://brainly.com/question/10253650
#SPJ1
Write 1.86 \times 10^{0} without exponents.
The answer is 1.86.
1.86 × 10^0 is equivalent to 1.86 x 1 = 1.86
In this context, the term 10^0 is referred to as an exponent.
An exponent is a mathematical operation that indicates the number of times a value is multiplied by itself.
A number raised to an exponent is called a power.
In this instance, 10 is multiplied by itself zero times, resulting in one.
As a result, 1.86 × 10^0 is equivalent to 1.86.
Therefore, the answer is 1.86.
Learn more about Exponents:
brainly.com/question/13669161
#SPJ11
Determine whether the differential equation is exact. If it is, find its general solution.
(-y+2xy) dx + (x²-x+3y²) dy = 0
You may leave the answer in an implicit form.
The general solution of the given differential equation can be obtained by integrating the differential equation as follows:`∫[(-y + 2xy)e^(2x² - xln|x² - x + 3y²| + 2y³)]dx + ∫[(x² - x + 3y²)e^(2x² - xln|x² - x + 3y²| + 2y³)]dy = c`
Given differential equation is `(-y + 2xy)dx + (x² - x + 3y²)dy = 0`
To check if the differential equation is exact, we need to take partial derivatives with respect to x and y.
If the mixed derivative is the same, the differential equation is exact.
(∂Q/∂x) = (-y + 2xy)(1) + (x² - x + 3y²)(0) = -y + 2xy(∂P/∂y) = (-y + 2xy)(2x) + (x² - x + 3y²)(6y) = -2xy + 4x²y + 6y³
As mixed derivative is not same, the differential equation is not exact.
Therefore, we need to find an integrating factor.The integrating factor (IF) is given by `IF = e^∫(∂P/∂y - ∂Q/∂x)/Q dy`
Let's find IF.IF = e^∫(∂P/∂y - ∂Q/∂x)/Q dyIF = e^∫(-2xy + 4x²y + 6y³)/(x² - x + 3y²) dyIF = e^(2x² - xln|x² - x + 3y²| + 2y³)
Multiplying IF throughout the equation, we get:
((-y + 2xy)e^(2x² - xln|x² - x + 3y²| + 2y³))dx + ((x² - x + 3y²)e^(2x² - xln|x² - x + 3y²| + 2y³))dy = 0
The LHS of the equation can be expressed as the total derivative of a function of x and y.
Therefore, the differential equation is exact.
So, the general solution of the given differential equation can be obtained by integrating the differential equation as follows:`∫[(-y + 2xy)e^(2x² - xln|x² - x + 3y²| + 2y³)]dx + ∫[(x² - x + 3y²)e^(2x² - xln|x² - x + 3y²| + 2y³)]dy = c`
On solving the above equation, we can obtain the general solution of the given differential equation in implicit form.
To know more about general solution visit:
brainly.com/question/33289088
#SPJ11
A function is given.
f(t) 5√t: ta,twa+h
(a) Determine the net change between the given values of the variable.
(b) Determine the average rate of change between the given values of the variable.
The average rate of change is 5 / h * [√(a + h) - √a].
The given function is f(t) = 5√t.
We are required to find the net change between the given values of the variable, and also determine the average rate of change between the given values of the variable.
Let's solve this one by one.
(a) The net change between the given values of the variable.
We are given t1 = a and t2 = a + h.
Therefore, the net change between t1 and t2 is:Δt = t2 - t1= (a + h) - a= h
Thus, the net change is h.
(b) The average rate of change between the given values of the variable
The average rate of change of a function f between x1 and x2 is given by:
Average rate of change of f = (f(x2) - f(x1)) / (x2 - x1)
Now, we can use this formula to find the average rate of change of the given function f(t) = 5√t between the given values t1 and t2.
Therefore, Average rate of change of f between t1 and t2 is:(f(t2) - f(t1)) / (t2 - t1)= [5√(t1 + h) - 5√t1] / (t1 + h - t1)= [5√(a + h) - 5√a] / h= 5 / h * [√(a + h) - √a]
Thus, the average rate of change is 5 / h * [√(a + h) - √a].
To know more about average visit:
brainly.com/question/32603929
#SPJ11
Find the area of the region inside the rose curve r = 4 sin(3θ) and outside the circle r = 2 (in polar coordinates).
The area of the region inside the rose curve r = 4 sin(3θ) and outside the circle r = 2 is approximately 12.398 square units.
How to calculate area of the region inside the rose curveTo find the area of the region, first step is to find the limits of integration for θ and set up the integral in polar coordinates.
2 = 4 sin(3θ)
sin(3θ) = 0.5
3θ = pi/6 + kpi,
where k is an integer
θ = pi/18 + kpi/3
The valid values of k that give us the intersection points are k=0,1,2,3,4,5. Hence, there are six intersection points between the rose curve and the circle.
We can get the area of the shaded region if we subtract the area of the circle from the area of the shaded region inside the rose curve.
The area inside the rose curve is given by the integral:
[tex]A = (1/2) \int[\theta1,\theta2] r^2 d\theta[/tex]
where θ1 and θ2 are the angles of the intersection points between the rose curve and the circle.
[tex]r = 4 sin(3\theta) = 4 (3 sin\theta - 4 sin^3\theta)[/tex]
So, the integral for the area inside the rose curve is:
[tex]\intA1 = (1/2) \int[pi/18, 5pi/18] (4 (3 sin\theta - 4 sin^3\theta))^2 d\theta[/tex]
[tex]A1 = 72 \int[pi/18, 5pi/18] sin^2\theta (1 - sin^2\theta)^2 d\theta[/tex]
[tex]A1 = 72 \int[1/6, \sqrt(3)/6] u^2 (1 - u^2)^2 du[/tex]
To evaluate this integral, expand the integrand and use partial fractions to obtain:
[tex]A1 = 72 \int[1/6, \sqrt(3)/6] (u^2 - 2u^4 + u^6) du\\= 72 [u^3/3 - 2u^5/5 + u^7/7] [1/6, \sqrt(3)/6]\\= 36/35 (5\sqrt(3) - 1)[/tex]
we can find the area of the circle now, which is given by
[tex]A2 = \int[0,2\pi ] (2)^2 d\theta = 4\pi[/tex]
Therefore, the area of the shaded region is[tex]A = A1 - A2 = 36/35 (5\sqrt(3) - 1) - 4\pi[/tex]
So, the area of the region inside the rose curve r = 4 sin(3θ) and outside the circle r = 2 is approximately 12.398 square units.
Learn more on area of a circle on https://brainly.com/question/12374325
#SPJ4
Jared needs cupcakes for the bake sale. His friend Amy brings him 20 cupcakes. Jared can bake twenty four cupcakes every hour. His mom brings him 36 cupcakes she bought from Ingle's. If he needs 200 cupcakes to sell, how many hours will he need to bake?
Jared can bake 24 cupcakes per hour, he will need 144 / 24 = 6 hours to bake the remaining cupcakes.
Let's calculate how many cupcakes Jared has already:
- Amy brings him 20 cupcakes.
- His mom brings him 36 cupcakes.
So far, Jared has 20 + 36 = 56 cupcakes.
To reach his goal of 200 cupcakes, Jared needs an additional 200 - 56 = 144 cupcakes.
Jared can bake 24 cupcakes per hour.
To find out how many hours he needs to bake, we divide the number of remaining cupcakes by the number of cupcakes he can bake per hour:
Hours = (144 cupcakes) / (24 cupcakes/hour)
Hours = 6
Therefore, Jared will need to bake for 6 hours to reach his goal of 200 cupcakes.
To know more about cupcakes: https://brainly.com/question/30663087
#SPJ11
When looking at a statistic, one should consider how big the population is and whether or not it is convenient to survey the entire population.
True or False?
The given statement is True.When looking at a statistic, one should consider how big the population is and whether or not it is convenient to survey the entire population.
When we are investigating an event or a population, we can't really obtain data from every person or event. So, we just take a sample and get an average or data from them. It is not always feasible to collect data from the entire population.
We should make sure that the sample we choose to analyze our population is representative of the population as a whole. To ensure that the sample is representative, we must understand the population size and what percentage of the population we want to include in our analysis. Also, it is crucial to select the right statistical method to analyze the data from the sample.
Statistics are critical in both academic and professional fields. We must ensure that we collect data that is representative of the entire population we want to analyze. To do so, we must ensure that we choose a sample that is representative of the population. Furthermore, when we are analyzing the data, we must select the proper statistical method to analyze the sample.
Choosing the wrong statistical method might yield incorrect findings or conclusions. We must understand the population size and what percentage of the population we want to include in our analysis when selecting a sample. The sample must be large enough to provide a representative result. However, we should avoid having a sample that is too large, as this may result in unnecessary work and waste of resources.
We should consider the population size and convenience when selecting a sample. We should also choose the appropriate statistical method to analyze the data.
Thus, the given statement is true that when looking at a statistic, one should consider how big the population is and whether or not it is convenient to survey the entire population.
To know more about statistical method :
brainly.com/question/30652356
#SPJ11
0.721 0.779 0.221
Use the Z Standard Normal probability distribution tables to obtain P(Z> -0.77) (NOTE MINUS SIGNI)
0.279
Rounding to three decimal places, we get:
P(Z > -0.77) ≈ 0.779
To obtain P(Z > -0.77) using Z Standard Normal probability distribution tables, we can look for the area under the standard normal curve to the right of -0.77 (since we want the probability that Z is greater than -0.77).
We find that the area to the left of -0.77 is 0.2206. Since the total area under the standard normal curve is 1, we can calculate the area to the right of -0.77 by subtracting the area to the left of -0.77 from 1:
P(Z > -0.77) = 1 - P(Z ≤ -0.77)
= 1 - 0.2206
= 0.7794
Rounding to three decimal places, we get:
P(Z > -0.77) ≈ 0.779
Learn more about decimal from
https://brainly.com/question/1827193
#SPJ11
Arrange the following O(n2),O(2n),O(logn),O(nlogn),O(n2logn),O(n) Solution : Order of Growth Ranked from Best (Fastest) to Worst (Slowest) O(1)O(log2n)O(n)O(nlog2n)O(n2)O(n3)…O(nk)O(2n)O(n!) O(logn)
There are various time complexities of an algorithm represented by big O notations.
The time complexity of an algorithm refers to the amount of time it takes for an algorithm to solve a problem as the size of the input grows.
The big O notation is used to represent the worst-case time complexity of an algorithm.
It's a mathematical expression that specifies how quickly the running time increases with the size of the input. The following are some of the most prevalent time complexities and their big O notations:
O(1) - constant time
O(log n) - logarithmic time
O(n) - linear time
O(n log n) - linearithmic time
O(n2) - quadratic time
O(n3) - cubic time
O(2n) - exponential time
O(n!) - factorial time
Here are the time complexities given in the question ranked from best to worst:
O(logn)
O(n)
O(nlogn)
O(n2)
O(n2logn)
O(2n)
Hence, the correct order of growth ranked from best (fastest) to worst (slowest) is O(logn), O(n), O(nlogn), O(n2), O(n2logn), and O(2n).
In conclusion, there are various time complexities of an algorithm represented by big O notations.
To know more about algorithm, visit:
https://brainly.com/question/33344655
#SPJ11
Attorney at Law, in a series of cases. She wins each case with probability 3
1
, independent of the results of other cases. Let C be the number of cases she requires to obtain her first win. Compute P(C≤8) using the formula for a finite geometric sum.
The probability that she requires 8 or fewer cases to obtain her first win is [tex]\(P(C \ \leq \ 8) = \frac{{58975}}{{65536}}\)[/tex].
To compute P(C ≤ 8), we can use the formula for the sum of a finite geometric series. Here, C represents the number of cases required to obtain the first win, and each case is won with a probability of 3/4.
The probability that she wins on the first case is 3/4.
The probability that she wins on the second case is (1 - 3/4) [tex]\times[/tex] (3/4) = 3/16.
The probability that she wins on the third case is (1 - 3/4)² [tex]\times[/tex] (3/4) = 9/64.
And so on.
We need to calculate the sum of these probabilities up to the eighth case:
P(C ≤ 8) = (3/4) + (3/16) + (9/64) + ... + (3/4)^7.
Using the formula for the sum of a finite geometric series, we have:
P(C ≤ 8) = [tex]\(\frac{{\left(1 - \left(\frac{3}{4}\right)^8\right)}}{{1 - \frac{3}{4}}}\)[/tex].
Let us evaluate now:
P(C ≤ 8) = [tex]\(\frac{{1 - \left(\frac{3}{4}\right)^8}}{{1 - \frac{3}{4}}}\)[/tex].
Now we will simply it:
P(C ≤ 8) = [tex]\(\frac{{1 - \frac{6561}{65536}}}{{\frac{1}{4}}}\)[/tex].
Calculating it further:
P(C ≤ 8) = [tex]\(\frac{{58975}}{{65536}}\)[/tex].
Therefore, the probability that she requires 8 or fewer cases to obtain her first win is [tex]\(P(C \ \leq \ 8) = \frac{{58975}}{{65536}}\)[/tex].
For more questions on probability :
https://brainly.com/question/30390037
#SPJ8
Consider the sequence (an) given by a1 = 1. a2 = 2, an+1= 1/2(an+an-1) for n > 2.
We will show that this sequence is Cauchy.
(a)Show that for all n∈ N, |an+1-an|≤ 1 /2n-1
(b) Use part (a) to show that (an) is Cauchy.
Hint: Recall that knowing part (a) is true is not enough on its own since you need to show that |am-an| can be made arbitrarily small for any pair of terms am and an, not just consecutive terms. Try starting with |an+k-an| (where k ∈N is arbitrary) and see if you can rewrite this in a way that allows you to use what you learnt in part (a).
[Note: in this question you are asked to show this sequence is Cauchy directly from the definition, not using the Cauchy Criterion.]
we have shown that for any ε > 0, there exists N ∈ N such that for all m, n ≥ N, |am - an| < ε. This satisfies the definition of a Cauchy sequence.
(a) To show that for all n ∈ N, |an+1 - an| ≤ 1/2^(n-1), we can use mathematical induction.
Base Case (n = 1):
|a2 - a1| = |2 - 1| = 1 ≤ 1/2^(1-1) = 1.
Inductive Step:
Assume that for some k ∈ N, |ak+1 - ak| ≤ 1/2^(k-1). We need to show that |ak+2 - ak+1| ≤ 1/2^k.
Using the recursive formula, we have:
ak+2 = 1/2(ak+1 + ak)
Substituting this into |ak+2 - ak+1|, we get:
|ak+2 - ak+1| = |1/2(ak+1 + ak) - ak+1| = |1/2(ak+1 - ak)| = 1/2 |ak+1 - ak|
Since |ak+1 - ak| ≤ 1/2^(k-1) (by the inductive hypothesis), we have:
|ak+2 - ak+1| = 1/2 |ak+1 - ak| ≤ 1/2 * 1/2^(k-1) = 1/2^k.
Therefore, by mathematical induction, we have shown that for all n ∈ N, |an+1 - an| ≤ 1/2^(n-1).
(b) To show that (an) is Cauchy, we need to show that for any ε > 0, there exists N ∈ N such that for all m, n ≥ N, |am - an| < ε.
Let ε > 0 be given. By part (a), we know that |an+k - an| ≤ 1/2^(k-1) for all n, k ∈ N.
Choose N such that 1/2^(N-1) < ε. Then, for all m, n ≥ N and k = |m - n|, we have:
|am - an| = |am - am+k+k - an| ≤ |am - am+k| + |am+k - an| ≤ 1/2^(m-1) + 1/2^(k-1) < ε/2 + ε/2 = ε.
Learn more about Cauchy sequence here :-
https://brainly.com/question/13160867
#SPJ11
In an exit poll, 61 of 85 men sampled supported a ballot initiative to raise the local sales tax to fund a new hospital. In the same poll, 64 of 77 women sampled supported the initiative. Compute the test statistic value for testing whether the proportions of men and women who support the initiative are different. −1.66 −1.63 −1.72 −1.69 −1.75
The two-sample z-test for proportions can be used to test the difference in the proportions of men and women supporting an initiative. The formula is Z = (p1-p2) / SED (Standard Error Difference), where p1 is the standard error, p2 is the standard error, and SED is the standard error. The pooled sample proportion is used as an estimate of the common proportion, and the Z-score is -1.405. Therefore, option A is the closest approximate test statistic value.
The test statistic value for testing whether the proportions of men and women who support the initiative are different is -1.66.Explanation:Given that n1 = 85, n2 = 77, x1 = 61, x2 = 64.A statistic is used to estimate a population parameter. As there are two independent samples, the two-sample z-test for proportions can be used to test whether the proportions of men and women who support the initiative are different.
Test statistic formula: Z = (p1-p2) / SED (Standard Error Difference)where, p1 = x1/n1, p2 = x2/n2,
SED = √{ p1(1 - p1)/n1 + p2(1 - p2)/n2}
We can use the pooled sample proportion as an estimate of the common proportion.
The pooled sample proportion is:
Pp = (x1 + x2) / (n1 + n2)
= (61 + 64) / (85 + 77)
= 125 / 162
SED is calculated as:
SED = √{ p1(1 - p1)/n1 + p2(1 - p2)/n2}
= √{ [(61/85) * (24/85)]/85 + [(64/77) * (13/77)]/77}
= √{ 0.0444 + 0.0572}
= √0.1016
= 0.3186
Z-score is calculated as:
Z = (p1 - p2) / SED
= ((61/85) - (64/77)) / 0.3186
= (-0.0447) / 0.3186
= -1.405
Therefore, the test statistic value for testing whether the proportions of men and women who support the initiative are different is -1.405, rounded to two decimal places. Hence, option A -1.66 is the closest approximate test statistic value.
To know more about test statistic Visit:
https://brainly.com/question/31746962
#SPJ11
Factor each of the elements below as a product of irreducibles in Z[i], [Hint: Any factor of aa must have norm dividing N(a).]
(a) 3
(b) 7
(c) 4+3i
(d) 11+7i
The factorization of the given elements in Z[i] is:
(a) 3 (irreducible)
(b) 7 (irreducible)
(c) 4 + 3i = (2 + i)(2 + i)
(d) 11 + 7i (irreducible)
To factor the elements in the ring of Gaussian integers Z[i], we can use the norm function to find the factors with norms dividing the norm of the given element. The norm of a Gaussian integer a + bi is defined as N(a + bi) = a² + b².
Let's factor each element:
(a) To factor 3, we calculate its norm N(3) = 3² = 9. Since 9 is a prime number, the only irreducible element with norm 9 is ±3 itself. Therefore, 3 is already irreducible in Z[i].
(b) For 7, the norm N(7) = 7² = 49. The factors of 49 are ±1, ±7, and ±49. Since the norm of a factor must divide N(7) = 49, the possible Gaussian integer factors of 7 are ±1, ±i, ±7, and ±7i. However, none of these elements have a norm of 7, so 7 is irreducible in Z[i].
(c) Let's calculate the norm of 4 + 3i:
N(4 + 3i) = (4²) + (3²) = 16 + 9 = 25.
The factors of 25 are ±1, ±5, and ±25. Since the norm of a factor must divide N(4 + 3i) = 25, the possible Gaussian integer factors of 4 + 3i are ±1, ±i, ±5, and ±5i. We need to find which of these factors actually divide 4 + 3i.
By checking the divisibility, we find that (2 + i) is a factor of 4 + 3i, as (2 + i)(2 + i) = 4 + 3i. So the factorization of 4 + 3i is 4 + 3i = (2 + i)(2 + i).
(d) Let's calculate the norm of 11 + 7i:
N(11 + 7i) = (11²) + (7²) = 121 + 49 = 170.
The factors of 170 are ±1, ±2, ±5, ±10, ±17, ±34, ±85, and ±170. Since the norm of a factor must divide N(11 + 7i) = 170, the possible Gaussian integer factors of 11 + 7i are ±1, ±i, ±2, ±2i, ±5, ±5i, ±10, ±10i, ±17, ±17i, ±34, ±34i, ±85, ±85i, ±170, and ±170i.
By checking the divisibility, we find that (11 + 7i) is a prime element in Z[i], and it cannot be further factored.
Therefore, the factorization of the given elements in Z[i] is:
(a) 3 (irreducible)
(b) 7 (irreducible)
(c) 4 + 3i = (2 + i)(2 + i)
(d) 11 + 7i (irreducible)
Learn more about irreducible element click;
https://brainly.com/question/31955518
#SPJ4
Which of the following would most likely represent a reliable range of MPLHs in a school foodservice operation?
Group of answer choices
13-18
1.4-2.7
3.5-3.6
275-350
MPLHs (Meals Per Labor Hour) is a productivity measure used to evaluate how effectively a foodservice operation is using its labor.
A higher MPLH rate indicates better efficiency as it means the operation is producing more meals per labor hour. the MPLH range varies with the size and scale of the foodservice operation. out of the given options, the most reliable range of MPLHs in a school foodservice operation is 3.5-3.6.
The range 3.5-3.6 is the most likely representation of a reliable range of MPLHs in a school foodservice operation. Generally, in a school foodservice operation, an MPLH of 3.0 or above is considered efficient. An MPLH of less than 3.0 indicates inefficiency, and steps need to be taken to improve productivity.
The 3.5-3.6 is the most reliable range of MPLHs for a school foodservice operation.
To know more about Meals Per Labor Hour visit:-
https://brainly.com/question/32330810
#SPJ11
Answer the following questions using the method we learned in class Friday.
a.Find an equation for a plane that contains the points (1, 1, 2), (2, 0, 1), and (1, 2, 1).
b.Find an equation for a plane that is parallel to the one from the previous problem, but contains the point (1,0,0).
The equation of plane that contains the points (1, 1, 2), (2, 0, 1), and (1, 2, 1) is 2x + y + z - 5 = 0 and the equation for a plane that is parallel to the one from the previous problem but contains the point (1, 0, 0) is 2x + y + z - 2 = 0.
a. Equation for a plane that contains the points (1, 1, 2), (2, 0, 1), and (1, 2, 1):
Let's find the normal to the plane with the given three points:
n = (P2 - P1) × (P3 - P1)
= (2, 0, 1) - (1, 1, 2) × (1, 2, 1) - (1, 1, 2)
= (2 - 1, 0 - 2, 1 - 1) × (1 - 1, 2 - 1, 1 - 2)
= (1, -2, 0) × (0, 1, -1)
= (2, 1, 1)
The equation for the plane:
2(x - 1) + (y - 1) + (z - 2) = 0 or
2x + y + z - 5 = 0
b. Equation for a plane that is parallel to the one from the previous problem, but contains the point (1, 0, 0):
A plane that is parallel to the previous problem’s plane will have the same normal vector as the plane, i.e., n = (2, 1, 1).
The equation of the plane can be represented in point-normal form as:
2(x - 1) + (y - 0) + (z - 0) = 0 or
2x + y + z - 2 = 0
Know more about the equation of plane
https://brainly.com/question/30655803
#SPJ11
What factoring technique should you apply first in the polynomial 3m^(4)-48 ?
The first factoring technique to apply in the polynomial 3m^(4)-48 is to factor out the greatest common factor (GCF), which in this case is 3.
The polynomial 3m^(4)-48, we begin by looking for the greatest common factor (GCF) of the terms. In this case, the GCF is 3, which is common to both terms. We can factor out the GCF by dividing each term by 3:
3m^(4)/3 = m^(4)
-48/3 = -16
After factoring out the GCF, the polynomial becomes:
3m^(4)-48 = 3(m^(4)-16)
Now, we can focus on factoring the expression (m^(4)-16) further. This is a difference of squares, as it can be written as (m^(2))^2 - 4^(2). The difference of squares formula states that a^(2) - b^(2) can be factored as (a+b)(a-b). Applying this to the expression (m^(4)-16), we have:
m^(4)-16 = (m^(2)+4)(m^(2)-4)
Therefore, the factored form of the polynomial 3m^(4)-48 is:
3m^(4)-48 = 3(m^(2)+4)(m^(2)-4)
Learn more about polynomial : brainly.com/question/11536910
#SPJ11
Question 17 (1 point)
Find the surface area of the figure. Hint: the surface area from the missing prism
inside the prism must be ADDED!
2 ft 5ft
10 ft
7 ft
6 ft
The surface area of the rectangular prism is 462 square feet.
What is the surface area of the rectangular prism?Length, L = 10 ft
Width, W = 6 ft
Height, H = 7 ft
SA= 2(LW + LH + WH)
= 2(10×7 + 10×6 + 6×7)
= 2(70+60+42)
= 2(172)
= 344 square feet
Surface area of the missing prism:
Length, L = 5 ft
Width, W = 2 ft
Height, H = 7 ft
SA= 2(LW + LH + WH)
= 2(5×2 + 5×7 + 2×7)
= 2(10 + 35 + 14)
= 2(59)
= 118 square feet
Therefore, the surface area of the figure
= 344 square feet + 118 square feet
= 462 square feet
Read more on surface area of rectangular prism;
https://brainly.com/question/1310421
#SPJ1
In Python
The PDF (probability density function) of the standard normal distribution is given by:
(x)=(1/(√2))*^(-(x^2)/2)
Evaluate the normal probability density function at all values x∈{−3,−2,−1,0,1,2,3}x∈{−3,−2,−1,0,1,2,3} and print f(x) for each
In python, the probability density function (PDF) of the standard normal distribution is given by(x) = (1 / (√2)) * ^ (-(x ^ 2) / 2).[tex]0.24197072451914337f(0) = 0.39894228040.24197072451914337f(2) = 0.05399096651318806f(3) = 0.00443184841[/tex]
This is also known as the Gaussian distribution and is a continuous probability distribution. It is used in many fields to represent naturally occurring phenomena.Here is the code to evaluate the normal probability density function at all values of[tex]x∈{−3,−2,−1,0,1,2,3}x∈{−3,−2,−1,0,1,2,3}[/tex] and print f(x) for each.
[tex]4119380075f(-2) = 0.05399096651318806f(-1) = 0.24197072451914337f(0) = 0.3989422804[/tex]4119380075f(-2) = 0.05399096651318806f(-1) = [tex]0.24197072451914337f(0) = 0.39894228040.24197072451914337f(2) = 0.05399096651318806f(3) = 0.00443184841[/tex]19380075
This program will evaluate the normal probability density function at all values of [tex]x∈{−3,−2,−1,0,1,2,3}x∈{−3,−2,−1,0,1,2,3}[/tex]and print f(x) for each.
The output shows that the value of the function is highest at x = 0 and lowest at x = -3 and x = 3.
To know more about probability visit:
https://brainly.com/question/31828911
#SPJ11
A company must pay a $309,000 settlement in 5 years.
(a) What amount must be deposited now at % compounded semiannually to have enough money for the settlement?(b) How much interest will be earned?
(c) Suppose the company can deposit only $ now. How much more will be needed in years?
(d) Suppose the company can deposit $ now in an account that pays interest continuously. What interest rate would they need to accumulate the entire $ in years?
(a) The amount that must be deposited now is $245,788.86.
(b) The interest earned will be $63,212.14.
(c) If the company can only deposit $200,000 now, they will need an additional $161,511.14 in 5 years.
(d) If the company can deposit $200,000 now in an account that pays interest continuously, they would need an interest rate of approximately 9.7552% to accumulate the entire $309,000 in 5 years.
(a) To find the amount that must be deposited now, we can use the formula for compound interest:
A = P(1 + r/n)^(nt)
Where:
A = Future value (settlement amount) = $309,000
P = Principal amount (deposit) = ?
r = Annual interest rate (as a decimal) = ?
n = Number of compounding periods per year = 2 (since compounded semiannually)
t = Number of years = 5
We need to solve for P, so rearranging the formula, we have:
P = A / (1 + r/n)^(nt)
Substituting the given values, we get:
P = $309,000 / (1 + r/2)^(2*5)
To solve for P, we need to know the interest rate (r). Please provide the interest rate so that I can continue with the calculation.
(b) To calculate the interest earned, we subtract the principal amount from the future value (settlement amount):
Interest = Future value - Principal amount
Interest = $309,000 - $245,788.86
= $63,212.14
(c) To find the additional amount needed, we subtract the deposit amount from the future value (settlement amount):
Additional amount needed = Future value - Deposit amount
Additional amount needed = $309,000 - $200,000
= $109,000
(d) To find the required interest rate, we can use the formula for continuous compound interest:
A = P * e^(rt)
Where:
A = Future value (settlement amount) = $309,000
P = Principal amount (deposit) = $200,000
r = Annual interest rate (as a decimal) = ?
t = Number of years = 5
e = Euler's number (approximately 2.71828)
We need to solve for r, so rearranging the formula, we have:
r = (1/t) * ln(A/P)
Substituting the given values, we get:
r = (1/5) * ln($309,000/$200,000)
Calculating this using logarithmic functions, we find:
r ≈ 0.097552 (approximately 9.7552%)
Therefore, the company would need an interest rate of approximately 9.7552% in order to accumulate the entire $309,000 in 5 years with a $200,000 deposit in an account that pays interest continuously.
(a) The amount that must be deposited now is $245,788.86.
(b) The interest earned will be $63,212.14.
(c) If the company can only deposit $200,000 now, they will need an additional $161,511.14 in 5 years.
(d) If the company can deposit $200,000 now in an account that pays interest continuously, they would need an interest rate of approximately 9.7552% to accumulate the entire $309,000 in 5 years.
To know more about logarithmic functions, visit
https://brainly.com/question/31012601
#SPJ11
If A={1/n:n is natural number }. In the usual topological space, A2 = a. A b. ϕ c. R d. (O)
In the usual topological space, None of the given options (a, b, c, d) accurately represents A^2.
In the usual topological space, the notation A^2 refers to the set of all possible products of two elements, where each element is taken from the set A. Let's calculate A^2 for the given set A = {1/n: n is a natural number}.
A^2 = {a * b: a, b ∈ A}
Substituting the values of A into the equation, we have:
A^2 = {(1/n) * (1/m): n, m are natural numbers}
To simplify this expression, we can multiply the fractions:
A^2 = {1/(n*m): n, m are natural numbers}
Therefore, A^2 is the set of reciprocals of the product of two natural numbers.
Now, let's analyze the given options:
a) A^2 ≠ a, as a is a specific value, not a set.
b) A^2 ≠ ϕ (empty set), as A^2 contains elements.
c) A^2 ≠ R (the set of real numbers), as A^2 consists of specific values related to the product of natural numbers.
d) A^2 ≠ (O) (the empty set), as A^2 contains elements.
Therefore, none of the given options (a, b, c, d) accurately represents A^2.
Learn more about topological space here:-
https://brainly.com/question/32645200
#SPJ11
Find the exact value of each expressionfunctio
1. (a) sin ^−1(0.5)
(b) cos^−1(−1) 2. (a) tan^−1√3
b) sec ^-1(2)
The solutions of the given trigonometric functions or expressions are a) sin^-1 (0.5) = 30° and b) cos^-1 (-1) = 180° and a) tan^-1 (√3) = 60° and b) sec^-1 (2) = 60°
Here are the solutions of the given trigonometric functions or expressions;
1. a) sin^-1 (0.5)
To find the exact value of sin^-1 (0.5), we use the formula;
sin^-1 (x) = θ
Where sin θ = x
Applying the formula;
sin^-1 (0.5) = θ
Where sin θ = 0.5
In a right angle triangle, if we take one angle θ such that sin θ = 0.5, then the opposite side of that angle will be half of the hypotenuse.
Let us take the angle θ as 30°.
sin^-1 (0.5) = θ = 30°
So, the exact value of
sin^-1 (0.5) is 30°.
b) cos^-1 (-1)
To find the exact value of
cos^-1 (-1),
we use the formula;
cos^-1 (x) = θ
Where cos θ = x
Applying the formula;
cos^-1 (-1) = θ
Where cos θ = -1
In a right angle triangle, if we take one angle θ such that cos θ = -1, then that angle will be 180°.
cos^-1 (-1) = θ = 180°
So, the exact value of cos^-1 (-1) is 180°.
2. a) tan^-1√3
To find the exact value of tan^-1√3, we use the formula;
tan^-1 (x) = θ
Where tan θ = x
Applying the formula;
tan^-1 (√3) = θ
Where tan θ = √3
In a right angle triangle, if we take one angle θ such that tan θ = √3, then that angle will be 60°.
tan^-1 (√3) =
θ = 60°
So, the exact value of tan^-1 (√3) is 60°.
b) sec^-1 (2)
To find the exact value of sec^-1 (2),
we use the formula;
sec^-1 (x) = θ
Where sec θ = x
Applying the formula;
sec^-1 (2) = θ
Where sec θ = 2
In a right angle triangle, if we take one angle θ such that sec θ = 2, then the hypotenuse will be double of the adjacent side.
Let us take the angle θ as 60°.
Now,cos θ = 1/2
Hypotenuse = 2 × Adjacent side
= 2 × 1 = 2sec^-1 (2)
= θ = 60°
So, the exact value of sec^-1 (2) is 60°.
Hence, the solutions of the given trigonometric functions or expressions are;
a) sin^-1 (0.5) = 30°
b) cos^-1 (-1) = 180°
a) tan^-1 (√3) = 60°
b) sec^-1 (2) = 60°
To know more about trigonometric functions visit:
https://brainly.com/question/25618616
#SPJ11
Below is the output of a valid regression model where Sales is a dependent variable and Radio promotions and TV promotions are independent variables.
Residual standard error: 33.75 on 18 degrees of freedom
Multiple R-squared: 0.5369, Adjusted R-squared: 0.4957
F-statistic: 4.511 on 7 and 18 DF, p-value: 0.004647
Which is the correct interpretation of 0.5369 of Multiple R-squared?
a.53.69 % of variations of Sales is explained by Radio promotions and TV promotions.
b.53.69 % of variations of Radio promotions is explained by Sales and TV promotions.
c.53.69 % of variations of TV promotions is explained by Sales and Radio promotions.
d.53.69 % of variations of Radio promotions and TV promotions is explained by Sales.
a. 53.69% of variations of Sales is explained by Radio promotions and TV promotions.
The multiple R-squared value of 0.5369 represents the proportion of the total variation in the dependent variable (Sales) that can be explained by the independent variables (Radio promotions and TV promotions). In other words, approximately 53.69% of the variations in Sales can be attributed to the combined effects of Radio promotions and TV promotions.
To know more about variables visit:
brainly.com/question/29583350
#SPJ11
You have $96 to spend on campground activites. You can rent a paddleboat for $8 per hour and a kayak for $6 per hour. Write an equation in standard form that models the possible hourly combinations of activities you can afford and then list three possible combinations.
Three possible hourly combinations of activities are:(0, 16), (8, 12) and (16, 8). Let the number of hours for renting paddleboat be represented by 'x' and the number of hours for renting kayak be represented by 'y'.
Here, it is given that you have $96 to spend on campground activities. It means that you can spend at most $96 for these activities. And it is also given that renting a paddleboat costs $8 per hour and renting a kayak costs $6 per hour. Now, we need to write an equation in standard form that models the possible hourly combinations of activities you can afford.
The equation in standard form can be written as: 8x + 6y ≤ 96
To list three possible combinations, we need to take some values of x and y that satisfies the above inequality. One possible way is to take x = 0 and y = 16.
This satisfies the inequality as follows: 8(0) + 6(16) = 96
Another way is to take x = 8 and y = 12.
This satisfies the inequality as follows: 8(8) + 6(12) = 96
Similarly, we can take x = 16 and y = 8.
This also satisfies the inequality as follows: 8(16) + 6(8) = 96
Therefore, three possible hourly combinations of activities are:(0, 16), (8, 12) and (16, 8).
To know more about hours visit :
https://brainly.com/question/13349617
#SPJ11
Given a Binomial distribution with n=5,p=0.3, and q=0.7 where p is the probability of success in each trial and q is the probability of failure in each trial. Based on these information, the expected
If a Binomial distribution with n = 5, p = 0.3, and q = 0.7 where p is the probability of success in each trial and q is the probability of failure in each trial, then the expected number of successes is 1.5.
A binomial distribution is used when the number of trials is fixed, each trial is independent, the probability of success is constant, and the probability of failure is constant.
To find the expected number of successes, follow these steps:
The formula to calculate the expected number of successes is n·p, where n is the number of trials and p is the number of successes.Substituting n=5 and p= 0.3 in the formula, we get the expected number of successes= np = 5 × 0.3 = 1.5Therefore, the expected number of successes in the binomial distribution is 1.5.
Learn more about binomial distribution:
brainly.com/question/15246027
#SPJ11
This assignment requires you to use functions from the math library to calculate trigonometric results. Write functions to do each of the following: - Calculate the adjacent length of a right triangle given the hypotenuse and the adjacent angle. - Calculate the opposite length of a right triangle given the hypotenuse and the adjacent angle. - Calculate the adjacent angle of a right triangle given the hypotenuse and the opposite length. - Calculate the adjacent angle of a right triangle given the adjacent and opposite lengths. These must be four separate functions. You may not do math in the main program for this assignment. As the main program, include test code that asks for all three lengths and the angle, runs the calculations to
The math library has a set of methods that can be used to work with different mathematical operations. The math library can be used to calculate the trigonometric results.
The four separate functions that can be created with the help of math library for the given problem are:Calculate the adjacent length of a right triangle given the hypotenuse and the adjacent angle:When we know the hypotenuse and the adjacent angle of a right triangle, we can calculate the adjacent length of the triangle. Here is the formula to calculate the adjacent length: adjacent_length = math.cos(adjacent_angle) * hypotenuseCalculate the opposite length of a right triangle given the hypotenuse and the adjacent angle:When we know the hypotenuse and the adjacent angle of a right triangle, we can calculate the opposite length of the triangle.
Here is the formula to calculate the opposite length:opposite_length = math.sin(adjacent_angle) * hypotenuseCalculate the adjacent angle of a right triangle given the hypotenuse and the opposite length:When we know the hypotenuse and the opposite length of a right triangle, we can calculate the adjacent angle of the triangle. Here is the formula to calculate the adjacent angle:adjacent_angle = math.acos(opposite_length / hypotenuse)Calculate the adjacent angle of a right triangle given the adjacent and opposite lengths:When we know the adjacent length and opposite length of a right triangle, we can calculate the adjacent angle of the triangle. Here is the formula to calculate the adjacent angle:adjacent_angle = math.atan(opposite_length / adjacent_length)
We have seen how math library can be used to solve the trigonometric problems. We have also seen four separate functions that can be created with the help of math library to solve the problem that requires us to calculate the adjacent length, opposite length, and adjacent angles of a right triangle.
To know more about math visit
https://brainly.com/question/30200246
#SPJ11
-8 × 10=
A) -18
B) -80
C) 18
D) 80
E) None
Answer:
b
Step-by-step explanation:
Answer:
-80
Explanation:
A negative times a positive results in a negative.
So let's multiply:
-8 × 10
-80
Hence, the answer is -80.