Answer:
La aceleración del autobús es -5.80 m/s².
Explanation:
Podemos encontrar la aceleración del autobús usando la siguiente ecuación:
[tex] v_{f}^{2} = v_{0}^{2} + 2ad [/tex]
Where:
[tex]v_{f}[/tex]: es la velocidad final = 0 (se detiene al final)
[tex]v_{0}[/tex]: es la velocidad inicial = 95 km/h
d: es la distancia recorrida = 60 m
Por lo tanto, la aceleración es:
[tex] a = \frac{v_{f}^{2} - v_{0}^{2}}{2d} = \frac{0 - (95 \frac{km}{h}*\frac{1000 m}{1 km}*\frac{1 h}{3600 s})^{2}}{2*60 m} = -5.80 m/s^{2} [/tex]
El signo negativo se debe a que el autobús está desacelerando (hasta que se detiene).
Entonces, la aceleración del autobús es -5.80 m/s².
Espero que te sea de utilidad!
A salmon jumps up a waterfall 2.4 m high. With what minimum speed did the salmon leave the water below to reach the top?
Answer:
6.86 m/s
Explanation:
The minimal velocity needed is when we have only vertical motion, then i will think in the problem only in one axis.
I suppose that the only force, in this case, is the gravitational force acting on the fish.
Then the gravitational equation of the fish will be:
a(t) = -9.8m/s^2
For the velocity equation we need to integrate over time to get:
v(t) = (-9.8m/s^2)*t + v0
Where v0 is the initial velocity of the fish and is what we want to find.
For the position equation we need to integrate over time again to get:
p(t) = (1/2)*(-9.8m/s^2)*t^2 + v0*t + p0
p0 is the initial position of the fish, and because he starts one the water, the initial position is p0 = 0 m
Then the equation is:
p(t) = (1/2)*(-9.8 m /s^2)*t^2 + v0*t
p(t) = (-4.9 m/s^2)*t^2 + v0*t
We know that the maximum height is 2.4m
The value of time at which the fish gets his maximum height is when the velocity of the fish is equal to zero, then we first need to solve:
v(t) = (-9.8m/s^2)*t + v0 = 0
t = v0/9.8m/s^2
Now we replace this in the position equation to get the maxmimum height, which is equal to 2.4m
2.4m = p( v0/9.8m/s^2) = (1/2)*(-9.8 m /s^2)*(v0/9.8m/s^2)^2 + v0*(v0/9.8m/s^2)
2.4m = (1/2)(-v0)^2(-9.8 m /s^2) + v0^2/(9.8m/s^2))
2.4m = (1 - 1/2)*v0^2/(9.8m/s^2)
2.4m = 0.5*v0^2/(9.8m/s^2)
2.4m/0.5 = v0^2/(9.8m/s^2)
4.8m*(9.8m/s^2) = v0^2
√(4.8m*(9.8m/s^2)) = v0 = 6.86 m/s
A chocolate chip cookie is an example of a (2 points) a homogeneous mixture b heterogeneous mixture c suspension d colloid
Answer:
I think it is heterogeneous mixture. have a good day
Answer:
heterogeneous mixture
Explanation:
i took the test
A 46.8-g golf ball is driven from the tee with an initial speed of 58.8 m/s and rises to a height of 24.7 m. (a) Neglect air resistance and determine the kinetic energy of the ball at its highest point. (b) What is its speed when it is 8.11 m below its highest point?
Answer:
a) the kinetic energy of the ball at its highest point is 69.58 J
b) its speed when it is 8.11 m below its highest point is 55.97 m/s
Explanation:
Given that;
mass of golf ball m = 46.8 g = 0.0468 kg
initial speed of the ball v₁ = 58.8 m/s
height h = 24.7 m
acceleration due to gravity = 9.8 m/s²
the kinetic energy of the ball at its highest point = ?
from the conservation of energy;
Kinetic energy at the highest point will be;
K.Ei + P.Ei = KEf + PEf
now the Initial potential energy of the ball P.Ei = 0 J
so
1/2mv² + 0 J = KEf + mgh
K.Ef = 1/2mv² - mgh
we substitute
K.Ef = [1/2 × 0.0468 × (58.8 )²] - [0.0468 × 9.8 × 24.7]
K.Ef = 80.904 - 11.3284
K.Ef = 69.58 J
Therefore, the kinetic energy of the ball at its highest point is 69.58 J
b) when the ball is 8.11 m below the highest point, speed = ?
so our raw height h' will be ( 24.7 m - 8.11 m) = 16.59 m
so our velocity will be v₂
also using the principle of energy conservation;
K.Ei + P.Ei = KEh + PEh
1/2mv² + 0 J = 1/2mv₂² + mgh'
1/2mv₂² = 1/2mv² - mgh'
multiply through by 2/m
v₂² = v² - 2gh'
v₂ = √( v² - 2gh' )
we substitute
v₂ = √( (58.8)² - 2×9.8×16.59 )
v₂ = √( 3457.44 - 325.164 )
v₂ = √( 3132.276 )
v₂ = 55.97 m/s
Therefore, its speed when it is 8.11 m below its highest point is 55.97 m/s
If a person visits an exercise facility, buys a new piece of fitness/sporting equipment,
or just starts planning to be active, which of the five stages of change for physical
activity are they at?
Planning
Maintenance
Precontemplation
Contemplation
Answer:planning
Explanation:
The person is in the stage of planning due to its action of planning to be active.
What is planning stage?The person is in the planning stage among the five stages of change for physical activity because the person just started planning to be active not yet started the activity. If a person is in the state of looking thoughtfully at something for a very long time then it is said to be Contemplation.
While on the other hand, if a person is in a stage in which there is no intention to change behavior in the foreseeable future then it is called precontemplation so we can conclude that the person is in the stage of planning due to its action of planning to be active.
Learn more about physical activity here: https://brainly.com/question/1561572
a 14n force is applied for 0.33 seconds, calculate the impulse
Answer:
4.62 N-s
Explanation:
recall that the formula for impulse is given by
Impulse = Force x change in time
in our case, we are given
Force = 14 N
change in time = 0.33s
Simply substituting the above into the equation for impulse, we get
Impulse = Force x change in time
Impulse = 14 x 0.33
= 4.62 N-s
[tex]\\ \sf\longmapsto Impulse=Force(Time)[/tex]
[tex]\\ \sf\longmapsto Impulse=14(0.33)[/tex]
[tex]\\ \sf\longmapsto Impulse=4.62Ns[/tex]
Calculate the work done to raise a charge of 25 coulombs through an emf of 8 volts.
1) 3
2) 200
Corrected, it's 2) 200
he potential energy between two atoms in a particular molecule has the form U(s) = 2.6/x^8 - 4.3/x^4 where the units of x are length and the numbers 2.G and 4.3 have appropriate units so that U(x) has units of energy. What b the equilibrium separation of the atoms (that is the distance at which the force between the atoms is zero)?
Answer:
x = 1.04866
Explanation:
Force can be defined from power energy by the expressions
F = [tex]- \frac{ dU}{ dx}[/tex]
in this case we are the expression of the potential energy
U = [tex]\frac{2.6}{x^{8} } - \frac{4.3}{ x^{4} }[/tex]
let's find the derivative
dU / dx = 2.6 ( [tex]\frac{-8}{x^{9} }[/tex]) - 4.3 ([tex]\frac{-4}{ x^{5} }[/tex])
dU / dx = [tex]- \frac{20.8}{ x^{9} } + \frac{17.2 }{ x^{5} }[/tex]
we substitute
F = + \frac{20.8}{ x^{9} } - \frac{17.2 }{ x^{5} }
at the equilibrium point the force is zero, so
[tex]\frac{20.8}{ x^{9} } = \frac{17.2}{ x^{5} }[/tex]
20.8 / 17.2 = x⁴
x⁴ = 1.2093
x = [tex]\sqrt[4]{ 1.2093}[/tex]
x = 1.04866
which experimental result led to a revision of Thomas's plum pudding model of the atom?
A. electrons were found to have higher energy the farther they are from the nucleus
B. the beam in a cathode ray tube was moved by an electric force
C. A few alpha particles bounced off a thin sheet of gold foil
D. most alpha particles passed straight through a thin sheet of gold foil
Answer: C. A few alpha particles bounced off a thin sheet of gold foil.
If an ice cube with the mass of 5.0 grams melts in a closed system such as a closed glass jar what is the mass of the liquid water after the ice cube completely melts
a block of mas \( m \) = 4.8 kg slides head on into a spring of spring constant \( k \) = 430 N/m. When the block stops, it has compressed the spring by 5.8 cm. The coefficient of kinetic friction between block and floor is 0.28. \( (g =9.8m/s^2) \)
Answer:
See explanation below
Explanation:
The question is incomplete. The missing part of this question is the following:
"While the block is in contact with the spring and being brought to rest, what are (a)the work done by the spring force and (b) the increase in thermal energy of the blockfloor system? (c) What is the blocks speed just as it reaches the spring?"
According to this we need to calculate three values: Work, Thermal Energy and Speed of the block when it reaches the spring.
Let's do this by parts.
a) Work done by the spring:
In this case, we need to apply the following expression:
W = -1/2 kx² (1)
We know that k = 430 N/m, and x is the distance of compressed spring which is 5.8 cm (or 0.058 m). Replacing that into the expression:
W = -1/2 * 430 * (0.058)²
W = -0.7233 Jb) Increase in thermal energy
In this case we need to use the following expression:
ΔEt = Fk * x (2)
And Fk is the force of the kinetic energy which is:
Fk = μk * N (3)
Where μk is the coeffient of kinetic friction
N is the normal force which is the same as the weight, so:
N = mg (4)
Let's calculate first the Normal force (4), then Fk (3) and finally the chance in the thermal energy (2):
N = 4.8 * 9.8 = 47.04 N
Fk = 0.28 * 47.04 = 13.1712 N
Finally the Thermal energy:
ΔEt = 13.1712 * 0.058
ΔEt = 0.7639 Jc) Block's speed reaching the spring
As the block is just reaching the speed, the initial Work is 0. And the following expression will help us to get the speed:
V = √2Ki/m (5)
And Ki, which is the initial kinetic energy can be calculated with:
Ki = ΔU + ΔEt (6)
And ΔU is the same value of work calculated in part (a) but instead of being negative, it will be positive here. So replacing the data first in (6) and then in (5), we can calculate the speed:
Ki = 0.7233 + 0.7639 = 1.4872 J
Finally the speed:
V = √(2 * 1.4872) / 4.8
V = 0.7872 m/sHope this helps
12
Select the correct answer.
What creates an electric force field that moves electrons through a circuit?
ОА.
energy source
B.
load
O c.
metal wires
OD.
resistance
Answer:
A
Explanation:
What is the displacement of an object during a specific unit of time.
Answer:
velocity
Explanation:
the displacement of an object during a specific unit of time.
Sam heaves a 16lb shot straight upward, giving it a constant upward acceleration from rest of 35 m/s^2 for 64.0 cm. He releases it 2.20m above the ground. You may ignore air resistance.
(a) What is the speed of the shot when Sam releases it?
(b) How high above the ground does it go?
(c ) How much time does he have to get out of its way before it returns to the height of the top of his head, 1.83 m above the ground?
Answer:
6.69 m/s
4.483 m
1.42s
Explanation:
Given that:
Initial Velocity, u = 0
Final velocity, v =?
Acceleration, a = 35m/s²
1.) using the relation :
v² = u² + 2as
v² = 0 + 2(35) * 64*10^-2m
v² = 70 * 0.64
v = sqrt(44.8)
v = 6.693
v = 6.69 m/s
B.) height from the ground, h0 = 2.2
How high ball went , h:
Using :
v² = u² + 2as
Upward motion, g = - ve
0 = 6.69² + 2(-9.8)*(h - 2.2)
0= 6.69² - 19.6(h - 2.2)
44.7561 + 43.12 - 19.6h = 0
19.6h = 44.7561 - 43.12
h = 87.8761 / 19.6
h = 4.483 m
C.)
vt - 0.5gt² = h - h0
6.69t - 0.5(9.8)t²
6.69t - 4.9t² = 1.83 - 2.2
-4.9t² + 6.69t + 0.37 = 0
Using the quadratic equation solver :
Taking the positive root:
1.4185 = 1.42s
A fisherman notices that his boat is moving up and down periodically without any horizontal motion, owing to waves on the surface of the water. It takes a time of 2.30 s for the boat to travel from its highest point to its lowest, a total distance of 0.660 m . The fisherman sees that the wave crests are spaced a horizontal distance of 5.50 m apart. How fast are the waves traveling
Answer:
v = 1.2 m/s
Explanation:
The wavelength of the waves is given as the horizontal distance between the crests:
λ = wavelength = 5.5 m
Now, the time period is given as the time taken by boat to move from the highest point again to the highest point. So it will be equal to twice the time taken by the boat to travel from highest to the lowest point:
T = Time Period = 2(2.3 s) = 4.6 s
Now, the speed of the wave is given as:
[tex]v = f\lambda[/tex]
where,
v= speed of wave = ?
f = frequency of wave = [tex]\frac{1}{T} = \frac{1}{4.6\ s} = 0.217\ Hz[/tex]
Therefore,
[tex]v = (0.217\ Hz)(5.5\ m)\\[/tex]
v = 1.2 m/s
effects of heat on matter
Answer:
it can melt orcan put them past their boiling point
Explanation:
A constant force FA is applied to an object of mass M, initially at rest. The object moves in the horizontal x-direction, and the force is applied in the same direction. After the force has been applied, the object has a speed of vf. Which mathematical routines can be used to determine the time in which the force is applied to the object of mas
Answer:
t = [tex]\frac{ v \ F}{ m}[/tex]
Explanation:
The question is a bit strange, for this exercise we must use the mathematical relationship of Newton's second law to find the acceleration of the body
F = m a
a = F / m (1)
with this acceleration the mathematical relations of kinematics of accelerated motion must be used
v = v₀ + a t
with the body starting from rest its initial velocity is zero
v = a t
t = v / a (2)
if we substitute the equation 1 in 2
t = [tex]\frac{ v \ F}{ m}[/tex]
this is the final mathematical expression that allows to find the time based on the data of the problem
An RC car is carrying a tiny slingshot with a spring constant of 85 N/m at 0.2 m off the ground at 5.6 m/s. The sling shot is pulled back 3.5 cm from a relaxed state and shoots a 25 g steel pellet in the same direction the car is moving. What is the velocity of the steel pellet relative to the ground as it leaves the sling shot
Answer:
The velocity of the steel pellet relative to the ground when it leaves the sling shot is approximately 5.960 meters per second.
Explanation:
Let suppose that RC car-slingshot-steelpellet is a conservative system, that is, that non-conservative forces (i.e. friction, air viscosity) can be neglected. The velocity of the steel pellet can be found by means of the Principle of Energy Conservation and under the consideration that change in gravitational potential energy is negligible and that the RC car travels at constant velocity:
[tex]\frac{1}{2}\cdot (m_{C}+m_{P})\cdot v_{o}^{2} + \frac{1}{2}\cdot k\cdot x^{2} = \frac{1}{2}\cdot m_{C}\cdot v_{o}^{2} + \frac{1}{2}\cdot m_{P}\cdot v^{2}[/tex]
[tex]\frac{1}{2}\cdot m_{P}\cdot v_{o}^{2} + \frac{1}{2}\cdot k\cdot x^{2} = \frac{1}{2}\cdot m_{P}\cdot v^{2}[/tex]
[tex]m_{P}\cdot v_{o}^{2} + k\cdot x^{2} = m_{P}\cdot v^{2}[/tex]
[tex]v^{2} = v_{o}^{2} + \frac{k}{m_{P}}\cdot x^{2}[/tex]
[tex]v = \sqrt{v_{o}^{2}+\frac{k}{m_{P}}\cdot x^{2} }[/tex] (1)
Where:
[tex]v_{o}[/tex] - Initial velocity of the steel pellet, measured in meters per second.
[tex]v[/tex] - Final velocity of the steel pellet, measured in meters per second.
[tex]k[/tex] - Spring constant, measured in newtons per meter.
[tex]m_{P}[/tex] - Mass of the steel pellet, measured in kilograms.
[tex]m_{C}[/tex] - Mass of the RC car, measured in kilograms.
[tex]x[/tex] - Initial deformation of the spring, measured in meters.
If we know that [tex]v_{o} = 5.6\,\frac{m}{s}[/tex], [tex]k = 85\,\frac{N}{m}[/tex], [tex]m_{P} = 0.025\,kg[/tex] and [tex]x = 0.035\,m[/tex], then the velocity of the steel pellet relative to the ground when it leaves the sling shot is:
[tex]v = \sqrt{\left(5.6\,\frac{m}{s} \right)^{2}+\frac{\left(85\,\frac{N}{m} \right)\cdot (0.035\,m)^{2}}{0.025\,kg} }[/tex]
[tex]v \approx 5.960\,\frac{m}{s}[/tex]
The velocity of the steel pellet relative to the ground when it leaves the sling shot is approximately 5.960 meters per second.
Does changing the height of point C affect the speed of the coaster car at point D?
Without friction, NO.
The speed at D depends only on the difference in height between A and D. Whatever happens between them doesn't matter.
The speed of the coaster car at point D will be affected if the height of point C is changed.
Potencial Energy:
It is the enrgy in a body due to the position of differnt part of the object or system.
As we increase the the hight of the car the potetial enrgy increase, the gravitational acceleration on car will be more due to the high of the point C.
Therefore, the speed of the coaster car at point D will be affected if the height of point C is changed.
To know more about speed of the coaster car,
https://brainly.com/question/9178285
A 0.5kg football thrown by Tony Romo with a velocity of 15 m/s is caught by a stationary receiver and brought to rest in 0.02 seconds. a) what impulse is delivered to the ball? b) how much force must be exerted in order to stop the ball?
The answers are -7.5kg m/s and F = -375N, but I don't know how they got them. Steps please! Thank you!!
Answer:
a.-7.5 kg m/s
b.-375 N
Explanation:
We are given that
Mass of football, m=0.5 kg
Initial velocity ,u=15m/s
Final speed ,v=0
Time, t=0.02 s
a. We have to find the impulse delivered to the ball.
We know that
Impulse=Change in momentum
I=m(v-u)
Using the formula
[tex]I=0.5(0-15)=-7.5 kg m/s[/tex]
Hence, the impulse delivered to the ball=-7.5 kg m/s
(b)
We know that
Force,[tex]F=\frac{|mpulse}{time}[/tex]
Using the formula
[tex]F=\frac{-7.5}{0.02}=-375 N[/tex]
What is the difference between a wave and energy?
Answer:
The higher the amplitude, the higher the energy. To summarise, waves carry energy. The amount of energy they carry is related to their frequency and their amplitude. The higher the frequency, the more energy, and the higher the amplitude, the more energy
Explanation:
The main difference between a wave and energy is: wave is oscillation of energy whereas energy is ability of doing work.
What is wave?A wave is an energetic disturbance in a medium that doesn't include any net particle motion. Elastic deformation, a change in pressure, an electric or magnetic intensity, an electric potential, or a change in temperature are a few examples.
What is energy?The capacity to do work is energy. Energy can only be changed from one form to another; it cannot be created or destroyed. Energy is measured in Joules, the same unit used to measure work. There are several sorts of energy since it is present in many different things.
There are two types of energy: kinetic and potential. Kinetic energy is the energy that is in motion, whereas potential energy is the energy that is stored in an object and is determined by the amount of work that is required.
Learn more about energy here:
https://brainly.com/question/1932868
#SPJ2
What is displacement?
a. The distance an object travels.
b. The distance between the starting point and the ending point of an object's
journey.
C. The amount of time it takes an object to travel to a destination.
d. The path in which an object travels.
Answer:
displacement is the distance between the starting point and the ending point of an object's journey
A ball of mass m makes a head-on elastic collision with a second ball (at rest) and rebounds in the opposite direction with a speed equal to one-fourth its original speed. what is the mass of the second ball?
When a ball of mass m makes a head-on elastic collision with a second ball (at rest) and rebounds in the opposite direction with a speed equal to one-fourth its original speed, then mass of the second ball having v/3 is velocity after collision is 9m/4.
What is momentum ?Momentum is defined as mass times velocity of body. it is denoted by p and its SI unit is Kg.m/s. It has both magnitude and direction. it is a vector quantity. it tells about the moment of the body. it is denoted by p and expressed in kg.m/s. mathematically it is written as p = mv. A body having zero velocity or zero mass has zero momentum. its dimensions is [M¹ L¹ T⁻¹]. Momentum is conserved throughout the motion.
initial momentum = final momentum
Given,
mass of first body m₁ = m
initial velocity of first body = v₁' = v
final velocity of first body = v₁'' =v/4
mass of second body m₂ = ?
initial velocity of second body = v₂' = 0
final velocity of second body = v₂'' = v/3
According to conservation of momentum,
initial momentum = final momentum
m₁v₁' + m₂v₂' = m₁v₁'' + m₂v₂''
putting al above values
m₁v + 0 = m₁v/4 + m₂v/3
m₁v - m₁v/4 = m₂v/3
m (1 - 1/4)v = m₂v/3
3m/4 = m₂/3
m₂ = 9m/4
Hence mass of the second body is 9m/4.
To know more about momentum, click :
https://brainly.com/question/30677308
#SPJ3
* Psychology
Match the types of psychoactive drugs to their functions,
depressants
stimulants
amphetamines
hallucinogens
to excite neural activity and temporarily
elevate awareness
to increase dopamine activity and produce
schizophrenic-like paranoid symptoms
>
to inhibit the function of the central nervous
system and neural activity
to distort perceptions and effects on thinking
Answer:
See explanation below
Explanation:
Psychoactive drugs are drugs that affect the central nervous system. They alter cognitive function by changing mood and consciousness.
Examples;
Depressants: Inhibit the function of the central nervous system and neural activity.
Stimulants: Excite neural activity and temporarily elevate awareness.
Amphetamines: Increase dopamine activity and produce schizophrenic-like symptoms.
Hallucinogens: Distort perceptions and effects on thinking.
A drug is any substance that alters how the body functions.
What is a drug?A drug is any substance that alters how the body functions. There are different types of drugs that affect different parts of the body.
We shall now explain the following classifications of drugs;
depressants - to inhibit the function of the central nervousstimulants - elevate awarenesshallucinogens - to distort perceptions and effects on thinkingamphetamines - schizophrenic-like paranoid symptomsLearn more about drugs: https://brainly.com/question/6022349
Two objects travel the same distance. The one that is moving faster will:
Take more time to go the distance
Take less time to go the same distance
Take the same time as the slower object
None of the above
Answer: take less time to go the same distance
Explanation:
Because if it is going faster let’s say mph 60 mph is 60 miles per hour if you are going 40 miles per hour it will take you longer to get to your destination.
greyhound pursues a hare and takes 5 leaps for every 6 leaps of the hare, but
3 leaps of the hound are equal to 5 leaps of the hare. Compare the speed of the
hound and the hare,
need full solution:-
[tex]{\large{\bold{\rm{\underline{Given \; that}}}}}[/tex]
★ A grey hound pursues a hare and takes 5 leaps for every 6 leaps of the hare, but 3 leaps of the hound are equal to 5 leaps of the hare.
[tex]{\large{\bold{\rm{\underline{To\; find}}}}}[/tex]
★ The speed of the hound and the hare
[tex]{\large{\bold{\rm{\underline{Solution}}}}}[/tex]
★ The speed of the hound and the hare = 25:18
[tex]{\large{\bold{\rm{\underline{Full \; Solution}}}}}[/tex]
[tex]\dashrightarrow[/tex] As it's given that a grey hound pursues a hare and takes 5 leaps for every 6 leaps of the hare, but 3 leaps of the hound are equal to 5 leaps of the hare.
So firstly let us assume a metres as the distance covered by the hare in one leap.
Ok now let's talk about 5 leaps,.! As it's cleared that the hare cover the distance of 5a metres.
But 3 leaps of the hound are equal to 5 leaps of the hare.
Henceforth, (5/3)a meters is the distance that is covered by the hound.
Now according to the question,
Hound pursues a hare and takes 5 leaps for every 6 leaps of the hare..! (Same interval)
Now the distance travelled by the hound in it's 5 leaps..!
(5/3)a × 525/3a metresNow the distance travelled by the hare in it's 6 leaps..!
6a metresNow let us compare the speed of the hound and the hare. Let us calculate them in the form of ratio..!
25/3a = 6a25/3 = 625:18a plane passes over Point A with a velocity of 8,000 m/s north. Forty seconds later it passes over Point B with a velocity of 10,000 m/s north. Which is the plane's acceleration from A to B ?
Acceleration = (change in velocity) / (time for the change)
Change in velocity = (ending velocity) - (starting velocity)
Change in the plane's velocity = (10,000 m/s north) - (8,000 m/s north)
Change in the plane's velocity = 2,000 m/s north
Time for the change = 40 seconds
Acceleration = (2,000 m/s north) / (40 seconds)
Acceleration = 50 m/s² north
If a person weighs 140 lb'on Earth, their mass in kilograms is
Answer:
70 kg
Explanation:
divide it by 2
Hope this helped!
Answer:
63.502932 Kilograms
Explanation:
The _______ changes light energy into nerve signals using receptors called rods and cones. A. retina B. lens C. iris D. pupil
Answer:
A. Retina
Explanation:
A solid sphere of radius R = 5 cm is made of non-conducting material and carries a total negative charge Q = -12 C. The charge is uniformly distributed throughout the interior of the sphere.
What is the magnitude of the electric potential V at a distance r = 30 cm from the center of the sphere, given that the potential is zero at r = [infinity] ?
Answer:
V= -3.6*10⁻¹¹ V
Explanation:
Since the charge is uniformly distributed, outside the sphere, the electric field is radial (due to symmetry), so applying Gauss' Law to a spherical surface at r= 30 cm, we can write the following expression:[tex]E* A = \frac{Q}{\epsilon_{0} } (1)[/tex]
At r= 0.3 m the spherical surface can be written as follows:[tex]A = 4*\pi *r^{2} = 4*\pi *(0.3m)^{2} (2)[/tex]
Replacing (2) in (1) and solving for E, we have:[tex]E = \frac{Q}{4*\pi *\epsilon_{0}*r^{2} } = \frac{(9e9N*m2/C2)*(-12C)}{(0.3m)^{2} y} (3)[/tex]
Since V is the work done on the charge by the field, per unit charge, in this case, V is simply:V = E. r (4)Replacing (3) in (4), we get:[tex]V =E*r = E*(0.3m) = \frac{(9e9N*m2/C2)*(-12C)}{(0.3m)} = -3.6e11 V (5)[/tex]
V = -3.6*10¹¹ Volts.The electrical potential module will be [tex]-3.6*10^-^1^1 V[/tex]
We can arrive at this answer as follows:
To answer this, we owe Gauss's law. This is because the charge is evenly distributed across the sphere. This will be done as follows:[tex]E*A=\frac{Q}{^E0} \\\\\\A=4*\pi*r^2[/tex]
Solving these equations will have:[tex]E=\frac{Q}{4*\pi*^E0*r^2} \\E= \frac{(9e9N*m2/c2)*(-12C)}{(0.3m)^2y}[/tex]
As we can see, the electric potential is carried out on the field charge. In this case, using the previous equations, we can calculate the value of V as follows:[tex]V=E*r\\V=E*0.3m= \frac{(9e9N*m^2/C2)*(-12C)}{0.3m} \\V= -3.6*10^-^1^1 V.[/tex]
More information about Gauss' law at the link:
https://brainly.com/question/14705081
Which has the most mass?
O The Moon
O A Pencil
O Your teacher.
O Earth
Answer:
Earth
lol... ....