Two trumpet players are riding in separate convertibles which are moving in opposite directions at a speed of 30 m/s. They both strike a note with a frequency of 1024 Hz Calculate:

(A). The pitch heard coming from one vehicle by a listener of the other vehicle.

(B). The pitch heard coming from either vehicle by an observer stationed directly between both vehicles.

(C). The pitch heard by a listener in either vehicle if both vehicles turn around and move toward each other at the same speeds.

Answers

Answer 1
A.) Is the right answer

Related Questions

A reservoir has a surface area of and an average depth of 40. 0 m. What mass of water is held behind the dam? (See
Figure 11. 5 for a view of a large reservoir—the Three Gorges Dam site on the Yangtze River in central China. )

Answers

The density of water ρ from Table 1 is [tex]1.000 * 10^{3} kg / m^{3}[/tex] . Subbing V and ρ into the expression for mass gives:m=  [tex]V=Ah=(50.0km^{2} )(40.0m)\\=[(50km^{2} ) (\frac{10^{3}m }{1km} )^2] (40.0m) = 2.00 * 10^{9} m^{3}[/tex]

We can ascertain the volume V of the supply from its aspects, and track down the density of water ρ in Table 1. Then, at that point, the mass m can be tracked down in the meaning of density.

[tex]p =\frac{m}{v}[/tex]

Tackling condition ρ = m/V for m gives m=ρV.

The volume V of the supply is its surface region Multiple times its typical profundity h:

[tex]V=Ah=(50.0km^{2} )(40.0m)\\=[(50km^{2} ) (\frac{10^{3}m }{1km} )^2] (40.0m) = 2.00 * 10^{9} m^{3}[/tex]

The density of water ρ from Table 1 is [tex]1.000 * 10^{3} kg / m^{3}[/tex] .

Subbing V and ρ into the expression for mass gives:

[tex]m= (1.00 * 10^3kg / m^3) (2.00* 10^9m^3) \\ = 2.00 * 10^{12} kg[/tex]

An enormous supply contains an extremely huge mass of water. In this model, the heaviness of the water in the repository is mg=1.96× [tex]10^{13}[/tex] N, where g is the speed increase because of the Earth's gravity (around 9.80[tex]m/s^{2}[/tex] ). It is sensible to find out if the dam should supply a power equivalent to this colossal weight. The response is no. As we will find in the accompanying segments, the power the dam should supply can be a lot more modest than the heaviness of the water it keeps down.

to know more about density click here:

https://brainly.com/question/1354972

#SPJ4

the complete question is:

A reservoir has a surface area of [tex]50.0 km^{2}[/tex] and an average depth of 40.0 m. What mass of water is held behind the dam? (See Figure 2 for a view of a large reservoir—the Three Gorges Dam site on the Yangtze River in central China.)

urgent needed help please please

Answers

Answer:

Distance from center and mass

Explanation:

Gravity force is determined by the distance from the center of the object, and the mass of the object (so distance and time) speed and acceleration have no effect on the gravity

Answer:

The mass of the object and the distance between objects.

Explanation:

a 2kg toy car moves at a speed of 5 m/s. how fast is the toy car moving after it has been pushed for a distance of 2 m?

Answers

The toy car is moving at a speed of approximately 5.74 m/s after it has been pushed for a distance of 2 meters.

What principle can be used to solve the problem of finding the final velocity of the toy car after it has been pushed?

The principle of conservation of energy can be used to solve the problem.

What is the initial kinetic energy of the toy car and what is the final kinetic energy of the car after it has been pushed for a distance of 2 meters?

The initial kinetic energy of the car is 25 J, and the final kinetic energy of the car is (1/2) * 2 kg * (5.74 m/s)^2, which is approximately 40.97 J.

To solve this problem, we can use the principle of conservation of energy, which states that the initial kinetic energy of the toy car is equal to the final kinetic energy of the car after it has been pushed for a distance of 2 meters.

The initial kinetic energy of the car is given by:

KE1 = (1/2) * m * v1^2

where m is the mass of the car (2 kg), and v1 is the initial velocity of the car (5 m/s).

KE1 = (1/2) * 2 kg * (5 m/s)^2

KE1 = 25 J

The final kinetic energy of the car is given by:

KE2 = (1/2) * m * v2^2

where v2 is the final velocity of the car after it has been pushed for a distance of 2 meters.

Since the car has been pushed by an external force, work is done on the car, and this work is equal to the change in kinetic energy of the car. The work done on the car is given by:

W = F * d

where F is the force applied on the car, and d is the distance the car has been pushed. Since the car is moving horizontally, the force applied on the car is in the same direction as its motion, so the work done on the car is equal to the change in kinetic energy of the car.

W = KE2 - KE1

Substituting the values we get:

W = (1/2) * 2 kg * v2^2 - 25 J

W = (1/2) * 2 kg * v2^2 - 25 J = F * d = (2 kg * a) * 2 m = 4 kg m/s^2 * 2 m = 8 J

Solving for v2 we have:

v2 = sqrt((2 * (W + KE1)) / m)

v2 = sqrt((2 * (8 J + 25 J)) / 2 kg)

v2 = sqrt(66 J / 2 kg)

v2 = sqrt(33) m/s

Therefore, the toy car is moving at a speed of approximately 5.74 m/s after it has been pushed for a distance of 2 meters.

Learn more about conservation of energy here:

https://brainly.com/question/13949051

#SPJ1

A transverse wave on a string travels at
40

m
s
40
s
m

40, start fraction, start text, m, end text, divided by, start text, s, end text, end fraction . The vertical position of a certain point on the string over time is shown below.

What is the wavelength of the wave along the string?

Answers

To find the wavelength of the wave along the string, we first need to measure the distance between two consecutive points on the wave that are in the same phase.

How to calculate the wavelength?

We can look at the graph provided by the question, whose full cycle of the wave completes in 0.1sec, i.e. demonstrating that this is a complete up and down movement of the point.

As measured in the graph, we see that the distance between two consecutive points is 0.5 cm. Then we calculate the wavelength of the wave using the following formula:

Wavelength = Distance between two consecutive peaks = 0.5cm = 0.005m

Therefore, the wavelength of the wave corresponds to 0.005m.

Find out more about wavelenght of the wave on:

https://brainly.com/question/28995449

#SPJ1

The table summarizes the known values for a completely elastic collision. Given the information, what is the mass of ball 2?

Answers

Therefore, the mass of ball 2 is approximately 24.7 kg.

What is collision?

A collision is an event that occurs when two or more objects come into contact with each other in a way that alters their motion. In physics, collisions are studied in terms of the conservation of momentum and the conservation of kinetic energy. In an elastic collision, the total kinetic energy of the system is conserved, and the objects bounce off each other without any loss of energy. In an inelastic collision, some of the kinetic energy is converted into other forms of energy, such as heat or sound, and the objects may stick together after the collision. Collisions can be categorized into two types: head-on collisions and oblique collisions. In a head-on collision, the objects approach each other directly from opposite directions, while in an oblique collision, the objects approach each other at an angle. Collisions are an important concept in physics and have applications in fields such as engineering, transportation, and sports. Understanding the principles of collisions can help us design safer cars, improve the performance of athletic equipment, and develop new technologies for space exploration.

Here,

We can use the conservation of momentum and the conservation of kinetic energy to solve for the mass of ball 2 in the completely elastic collision. Using the conservation of momentum:

m1v1i + m2v2i = m1v1f + m2v2f

Substituting the known values:

(6.7 kg)(2.0 m/s) + m2(-5.0 m/s) = (6.7 kg)(-6.18 m/s) + m2(0.83 m/s)

Simplifying and solving for m2:

(13.4 - 33.9) kg·m/s = -44.006 kg·m/s + 0.83 m2

-20.5 kg·m/s = 0.83 m2

m2 = (-20.5 kg·m/s) / (0.83 m/s)

m2 ≈ 24.7 kg

To know more about collision,

https://brainly.com/question/6958526

#SPJ9

The main function of a producer in an ecosystem is to

A.
absorb minerals from the soil.

B.
change water vapor into a liquid.

C.
make sugar through photosynthesis.

D.
break down dead plant and animal matter.

Answers

Answer:

The main function of a producer in an ecosystem is to make sugar through photosynthesis. Producers are organisms, such as plants and algae, that produce their own food using energy from sunlight, carbon dioxide from the air, and nutrients from the soil or water. Through the process of photosynthesis, producers convert light energy into chemical energy in the form of sugar, which can be used as a source of food and energy by other organisms in the ecosystem. This makes producers a critical component of the food chain and the foundation of many ecosystems. Options A, B, and D do not accurately describe the main function of a producer in an ecosystem.

580 nm light shines on a double slit with d=0. 000125 m. What is the angle of the third dark interference minimum(m=3)?

Answers

580 nm light shines on a double slit with d=0. 000125 m. the angle of the third dark interference minimum(m=3) is 0.76 degrees.

The angle θ of the third dark interference minimum can be calculated using the equation:

sin θ = (m λ) / d

where m is the order of the interference minimum, λ is the wavelength of the light, and d is the distance between the slits.

In this case, m = 3, λ = 580 nm = 5.80 × 10^−7 m, and d = 0.000125 m. Plugging in these values, we get:

sin θ = (3 × 5.80 × 10^−7 m) / 0.000125 m

solving this, we get:

sin θ = 0.0132

Taking the inverse sine of both sides, we get:

θ = sin−1 (0.0132)

Using a calculator, we find:

θ ≈ 0.76 degrees

Therefore, the angle of the third dark interference minimum is approximately 0.76 degrees.

For such more questions on angle of the interference:

brainly.com/question/27901588

#SPJ11

Consider the diagram of a pendulum's motion shown above. A pendulum can be used to model the change from potential energy to kinetic energy and back to potential energy. If you pull the bob back to point A and release it, potential energy is converted to kinetic energy. What do you think happens to the energy at point C?



A Potential energy is converted to kinetic energy.


B Potential energy decreases.


C Kinetic energy increases.


D Kinetic energy is converted to potential energy.

Answers

The correct answer is A. Potential energy is converted to kinetic energy.

At point C, the pendulum has reached its maximum displacement on the other side of its swing. At this point, the pendulum's velocity is zero, so its kinetic energy is also zero. However, the pendulum's height above its rest position is at its maximum, so its potential energy is at its maximum.

As the pendulum swings back toward its rest position, its potential energy will be converted back into kinetic energy. At the bottom of the swing (point A), the pendulum's potential energy will be at its minimum, and its kinetic energy will be at its maximum.

Therefore, the correct answer is: Potential energy is converted to kinetic energy.

What is Potential energy?

Potential energy is a form of energy that an object possesses due to its position or state. It is stored energy that can be converted into other forms of energy, such as kinetic energy, or released in a variety of ways.

What is kinetic energy?

Kinetic energy is a form of energy that an object possesses due to its motion. It is the energy an object has because of its motion, mass, and velocity. The faster an object moves and the more massive it is, the greater its kinetic energy will be.

The formula for kinetic energy is:

KE = 1/2 * m * v^2

where KE is kinetic energy, m is the mass of the object, and v is the velocity of the object.

To know more about kinetic energy, visit:

https://brainly.com/question/26472013

#SPJ1

The figure shows three objects that are all made of the same material. The forces applied to the three objects all have the same magnitude.

Order the objects according to the shear stress acting on them, from greatest to least.

a) (iii) > (i) = (ii)
b) (i) = (ii) > (iii)
c) (i) > (iii) > (ii)
d) (i) > (ii) = (iii)
e) (i) > (ii) > (iii)

Answers

Shear stress is tangential tension that results from fluid moving against resistance against a solid surface.  therefore (iii) > (i)  = (ii) option  a).

What is tangential shear stress?

An item experiences deformation when an exterior force works upon it. if the force's orientation is parallel to the object's surface. Along that line, there will be a distortion. The item in this instance is under tensile or tangential tension.

The stress an object experiences is known as shearing stress or tangential stress when the path of the deforming force or exterior force is parallel to the cross-sectional area.

Shear stress results from forces that are parallel to and reside in the plane of the cross-sectional area, whereas normal stress results from forces that are perpendicular to a cross-sectional area of the substance.

Learn more about shear stress

https://brainly.com/question/30328948

#SPJ1

the mass of the blue puck is 20% greater than the mass of the green one. before colliding, the pucks approach each other with equal and opposite momenta, and the green puck has an initial speed of 10 m/s. find the speed of the pucks after the collision, if half the kinetic energy is lost during the collision.\

Answers

To find the speed of the green and blue pucks after the collision, we can use the conservation of momentum and the conservation of energy equations and it is 3.33 m/s and  2.78 m/s respectively.

First, let's find the mass of the blue puck. If the mass of the blue puck is 20% greater than the mass of the green one, then:

m (blue) = 1.2 * m (green)

Next, let's use the conservation of momentum equation:

m (green) * v (green), initial + m (blue) * v (blue), initial = m (green) * v (green), final + m (blue) * v (blue), final

Since the pucks approach each other with equal and opposite momenta, we can set v (blue), initial = -v (green), initial = -10 m/s. Plugging in the values we know:

m (green) * 10 + 1.2 * m (green) * (-10) = m (green) * v (green), final + 1.2 * m (green) * v (blue), final

Next, let's use the conservation of energy equation. If half the kinetic energy is lost during the collision, then:

0.5 * m (green) * v (green), initial2 + 0.5 * m (blue) * v (blue), initial2 = 0.5 * (m (green) * v (green), final2 + m (blue) * v (blue), final2)

Plugging in the values we know:

0.5 * m (green) * 102 + 0.5 * 1.2 * m (green) * (-10)2 = 0.5 * (m (green) * v (green), final2 + 1.2 * m (green) * v (blue), final2)

Now we can solve for the final velocities of the pucks using these two equations. We get:

v (green), final = -3.33 m/s
v (blue), final = 2.78 m/s

Therefore, the speed of the green puck after the collision is 3.33 m/s and the speed of the blue puck after the collision is 2.78 m/s.

To know more about conservation of momentum, refer here:

https://brainly.com/question/3920210#

#SPJ11

(figure 1) shows a 5.4 n force pushing two gliders along an air track. the 160 g spring between the gliders is compressed. the spring is firmly attached to the gliders, and it does not sag.

Answers

Figure 1 shows a 5.4 N force pushing two gliders along an air track. The 160 g spring between the gliders is compressed. The spring is firmly attached to the gliders and does not sag. This situation demonstrates Hooke’s Law, which states that the force required to compress a spring is directly proportional to the amount of displacement of the spring. In this case, the 5.4 N force is pushing the gliders towards each other, compressing the spring and causing a displacement. As Hooke's Law states, the greater the force used to compress the spring, the greater the displacement will be.

The stiffness of the spring in this situation would be determined by the spring constant, which can be calculated using the formula F = -kx. The spring constant can be calculated by using the displacement of the spring.

When the 5.4 N force is applied, the kinetic energy of the gliders is converted into potential energy, which is stored in the compressed spring. When the force is removed, the potential energy is converted back into kinetic energy and the gliders move away from each other.

Know more about spring constant here:

https://brainly.com/question/14670501

#SPJ11

If all planets were the same distance from the sun, which would have the largest gravitational force between itself and the sun? Why? and
If all planets were the same mass, which would have the lowest gravitational force between itself and the sun? Why?

Answers

Basically gravitational force exists between any two objects possessing mass
It is given by
Fg= GmM/r^2
Where m and M are the masses of the objects and r is the distance between them and G is a constant

So clearly, the planet with tha largest mass should have highest gravitational pull by the sun, I.e, Jupiter

Now if they have the same mass, the gravitational pull should be same according to the formula

The semiconductor cdse has a bandgap of 1. 74 ev. What wavelength of light would be emitted from an led made from cdse? what region of the electromagnetic spectrum is this?

Answers

The required wavelength is calculated to be 715 nm and it belongs to infrared region.  

The band-gap of the semiconductor cdse is given as 1.74 ev.

The equation of Planck is mathematically written as,

E = h c /λ

where,

h is planck's constant

c is speed of light

λ is wavelength

E is energy/band-gap

Converting electron volts to joules we should multiply by 1.6 × 10⁻¹⁹ J

Putting all the known values and making wavelength as subject,

λ = h c /E = (6.626 × 10⁻³⁴× 3 ×10⁸)/(1.74× 1.6 × 10⁻¹⁹) = (19.88 × 10⁻²⁶)/(2.78× 10⁻¹⁹) = 7.15 × 10⁻⁷ m = 715 × 10⁻⁹ m = 715 nm

By looking into the wavelengths of electromagnetic spectrum, we can say that this wavelength belongs to infrared.

To know more about wavelength:

https://brainly.com/question/18403547

#SPJ4

Suppose an electron is described by the wavefunction for , and zero otherwise, with 2 nm. Let's estimate the spread of the electron's position probability distribution by the expression. 1)what is for this wavefunctions?

Answers

The wavefunction number for the specified function is:Ψ(x) = [tex][2/(\alpha (1 - e^{(-4nm/\alpha )))}]e^{(-x/\alpha )}[/tex]

The wavefunction given is:

Ψ(x) = A[tex]e^{(-x/\alpha )}[/tex]

where Ψ(x) is the wavefunction, A is a constant, x is the position of the electron and α is a constant with units of length.

The normalization condition is:

∫|Ψ(x)|² dx = 1

Since Ψ(x) is zero outside the range (0, 2nm), the integral can be simplified to:

∫[tex]0^(2nm)|Ae^{(-x/\alpha )}|[/tex] ²dx = 1

Simplifying the integral further:

[tex]|A|^{2} (-\alpha /2) (e^{(-4nm/\alpha ) - 1)} = 1[/tex]

Since the wavefunction is normalized, |A|² is equal to the inverse of the integral above. Solving for |A|², we get:

|A|² = [tex][-2/(\alpha (e^{(-4nm/α) - 1))}][/tex]

Thus, the wavefunction is:

Ψ(x) = [tex][2/(\alpha (1 - e^{(-4nm/\alpha )))}]e^{(-x/\alpha )}[/tex]

So, the value of the wavefunction for this given function is:

[tex][2/(\alpha (1 - e^{(-4nm/\alpha )))}]e^{(-x/\alpha )}[/tex]

To learn more about wavefunctions refer to:

brainly.com/question/29089081

#SPJ4

A roller coaster starts at rest at the top of a 51-meter-high frictionless track. At the bottom of the track, what is the approximate speed of the roller coaster? 45 m/s

Answers

The apprοximate speed οf the rοller cοaster at the bοttοm οf the track is 31.6 m/s.

What is Speed?

It is defined as the distance travelled by an οbject per unit time, and is usually expressed in meters per secοnd (m/s) οr οther units οf distance per unit time (such as miles per hοur οr kilοmeters per hοur).

Nο, the speed οf the rοller cοaster at the bοttοm οf the track is nοt 45 m/s.

Tο determine the speed οf the rοller cοaster at the bοttοm οf the track, we can use the principle οf cοnservatiοn οf energy, which states that the tοtal amοunt οf energy in a clοsed system remains cοnstant.

At the tοp οf the track, the rοller cοaster has οnly pοtential energy, which can be calculated as: PE = mgh

where m is the mass οf the rοller cοaster, g is the acceleratiοn due tο gravity (apprοximately 9.81 m/s²), and h is the height οf the track (51 meters). Assuming the mass οf the rοller cοaster is 1 kilοgram, the pοtential energy at the tοp οf the track is :

[tex]PE = (1 kg)(9.81 m/s^2)(51 m) = 502.31 J[/tex]

At the bottom of the track, all of the potential energy has been converted to kinetic energy, which can be calculated as:

[tex]KE = 1/2 mv^2[/tex]

where v is the speed of the roller coaster. Equating the initial potential energy to the final kinetic energy, we have:

PE = KE

[tex]mgh = 1/2 mv^2Solving for v, we get:v = sqrt(2gh)v = sqrt(2 x 9.81 m/s^2 x 51 m) = sqrt(999.162) = 31.6 m/s (approximately)[/tex]

Therefore, the approximate speed of the roller coaster at the bottom of the track is 31.6 m/s.

Learn more about Speed from given link

brainly.com/question/13943409

#SPJ1

James put a pot of liquid water on the hot stove. When he came back the liquid was gone. Show why the water changed phase

Answers

The heat from the hot stove caused the water molecules to gain energy and move more quickly, resulting in the water changing phase from a liquid to a gas (water vapor) through evaporation. The water disappeared as the water vapor escaped into the surrounding air since the pot was not covered.

A source of sound is located in a medium in which speed of sound is V and an observer is located in a medium in which speed of sound is 2V. Both the source and the observer are moving directly towards each other at speed each. The source has frequency f0. Then:

Apparent wavelength observed by the observer is. Find y

Answers

The formula for the frequency observed by the observer when both the source and the observer are moving toward each other is given by:

f' = f0 (v + vo)/(v + vs)

where f0 is the frequency of the source, v is the speed of sound in the medium of the source, vs is the speed of sound in the medium of the observer, vo is the speed of the observer, and f' is the apparent frequency observed by the observer.

The formula for the wavelength of a wave is :

λ = v/f

where λ is the wavelength, v is the speed of the wave, and f is the frequency.

the speed of sound is different in the two media, and the wavelength of the sound wave will also be different in the two media. Let λ0 be the wavelength of the sound wave in the medium of the source and λ be the wavelength observed by the observer.

but this, we have:

λ = v'/f'

where v' is the relative speed of the source and the observer.

Since both the source and the observer are moving towards each other, their relative speed is:

v' = v + vs + vo

Substituting the given values, we get:

f' = f0 (v + vo)/(v + 2v)

= f0 (1 + vo/v)/3

λ0 = v/f0

λ = v' / f'

= (v + vs + vo) / [f0 (1 + vo/v)/3]

= 3(v + vs + vo) λ0/(1 + vo/v)

solving this, we get:

λ = 3(v + 2V)λ0/(1 + v0/v)

Thus, the apparent wavelength seen by the observer is

3(v + 2V)λ0/(1 + v0/v).

To learn about apparent wavelength :

https://brainly.com/question/20331129?referrer=searchResults

#SPJ4

Which of the following is an example of a transverse wave?
A. longitudinal waves traveling through the ground
B. sound waves traveling through the air
C.light waves traveling from the sun
D.All of these

Answers

Answer:

all of these

Explanation:

D. all of these is the correct answer

A machine consists of two metal plates of equal but unknown mass and a wooden bar that is 1. 50 meters long. One plate is glued to each end of the bar. The bar rotates at a constant rate in a vertical circle around an axis through its center, so that it takes 2. 50 seconds to complete one full rotation. The glue will hold as long as the force trying to pull the plate from the bar does not exceed 58. 0 N.


Required:

What is the maximum mass of the plate that can remain glued to the bar, under these conditions?

Answers

The maximum mass of the plate that can remain glued to the bar can be determined using the maximum force that the glue can withstand.

The wooden bar rotates in a vertical circle around an axis through its center with a constant period of 2.50 seconds. The maximum force that can be exerted on each metal plate is equal to the centrifugal force acting on it due to its rotation around the axis. The centrifugal force is given by the equation Fc = mv^2/r, where Fc is the centrifugal force, m is the mass of the metal plate, v is the velocity of the metal plate, and r is the radius of the circle. In this case, the radius of the circle is equal to half the length of the wooden bar, i.e., r = 0.75 m. The velocity of the metal plate can be calculated from the equation v = 2πr/T, where T is the period of rotation. Substituting the given values, we get: v = (2π)(0.75 m)/(2.50 s) = 4.71 m/s. The maximum force that can be exerted on each metal plate is therefore: Fc = m(4.71 m/s)^2/(0.75 m) = 29.37 mN. To ensure that the maximum force does not exceed 58.0 N, the maximum mass of each metal plate can be calculated by dividing the maximum force by the acceleration due to gravity (9.81 m/s^2): mmax = 58.0 N/(2 × 9.81 m/s^2) = 2.96 kg. Therefore, each metal plate can have a maximum mass of 2.96 kg to avoid exceeding the maximum force that the glue can withstand.

To learn more about Force click the link below

brainly.com/question/13014979

#SPJ4

Why does the Doppler effect detect only radial velocity?

a. For objects moving perpendicular to the line of sight, the wavelength shift can be measured only with a great error.

b. In space all bodies either converge or retreat, therefore they have only radial velocity.

c. Motion of a wave source perpendicular to the line of sight cannot cause a wavelength shift because such motion doesn't make peaks of waves closer together or farther apart.

d. Only objects moving directly toward or away from the observer can emit waves that can be detected

Answers

The correct answer is C i.e, . motion of a wave source perpendicular to the line of sight cannot cause a wavelength shift because such motion doesn't make peaks of waves closer together or farther apart.

The Doppler effect is the change in frequency or wavelength of a wave in relation to an observer who is moving relative to the wave source. In the case of detecting radial velocity, the observer and the wave source are either approaching or moving away from each other along the line of sight. This causes the wavelength of the observed waves to either compress or stretch, which results in a shift in frequency or color.

Option C is correct because motion perpendicular to the line of sight does not cause compression or stretching of the wavelength, which means that there is no change in frequency or color of the waves observed. Therefore, only radial velocity can be detected through the Doppler effect. Option A is also partially correct, as it is harder to measure the wavelength shift accurately for motion perpendicular to the line of sight. However, the reason for this is the lack of change in the wavelength, not the difficulty of measuring it. Option B is incorrect, as objects can have motion perpendicular to the line of sight. Option D is also incorrect, as objects moving at angles other than directly towards or away from the observer can still emit waves that can be detected.

The wavelength is not compressed or stretched by motion perpendicular to the line of sight, so there is no change in the frequency or colour of the waves that can be seen, making option C the right one.

To learn more about Doppler effect refer to:

brainly.com/question/15318474

#SPJ4

The water is reflecting light, Is this specular or diffuse reflection? explain your answer​

Answers

The type of reflection occurring when light hits a surface can be determined by observing how the light is scattered.

Specular reflection occurs when light is reflected at a single angle, resulting in a clear and focused reflection. On the other hand, diffuse reflection occurs when light is scattered in many directions, producing a blurred or hazy reflection.

In the case of water reflecting light, it is likely that the reflection is a combination of both specular and diffuse reflection. When the water surface is smooth and still, light is reflected at a specific angle, resulting in a clear and focused reflection.

This is specular reflection. However, when the surface of the water is disturbed, the reflection becomes scattered and blurred, which is characteristic of diffuse reflection.

To learn more about  Specular reflection refer to:

brainly.com/question/29191211

#SPJ4

what dissolves in water burns in flames and a chemical property

Answers

The answer is a salt. Salts are ionic compounds that are composed of positively and negatively charged ions.

When dissolved in water, the ions separate and the salt dissolves. Salts also have a high melting point and when heated, they decompose into their constituent elements, producing a flame. This is a chemical property known as thermal decomposition.Thermal decomposition is a type of chemical decomposition induced by the application of heat. It is a specific type of chemical decomposition in which molecules of a compound are broken down into smaller molecules or elements. Thermal decomposition is often used in industry to produce useful chemicals, such as chlorine from table salt, and for the production of metals and alloys from ore.

learn more about thermal decomposition Refer:brainly.com/question/14949019

#SPJ1

In the 50/30/20 rule, what does 50 represent?(1 point)

Answers

In the 50/30/20 rule, 50 represents the percentage of your after-tax income that you should allocate towards your essential expenses.

What does 50 represent?

These are the necessary expenses that you need to pay for in order to live, such as housing, utilities, groceries, transportation, and healthcare. By allocating 50% of your after-tax income towards these essential expenses, you can ensure that you are meeting your basic needs and maintaining a stable lifestyle.

The other percentages in the 50/30/20 rule refer to the remaining portions of your after-tax income. 30% should be allocated towards your discretionary spending, which includes non-essential expenses such as entertainment, dining out, travel, and hobbies. The final 20% should be allocated towards your financial goals, such as paying off debt, building an emergency fund, and saving for retirement or other long-term goals.

Learn more about  50/30/20 rule here:https://brainly.com/question/28135116

#SPJ1

what would be the mass of a truck if it is accelerating at a rate of 5 m/s^2 and hits a parked car with a force of 14,000N

Answers

a = 5m/s2

F = 14000N

F = ma

14000=5m

m = 14000/5 = 2800 kg
2.6K viewsView upvotes





How can a person sing into a piano and cause a piano wire to vibrate? (1 point)

O The person sings at the same frequency as the piano wire, called the beat frequency.

OThe person sings at a different frequency than the piano wire, called the beat frequency.

OThe person sings at the same frequency as the piano wire, called the resonance frequency.

OThe person sings at a different frequency than the piano wire, called the resonance frequency.

Answers

Answer:

The person sings at the same frequency as the piano wire, called the resonance frequency.

Explanation:

The person sings at a different frequency than the piano wire, called as resonance frequency. So, option d is correct.

Interference directs to a phenomenon in which two wires meet while traveling along the exact medium and they superpose to create a resulting wave that is lower, greater, or the same amplitude as each other. The soundboard is a big wooden panel that amplifies the sound of the vibrating string.

In the given scenario, a beat frequency is listened to by a player when using a tuning fork to adjust a piano wire. Thus, the piano tuner should change the strain in the wire, this decreases the frequency of the wire.

Use the table below to answer this question.

Distance (mm) Electric Force (N)
1 243
3 27
5 10
7 5
9 3
A scientist measured the distance between two positively-charged objects, and determined the electric force between them. Based on the data in the table above, which of the following statements is true?

A
As the size of the objects increases, the size of the electric force between them decreases.
B
As the distance between the objects increases, the size of the electric force decreases.
C
The size of the electric force is constant.
D
As the distance between the objects increases, the objects become more positively charged.

Answers

As the distance between the objects increases, the size of the electric force decreases.

What is an electric ?

Electricity is a form of energy that results from the movement of charged particles, such as electrons or ions. It is the flow of electric charge through a conductor, which can be used to power devices and machines. Electric phenomena occur naturally, such as in lightning strikes, but can also be harnessed and controlled for practical applications, including lighting, heating, and communication.

What is a distance ?

Distance refers to the physical length between two points or objects, measured in units such as meters, kilometers, miles, or inches. It is a scalar quantity that only has magnitude and no direction. Distance can be measured using various tools and methods, such as rulers, odometers, or GPS devices.

To know more about  electric visit :

https://brainly.com/question/8971780

#SPJ!

A 4. 5 kg dog stands on an 18 kg flatboat at distance D=6. 1 m from the shore. It walks 2. 4 m along the boat toward shore and then stops. Assuming no friction between the boat and the water, find how far the dog is then from the shore.

Answers

mass of dog and boat are m = 4.5 kg, and M = 18 kg respectively.

Initial distance of dog from the shore, D = 4.5 m

The motion of an object changes only when a(n) net force acts on it according to Newton’s first law.True or False

Answers

True, The motion of an object changes only when a(n) net force acts on it according to Newton’s first law.

What is Newton's first law of motion?

Newton's first law of motion, also known as the law of inertia, states that an object at rest will remain at rest, and an object in motion will remain in motion with a constant velocity, unless acted upon by a net external force.

Can an object in motion continue to move without any external force acting on it?

No, according to Newton's first law of motion, an object in motion will continue to move with a constant velocity only if there is no net external force acting on it. Any change in motion requires the application of a net force.

Learn more about "Newton’s first law." here:

https://brainly.com/question/29775827

#SPJ1

the mass of the moon is 7.348e22 kg and its radius is 1738 km. what would be the weight of a 65 kg person standing on the moon?

Answers

The weight of a 65 kg person standing on the moon with a mass of 7.348e22 kg and a radius of 1738 km would be approximately 105.3 N.

The weight of a 65 kg person on the moon can be calculated using the formula:

Weight = mass x gravitational acceleration

where mass is the mass of the person, and gravitational acceleration is the acceleration due to gravity on the surface of the moon.

The gravitational acceleration on the surface of the moon is given by:

g = G*M/R^2

where G is the gravitational constant, M is the mass of the moon, and R is the radius of the moon.

In this case, the mass of the moon is M = 7.348e22 kg, and the radius of the moon is R = 1738 km = 1.738e6 m. The gravitational constant is G = 6.6743e-11 Nm^2/kg^2.

So, the gravitational acceleration on the surface of the moon is:

g = G*M/R^2 = (6.6743e-11 Nm^2/kg^2) x (7.348e22 kg) / (1.738e6 m)^2

= 1.62 m/s^2

Now, we can calculate the weight of a 65 kg person on the moon:

Weight = mass x gravitational acceleration

= 65 kg x 1.62 m/s^2

= 105.3 N

Therefore, a 65 kg person would weight about 105.3 N on the surface of the moon.

Learn more about weight on moon: https://brainly.com/question/31039813

#SPJ11

Two bar magnets are placed on the table a few inches apart. Then a compass is placed near them, as shown below. Draw an arrow on the compass that represents the direction the needle will point because of the magnetic field between the magnets. Explain what would cause the compass needle to point in that direction using the terms magnetic force and magnetic field.

Answers

Answer:

Explanation:

The reson that the north of the compas pin points in that direction is because ,that is Earth magnetic south pole is and that is where they attract

Other Questions
What number is 3% larger than 600? Your sister has gained admission into your former school write an informal letter given her information about the school and advise her on how to behave well while in the school Colonizers may impose all of the following on the native inhabitants except: What happened after France fell to the German military?A. Germany invented a strategy of quick surprise attacks.B. Germans installed new, weak French leaders.C. Southern France became a German military base.D. Northern France became an occupied zone.SUBMIT The evidence exists in a variety of categories, including direct observation of evolutionary change, the fossil record, homology, and biogeography Sort the following examples into the correct categories. Drag each phrase to the appropriate bin. View Available Hint(s) Reset Help smlarity of endemic sland species to nearby mainiand species vestigial pevis in the high concentration of same genetic code in right whalesnearby mammalan forelimbs refies and tobacco plants n Australia development of drug dscovery of shels disovery of transitionl resistance in bacteriaef extinct species forms ofl horses blogeography homology direct observation of evolutionary change fossil record Can someone please help The ratio of Scotts age to Georgias age to Fionas age is 11:6:7 The ratio of Oscars age to Georgias age is 3:4Find the ratio of Fionas age to Oscars age. Find the midpoint of A and B where A has coordinates (-7, 1) and B has coordinates (3, -5). what is the goal of land reclamation of mining sites? one of the disadvantages of proprietary software is that . a. it can take a long time and significant resources to develop the required software features b. it does not allow the modifications to features needed to counteract a competitor's initiative c. it is difficult to achieve what is required in terms of features and reports d. it is hard to control the output even if one is involved in the development of the software A chemist ran the reaction and obtained 5.95 g of ethyl butyrate. What was the percent yield? The acceleration of a rocket fired vertically upwards t seconds after launch is 20+4???? m????2 (as a rocket burns fuel it becomes lighter, so accelerates more quickly). What is the second order differential equation for the height of the rocket. = ___________What is the general solution? (Please use A as the first constant of integration and B as the second):General solution: = ___________Use the fact that at t = 0 the rocket was on the ground and not moving to find the particular solution that gives the height of the rocket. How high was the rocket after 10 seconds? How fast was it moving then? (hint: acceleration is the rate of change of velocity. The velocity of the rocket is the rate of change of what?)Height = ______ metersVelocity = _______ meters/second Assume that the download times for a two-hour movie are uniformly distributed between 16 and 23 minutes. Find the following probabilities. a. What is the probability that the download time will be less than 17 minutes? b. What is the probability that the download time will be more than 22 minutes? c. What is the probability that the download time will be between 18 and 20 minutes? d. What are the mean and standard deviation of the download times? . The yellow wallpaper chart answer key What type of graph would you make if you asked What is your favorite vacation spot?Group of answer choicesBar GraphLine PlotLine GraphPie Chart How can diversity help you in life? Why is diversity so important, and why do we need it within our schools, workplaces, and communities?To support your answers, find someone who is from a different culture, ethnic background, or nation, and learn about their upbringing. Share your findings here. What is the crude mortality rate in this population in deaths per 10,000 per day?(A) 303(B) 7.6(C) 3.7(D) 7.7(E) 1.9(F) You can't tell from the information given How far, in terms of wavelength, does a wave travel in one period? Simplify the following algebric expressionX^2-x-12/x^2-4 which of these is an aspect of metacognition? group of answer choices being free of adolescent egocentrism appraising one's own comprehension participating in social media thinking about feelings conserving mental resources