Two point charges are stationary and separated by a distance r. which one of the following pairs of charges would result in the largest repulsive force?

Answers

Answer 1

The largest repulsive force is when the charges are equal and have the same magnitude, given that the charges are stationary and separated by a distance r.

Coulomb's law states that the electrical force between two charged objects is directly proportional to the product of the quantity of charge on the objects and inversely proportional to the distance between them. The formula for

Coulomb's Law is: F = k(q1q2 / r^2)where F is the force between the charges, q1, and q2 are the magnitudes of the charges, r is the distance between the charges, and k is Coulomb's constant. Coulomb's constant, k, is equal to 9 x 10^9 Nm^2/C^2.

To calculate the force, we have to multiply Coulomb's constant, k, by the product of the charges, q1 and q2, and divide the result by the square of the distance between the charges, r^2.

to know more about repulsive force here:

brainly.com/question/9099726

#SPJ11


Related Questions

Required information A scuba diver is in fresh water has an air tank with a volume of 0.0100 m3. The air in the tank is initially at a pressure of 100 * 107 Pa. Assume that the diver breathes 0.500 l/s of air. Density of fresh water is 100 102 kg/m3 How long will the tank last at depths of 5.70 m² min

Answers

In order to calculate the time the tank will last, we need to consider the consumption rate of the diver and the change in pressure with depth.

As the diver descends to greater depths, the pressure on the tank increases, leading to a faster rate of air consumption. The pressure increases by 1 atm (approximately 1 * 10^5 Pa) for every 10 meters of depth. Therefore, the change in pressure due to the depth of 5.70 m²/min can be calculated as (5.70 m²/min) * (1 atm/10 m) * (1 * 10^5 Pa/atm).

To find the time the tank will last, we can divide the initial volume of the tank by the rate of air consumption, taking into account the change in pressure. However, we need to convert the rate of air consumption to cubic meters per second to match the units of the tank volume. Since 1 L is equal to 0.001 m³, the rate of air consumption becomes 0.500 * 10^-3 m³/s.

Finally, we can calculate the time the tank will last by dividing the initial volume of the tank by the adjusted rate of air consumption. The formula is: time = (0.0100 m³) / ((0.500 * 10^-3) m³/s + change in pressure). By plugging in the values for the initial pressure and the change in pressure, we can calculate the time in seconds or convert it to minutes by dividing by 60.

In the scuba diver's air tank with a volume of 0.0100 m³ and an initial pressure of 100 * 10^7 Pa will last a certain amount of time at depths of 5.70 m²/min. By considering the rate of air consumption and the change in pressure with depth, we can calculate the time it will last. The time can be found by dividing the initial tank volume by the adjusted rate of air consumption, taking into account the change in pressure due to the depth.

learn more about scuba diver here:

brainly.com/question/20530297

#SPJ11

Light of wavelength λ 0 ​ is the smallest wavelength maximally reflected off a thin film with index of refraction n 0 ​ . The thin film is replaced by another thin film of the same thickness, but with slightly larger index of refraction n f ​ >n 0 ​ . With the new film, λ f ​ is the smallest wavelength maximally reflected off the thin film. Select the correct statement. λ f ​ =λ 0 ​ λ f ​ >λ 0 ​ λ f ​ <λ 0 ​ ​ The relative size of the two wavelengths cannot be determined.

Answers

The correct statement is: λf > λ0. So left-hand side is larger in the case of the new film, the corresponding wavelength, λf, must also be larger than the original wavelength, λ0.

When light is incident on a thin film, interference occurs between the reflected light waves from the top and bottom surfaces of the film. This interference leads to constructive and destructive interference at different wavelengths. The condition for constructive interference, resulting in maximum reflection, is given by:

2nt cosθ = mλ

where:

n is the refractive index of the thin film

t is the thickness of the thin film

θ is the angle of incidence

m is an integer representing the order of the interference (m = 0, 1, 2, ...)

In the given scenario, the original thin film has a refractive index of n0, and the replaced thin film has a slightly larger refractive index of nf (> n0). The thickness of both films is the same.

Since the refractive index of the new film is larger, the value of nt for the new film will also be larger compared to the original film. This means that the right-hand side of the equation, mλ, remains the same, but the left-hand side, 2nt cosθ, increases.

For constructive interference to occur, the left-hand side of the equation needs to equal the right-hand side. That's why λf > λ0.

To learn more about refractive index: https://brainly.com/question/30761100

#SPJ11

A ray of light in glass strikes a water-glass interface. The index of refraction for water is 1.33, and for the glass it is 1.50. a) What is the maximum angle of the incidence that one can observe refracted light? () b) If the incident angle in the glass is 45 degrees, what angle does the refracted ray in the water make with the normal?

Answers

The maximum angle of incidence that one can observe refracted light is approximately 51.6 degrees. The refracted ray in the water makes an angle of approximately 35.3 degrees with the normal.

a) To find the maximum angle of incidence, we need to consider the case where the angle of refraction is 90 degrees, which means the refracted ray is grazing along the interface. Let's assume the angle of incidence is represented by θ₁. Using Snell's law, we can write:

sin(θ₁) / sin(90°) = 1.33 / 1.50

Since sin(90°) is equal to 1, we can simplify the equation to:

sin(θ₁) = 1.33 / 1.50

Taking the inverse sine of both sides, we find:

θ₁ = sin^(-1)(1.33 / 1.50) ≈ 51.6°

Therefore, the maximum angle of incidence that one can observe refracted light is approximately 51.6 degrees.

b) If the incident angle in the glass is 45 degrees, we can calculate the angle of refraction using Snell's law. Let's assume the angle of refraction is represented by θ₂. Using Snell's law, we have:

sin(45°) / sin(θ₂) = 1.50 / 1.33

Rearranging the equation, we find:

sin(θ₂) = sin(45°) * (1.33 / 1.50)

Taking the inverse sine of both sides, we get:

θ₂ = sin^(-1)(sin(45°) * (1.33 / 1.50))

Evaluating the expression, we find:

θ₂ ≈ 35.3°

Therefore, the refracted ray in the water makes an angle of approximately 35.3 degrees with the normal.

To learn more about maximum angle visit:

brainly.com/question/30925659

#SPJ11

The vector position of a particle varies in time according to the expression F = 7.20 1-7.40t2j where F is in meters and it is in seconds. (a) Find an expression for the velocity of the particle as a function of time. (Use any variable or symbol stated above as necessary.) V = 14.8tj m/s (b) Determine the acceleration of the particle as a function of time. (Use any variable or symbol stated above as necessary.) a = ___________ m/s² (c) Calculate the particle's position and velocity at t = 3.00 s. r = _____________ m
v= ______________ m/s

Answers

"(a) The expression for the velocity of the particle as a function of time is: V = -14.8tj m/s. (b) The acceleration of the particle as a function of time is: a = -14.8j m/s². (c) v = -14.8tj = -14.8(3.00)j = -44.4j m/s."

(a) To find the expression for the velocity of the particle as a function of time, we can differentiate the position vector with respect to time.

From question:

F = 7.20(1 - 7.40t²)j

To differentiate with respect to time, we differentiate each term separately:

dF/dt = d/dt(7.20(1 - 7.40t²)j)

= 0 - 7.40(2t)j

= -14.8tj

Therefore, the expression for the velocity of the particle as a function of time is: V = -14.8tj m/s

(b) The acceleration of the particle is the derivative of velocity with respect to time:

dV/dt = d/dt(-14.8tj)

= -14.8j

Therefore, the acceleration of the particle as a function of time is: a = -14.8j m/s²

(c) To calculate the particle's position and velocity at t = 3.00 s, we substitute t = 3.00 s into the expressions we derived.

Position at t = 3.00 s:

r = ∫V dt = ∫(-14.8tj) dt = -7.4t²j + C

Since we need the specific position, we need the value of the constant C. We can find it by considering the initial position of the particle. If the particle's initial position is given, please provide that information.

Velocity at t = 3.00 s:

v = -14.8tj = -14.8(3.00)j = -44.4j m/s

To know more about position of particles visit:

https://brainly.com/question/30685477

#SPJ11

A skydiver will reach a terminal velocity when the air drag equals their weight. For a skydiver with a mass of 95.0 kg and a surface area of 1.5 m 2
, what would their terminal velocity be? Take the drag force to be F D

=1/2rhoAv 2
and setting this equal to the person's weight, find the terminal speed.

Answers

The terminal velocity of the skydiver is approximately 35.77 m/s. This means that  the skydiver reaches this speed, the drag force exerted by the air will equal the person's weight, and they will no longer accelerate.

The terminal velocity of a skydiver with a mass of 95.0 kg and a surface area of 1.5 m^2 can be determined by setting the drag force equal to the person's weight. The drag force equation used is F_D = (1/2) * ρ * A * v^2, where ρ represents air density, A is the surface area, and v is the velocity. By equating the drag force to the weight, we can solve for the terminal velocity.

To find the terminal velocity, we need to set the drag force equal to the weight of the skydiver. The drag force equation is given as F_D = (1/2) * ρ * A * v^2, where ρ is the air density, A is the surface area, and v is the velocity. Since we want the drag force to equal the weight, we can write this as F_D = m * g, where m is the mass of the skydiver and g is the acceleration due to gravity.

By equating the drag force and the weight, we have:

(1/2) * ρ * A * v^2 = m * gWe can rearrange this equation to solve for the terminal velocity v:

v^2 = (2 * m * g) / (ρ * A)

m = 95.0 kg (mass of the skydiver)

A = 1.5 m^2 (surface area)

g = 9.8 m/s^2 (acceleration due to gravity)The air density ρ is not given, but it can be estimated to be around 1.2 kg/m^3.Substituting the values into the equation, we have:

v^2 = (2 * 95.0 kg * 9.8 m/s^2) / (1.2 kg/m^3 * 1.5 m^2)

v^2 = 1276.67Taking the square root of both sides, we get:

v ≈ 35.77 m/s Therefore, the terminal velocity of the skydiver is approximately 35.77 m/s. This means that  the skydiver reaches this speed, the drag force exerted by the air will equal the person's weight, and they will no longer accelerate.

Learn more about drag force Click here:

brainly.com/question/13258892

#SPJ11

A two-stage rocket moves in space at a constant velocity of +4010 m/s. The two stages are then separated by a small explosive charge placed between them. Immediately after the explosion the velocity of the 1390 kg upper stage is +5530 m/s. What is the velocity (magnitude and direction) of the 2370-kg lower stage immediately after the explosion?

Answers

The velocity of the 2370-kg lower stage immediately after the explosion is -3190 m/s in the opposite direction.

Initially, the two-stage rocket is moving in space at a constant velocity of +4010 m/s.

When the explosive charge is detonated, the two stages separate.

The upper stage, with a mass of 1390 kg, acquires a new velocity of +5530 m/s.

To find the velocity of the lower stage, we can use the principle of conservation of momentum.

The total momentum before the explosion is equal to the total momentum after the explosion.

The momentum of the upper stage after the explosion is given by the product of its mass and velocity: (1390 kg) * (+5530 m/s) = +7,685,700 kg·m/s.

Since the explosion only affects the separation between the two stages and not their masses, the total momentum before the explosion is the same as the momentum of the entire rocket: (1390 kg + 2370 kg) * (+4010 m/s) = +15,080,600 kg·m/s.

To find the momentum of the lower stage, we subtract the momentum of the upper stage from the total momentum of the rocket after the explosion: +15,080,600 kg·m/s - +7,685,700 kg·m/s = +7,394,900 kg·m/s.

Finally, we divide the momentum of the lower stage by its mass to find its velocity: (7,394,900 kg·m/s) / (2370 kg) = -3190 m/s.

Therefore, the velocity of the 2370-kg lower stage immediately after the explosion is -3190 m/s in the opposite direction.

To learn more about velocity click here:

brainly.com/question/30559316

#SPJ11

. A ball is shot from the ground into the air. At a height of 9.1 m, the velocity is observed to be = 7.61 +6.1] in meters per second. 4 (a) To what maximum height will the ball rise? (b) What will be the total horizontal distance traveled by the ball? (c) What is the velocity of the ball the instant before it hits the ground?

Answers

The total horizontal distance traveled by the ball is 10.81 m. The maximum vertical velocity of the ball is 14.66 m/s. The final vertical velocity is 6.1 m/s. The time of flight is 1.42s.

[tex]v^2 = u^2[/tex]+ 2as

where v is the final velocity, u is the initial velocity, a is the acceleration, and s is the displacement.

In this case, the initial vertical velocity is 6.1 m/s, the final vertical velocity is 0 m/s (at the maximum height), and the acceleration is -9.8 [tex]m/s^2[/tex](assuming downward acceleration due to gravity). The displacement can be calculated as the difference between the initial and final heights: s = 9.1 m - 0 m = 9.1 m.

0 = [tex](6.1 m/s)^2[/tex] - 2[tex](-9.8 m/s^2[/tex])(9.1 m)

[tex]u^2[/tex] = 36.41 [tex]m^2/s^2[/tex] + 178.36[tex]m^2/s^2[/tex]

[tex]u^2 = 214.77 m^2/s^2[/tex]

u = 14.66 m/s

So, the maximum vertical velocity of the ball is 14.66 m/s.

(b) The total horizontal distance traveled by the ball can be determined using the equation:

d = v * t

where d is the distance, v is the horizontal velocity, and t is the time of flight. Since there is no horizontal acceleration, the horizontal velocity remains constant throughout the motion. From the given information, the horizontal velocity is 7.61 m/s.

To find the time of flight, we can use the equation:

s = ut + (1/2)[tex]at^2[/tex]

where s is the displacement in the vertical direction, u is the initial vertical velocity, a is the acceleration, and t is the time of flight.

In this case, the displacement is -9.1 m (since the ball is moving upward and then returning to the ground), the initial vertical velocity is 6.1 m/s, the acceleration is [tex]-9.8 m/s^2[/tex], and the time of flight is unknown.

-9.1 m = (6.1 m/s)t + (1/2)(-9.8 m/s^2)t^2

Simplifying the equation gives a quadratic equation:

[tex]-4.9t^2[/tex] + 6.1t - 9.1 = 0

Solving this equation gives two possible values for t: t = 1.24 s or t = 1.42 s. Since time cannot be negative, we choose the positive value of t, which is t = 1.42 s.

Now, we can calculate the horizontal distance using the equation:

d = v * t = 7.61 m/s * 1.42 s = 10.81 m

So, the total horizontal distance traveled by the ball is 10.81 m.

(c) The velocity of the ball just before it hits the ground can be determined by considering the vertical motion. The initial vertical velocity is 6.1 m/s, and the acceleration due to gravity is -9.8[tex]m/s^2[/tex].

v = u + at

where v is the final velocity, u is the initial velocity, a is the acceleration, and t is the time, we can calculate the final vertical velocity.

v = 6.1 m/s + (-9.8 [tex]m/s^2[/tex])(1.42 s)

v = 6.1 m/s.

Learn more about velocity here:

brainly.com/question/30559316

#SPJ11

A flat piece of diamond is 10.0 mm thick. How long will it take for light to travel across the diamond?

Answers

The time it takes for light to travel across the diamond is approximately 8.07 x 10^(-11) seconds.

To calculate the time it takes for light to travel across the diamond, we can use the formula:

Time = Distance / Speed

The speed of light in a vacuum is approximately 299,792,458 meters per second (m/s). However, the speed of light in a medium, such as diamond, is slower due to the refractive index.

The refractive index of diamond is approximately 2.42.

The distance light needs to travel is the thickness of the diamond, which is 10.0 mm or 0.01 meters.

Using these values, we can calculate the time it takes for light to travel across the diamond:

Time = 0.01 meters / (299,792,458 m/s / 2.42)

Simplifying the expression:

Time = 0.01 meters / (123,933,056.2 m/s)

Time ≈ 8.07 x 10^(-11) seconds

Therefore, it will take approximately 8.07 x 10^(-11) seconds for light to travel across the diamond.

To learn more about refractive index, Visit:

https://brainly.com/question/83184

#SPJ11

Please explain mathematically why the spin motions in the major (maximum moment of inertia) and minor (minimum moment of inertia) axes are stable in a single rigid body.

Answers

The spin motions in the major and minor axes of a single rigid body are stable because the moments of inertia are respectively maximum and minimum about these axes.

Stability in major axis rotation: When a rigid body spins about its major axis (axis with the maximum moment of inertia), it experiences a greater resistance to changes in its rotational motion. This is because the moment of inertia about the major axis is the largest, which mean s that the body's mass is distributed farther away from the axis of rotation. This distribution of mass results in a greater rotational inertia, making the body more resistant to angular acceleration or disturbance. As a result, the spin motion about the major axis tends to be stable.Stability in minor axis rotation: Conversely, when a rigid body spins about its minor axis (axis with the minimum moment of inertia), it experiences a lower resistance to changes in its rotational motion. The moment of inertia about the minor axis is the smallest, indicating that the body's mass is concentrated closer to the axis of rotation. This concentration of mass results in a lower rotational inertia, making the body more responsive to angular acceleration or disturbance. Consequently, the spin motion about the minor axis tends to be stable.

Overall, the stability of spin motions in the major and minor axes of a single rigid body can be mathematically explained by the relationship between moment of inertia and rotational inertia. The larger the moment of inertia, the greater the resistance to changes in rotational motion, leading to stability. Conversely, the smaller the moment of inertia, the lower the resistance to changes in rotational motion, also contributing to stability.

Learn more about rigid body

brainly.com/question/15505728

#SPJ11

A274-V battery is connected to a device that draws 4.86 A of current. What is the heat in k), dissipated in the device in 273 minutes of operation

Answers

The heat dissipated in the device during 273 minutes of operation is approximately 217.56 kJ

To calculate the heat dissipated in the device over 273 minutes of operation, we need to find the power consumed by the device and then multiply it by the time.

Given that,

The device draws a current of 4.86 A, we need the voltage of the A274-V battery to calculate the power. Let's assume the battery voltage is 274 V based on the battery's name.

Power (P) = Current (I) * Voltage (V)

P = 4.86 A * 274 V

P ≈ 1331.64 W

Now that we have the power consumed by the device, we can calculate the heat dissipated using the formula:

Heat (Q) = Power (P) * Time (t)

Q = 1331.64 W * 273 min

To convert the time from minutes to seconds (as power is given in watts), we multiply by 60:

Q = 1331.64 W * (273 min * 60 s/min)

Q ≈ 217,560.24 J

To convert the heat from joules to kilojoules, we divide by 1000:

Q ≈ 217.56 kJ

Therefore, the heat dissipated in the device during 273 minutes of operation is approximately 217.56 kJ.

Learn more about heat from the given link

https://brainly.com/question/934320

#SPJ11

Calculate the wavelength and the frequency f of the photons that have an energy of Ephoton = 1.72 x 10-18 J. Use c = 3.00 x 108 m/s for the speed of light in a vacuum. λ = Calculate the wavelength and the frequency of the photons that have an energy of Ephoton = 663 MeV. λ = m λ = Calculate the wavelength and the frequency of the photons that have an energy of Ephoton = 4.61 keV. m λ = m f = Calculate the wavelength and the frequency of the photons that have an energy of Ephoton = 8.20 eV.

Answers

The wavelength of the photon is 1.52 x 10⁻⁷ m and the frequency of the photon is 1.98 x 10¹⁵ Hz.

The formula to calculate the wavelength of the photon is given by:λ = c / f where c is the speed of light and f is the frequency of the photon. The formula to calculate the frequency of the photon is given by:

f = E / h where E is the energy of the photon and h is Planck's constant which is equal to 6.626 x 10⁻³⁴ J s.1. Energy of the photon is Ephoton = 1.72 x 10⁻¹⁸ J

The speed of light in a vacuum is given by c = 3.00 x 10⁸ m/s.The frequency of the photon is:

f = E / h

= (1.72 x 10⁻¹⁸) / (6.626 x 10⁻³⁴)

= 2.59 x 10¹⁵ Hz

Wavelength of the photon is:

λ = c / f

= (3.00 x 10⁸) / (2.59 x 10¹⁵)

= 1.16 x 10⁻⁷ m

Therefore, the wavelength of the photon is 1.16 x 10⁻⁷ m and the frequency of the photon is 2.59 x 10¹⁵ Hz.2. Energy of the photon is Ephoton = 663 MeV.1 MeV = 10⁶ eVThus, energy in Joules is:

Ephoton = 663 x 10⁶ eV

= 663 x 10⁶ x 1.6 x 10⁻¹⁹ J

= 1.06 x 10⁻¹¹ J

The frequency of the photon is:

f = E / h

= (1.06 x 10⁻¹¹) / (6.626 x 10⁻³⁴)

= 1.60 x 10²² Hz

The mass of photon can be calculated using Einstein's equation:

E = mc²where m is the mass of the photon.

c = speed of light

= 3 x 10⁸ m/s

λ = h / mc

where h is Planck's constant. Substituting the values in this equation, we get:

λ = h / mc

= (6.626 x 10⁻³⁴) / (1.06 x 10⁻¹¹ x (3 x 10⁸)²)

= 3.72 x 10⁻¹⁴ m

Therefore, the wavelength of the photon is 3.72 x 10⁻¹⁴ m and the frequency of the photon is 1.60 x 10²² Hz.3. Energy of the photon is Ephoton = 4.61 keV.Thus, energy in Joules is:

Ephoton = 4.61 x 10³ eV

= 4.61 x 10³ x 1.6 x 10⁻¹⁹ J

= 7.38 x 10⁻¹⁶ J

The frequency of the photon is:

f = E / h

= (7.38 x 10⁻¹⁶) / (6.626 x 10⁻³⁴)

= 1.11 x 10¹⁸ Hz

Wavelength of the photon is:

λ = c / f

= (3.00 x 10⁸) / (1.11 x 10¹⁸)

= 2.70 x 10⁻¹¹ m

Therefore, the wavelength of the photon is 2.70 x 10⁻¹¹ m and the frequency of the photon is 1.11 x 10¹⁸ Hz.4. Energy of the photon is Ephoton = 8.20 eV.

Thus, energy in Joules is:

Ephoton = 8.20 x 1.6 x 10⁻¹⁹ J

= 1.31 x 10⁻¹⁸ J

The frequency of the photon is:

f = E / h

= (1.31 x 10⁻¹⁸) / (6.626 x 10⁻³⁴)

= 1.98 x 10¹⁵ Hz

Wavelength of the photon is:

λ = c / f= (3.00 x 10⁸) / (1.98 x 10¹⁵)

= 1.52 x 10⁻⁷ m

Therefore, the wavelength of the photon is 1.52 x 10⁻⁷ m and the frequency of the photon is 1.98 x 10¹⁵ Hz.

To know more about wavelength visit:

https://brainly.com/question/31143857

#SPJ11

Ephoton is the energy of the photon, h is the Planck's constant (6.626 x 10^-34 J·s), c is the speed of light in a vacuum (3.00 x 10^8 m/s), λ is the wavelength, and f is the frequency.

To calculate the wavelength (λ) and frequency (f) of photons with given energies, we can use the equations:

Ephoton = h * f

c = λ * f

where Ephoton is the energy of the photon, h is the Planck's constant (6.626 x 10^-34 J·s), c is the speed of light in a vacuum (3.00 x 10^8 m/s), λ is the wavelength, and f is the frequency.

Let's calculate the values for each given energy:

Ephoton = 1.72 x 10^-18 J:

Using Ephoton = h * f, we can solve for f:

f = Ephoton / h = (1.72 x 10^-18 J) / (6.626 x 10^-34 J·s) ≈ 2.60 x 10^15 Hz.

Now, using c = λ * f, we can solve for λ:

λ = c / f = (3.00 x 10^8 m/s) / (2.60 x 10^15 Hz) ≈ 1.15 x 10^-7 m.

Ephoton = 663 MeV:

First, we need to convert the energy from MeV to Joules:

Ephoton = 663 MeV = 663 x 10^6 eV = 663 x 10^6 x 1.6 x 10^-19 J = 1.061 x 10^-10 J.

Using Ephoton = h * f, we can solve for f:

f = Ephoton / h = (1.061 x 10^-10 J) / (6.626 x 10^-34 J·s) ≈ 1.60 x 10^23 Hz.

Now, using c = λ * f, we can solve for λ:

λ = c / f = (3.00 x 10^8 m/s) / (1.60 x 10^23 Hz) ≈ 1.87 x 10^-15 m.

Ephoton = 4.61 keV:

First, we need to convert the energy from keV to Joules:

Ephoton = 4.61 keV = 4.61 x 10^3 eV = 4.61 x 10^3 x 1.6 x 10^-19 J = 7.376 x 10^-16 J.

Using Ephoton = h * f, we can solve for f:

f = Ephoton / h = (7.376 x 10^-16 J) / (6.626 x 10^-34 J·s) ≈ 1.11 x 10^18 Hz.

Now, using c = λ * f, we can solve for λ:

λ = c / f = (3.00 x 10^8 m/s) / (1.11 x 10^18 Hz) ≈ 2.70 x 10^-10 m.

Ephoton = 8.20 eV:

Using Ephoton = h * f, we can solve for f:

f = Ephoton / h = (8.20 eV) / (6.626 x 10^-34 J·s) ≈ 1.24 x 10^15 Hz.

Now, using c = λ * f, we can solve for λ:

λ = c / f = (3.00 x 10^8 m/s) / (1.24 x 10^15 Hz) ≈ 2.42 x 10^-7 m.

To know more about wavelength, visit:

https://brainly.com/question/31143857

#SPJ11

Two objects, of masses my and ma, are moving with the same speed and in opposite directions along the same line. They collide and a totally inelastic collision occurs. After the collision, both objects move together along the same line with speed v/2. What is the numerical value of the ratio m/m, of their masses?

Answers

`[(au + (v/2)]/[(u - (v/2))]`is the numerical value of the ratio m/m, of their masses .

Two objects, of masses my and ma, are moving with the same speed and in opposite directions along the same line. They collide and a totally inelastic collision occurs.

After the collision, both objects move together along the same line with speed v/2.

The numerical value of the ratio of the masses m1/m2 can be calculated by the following formula:-

                 Initial Momentum = Final Momentum

Initial momentum is given by the sum of the momentum of two masses before the collision. They are moving with the same speed but in opposite directions, so momentum will be given by myu - mau where u is the velocity of both masses.

`Initial momentum = myu - mau`

Final momentum is given by the mass of both masses multiplied by the final velocity they moved together after the collision.

So, `final momentum = (my + ma)(v/2)`According to the principle of conservation of momentum,

`Initial momentum = Final momentum

`Substituting the values in the above formula we get: `myu - mau = (my + ma)(v/2)

We need to find `my/ma`, so we will divide the whole equation by ma on both sides.`myu/ma - au = (my/ma + 1)(v/2)

`Now, solving for `my/ma` we get;`my/ma = [(au + (v/2)]/[(u - (v/2))]

`Hence, the numerical value of the ratio m1/m2, of their masses is: `[(au + (v/2)]/[(u - (v/2))

Therefore, the answer is given by `[(au + (v/2)]/[(u - (v/2))]`.

Learn more about Final Momentum

brainly.com/question/29990455

#SPJ11

17. In experiment 10, a group of students found that the
moment of inertia of the plate+disk was 1.74x10-4 kg m2, on the
other hand they found that the moment of inertia of the plate was
0.34x10-4 kg

Answers

The main answer is that the moment of inertia of the disk in this configuration can be calculated by subtracting the moment of inertia of the plate from the total moment of inertia of the plate+disk.

To understand this, we need to consider the concept of moment of inertia. Moment of inertia is a measure of an object's resistance to changes in its rotational motion and depends on its mass distribution. When a plate and disk are combined, their moments of inertia add up to give the total moment of inertia of the system.

By subtracting the moment of inertia of the plate (0.34x10-4 kg m2) from the total moment of inertia of the plate+disk (1.74x10-4 kg m2), we can isolate the moment of inertia contributed by the disk alone. This difference represents the disk's unique moment of inertia in this particular configuration.

The experiment demonstrates the ability to determine the contribution of individual components to the overall moment of inertia in a composite system. It highlights the importance of considering the distribution of mass when calculating rotational properties and provides valuable insights into the rotational behavior of objects.

To learn more about inertia click here

brainly.com/question/3268780

#SPJ11

5 of 14 < 3.33/5 NR III Your answer is partially correct. A sodium lamp emits light at the power P = 90.0 W and at the wavelength 1 = 581 nm, and the emission is uniformly in all directions. (a) At what rate are photons emitted by the lamp? (b) At what distance from the lamp will a totally absorbing screen absorb photons at the rate of 1.00 photon Icm?s? (c) What is the rate per square meter at which photons are intercepted by a screen at a distance of 2.10 m from the lamp? (a) Number 2.64E20 Units u.s. (b) Number 4.58E7 Units m (c) Number i 1.00E Units S^-1

Answers

a) Number of photons emitted per second = 2.64 × 10²⁰ photons/s;  b) distance from the lamp will be 4.58 × 10⁷ m ; c) rate per square meter at 2.10 m distance from the lamp is 1.21 × 10³ W/m².

(a) Rate of photons emitted by the lamp: It is given that sodium lamp emits light at power P = 90.0 W and at the wavelength λ = 581 nm.

Number of photons emitted per second is given by: P = E/t where E is the energy of each photon and t is the time taken for emitting N photons. E = h c/λ where h is the Planck's constant and c is the speed of light.

Substituting E and P values, we get: N = P/E

= Pλ/(h c)

= (90.0 J/s × 581 × 10⁻⁹ m)/(6.63 × 10⁻³⁴ J·s × 3.0 × 10⁸ m/s)

= 2.64 × 10²⁰ photons/s

Therefore, the rate of photons emitted by the lamp is 2.64 × 10²⁰ photons/s.

(b) Distance from the lamp: Let the distance from the lamp be r and the area of the totally absorbing screen be A. Rate of absorption of photons by the screen is given by: N/A = P/4πr², E = P/N = (4πr²A)/(Pλ)

Substituting P, A, and λ values, we get: E = 4πr²(1.00 photon/(cm²·s))/(90.0 J/s × 581 × 10⁻⁹ m)

= 4.58 × 10⁷ m

Therefore, the distance from the lamp will be 4.58 × 10⁷ m.

(c) Rate per square meter at 2.10 m distance from the lamp: Let the distance from the lamp be r and the area of the screen be A.

Rate of interception of photons by the screen is given by: N/A = P/4πr²

N = Pπr²

Substituting P and r values, we get: N = 90.0 W × π × (2.10 m)²

= 1.21 × 10³ W

Therefore, the rate per square meter at 2.10 m distance from the lamp is 1.21 × 10³ W/m².

To know more about photons, refer

https://brainly.com/question/15946945

#SPJ11

My brother places a straight conducting wire with mass 10.0 g and length 5.00 cm on a frictionless incline plane (45˚ from the horizontal). There is a uniform magnetic field of 2.0 T at all points on the plane, pointing straight up. To keep the wire from sliding down the incline, my brother applies an electric potential across the wire. When the right amount of current flows through the wire, the wire remains at rest.
Determine the magnitude of the current in the wire that will cause the wire to remain at rest.

Answers

To determine the magnitude of the current in the wire that will cause it to remain at rest on the inclined plane, we need to consider the forces acting on the wire and achieve equilibrium.

Gravity force (F_gravity):

The force due to gravity can be calculated using the formula: F_gravity = m × g, where m is the mass of the wire and g is the acceleration due to gravity. Substituting the given values, we have F_gravity = 10.0 g × 9.8 m/s².

Magnetic force (F_magnetic):

The magnetic force acting on the wire can be calculated using the formula: F_magnetic = I × L × B × sin(θ), where I is the current in the wire, L is the length of the wire, B is the magnetic field strength, and θ is the angle between the wire and the magnetic field.

In this case, θ is 45˚ and sin(45˚) = √2 / 2. Thus, the magnetic force becomes F_magnetic = I × L × B × (√2 / 2).

To achieve equilibrium, the magnetic force must balance the force due to gravity. Therefore, F_magnetic = F_gravity.

By equating the two forces, we have:

I × L × B × (√2 / 2) = 10.0 g × 9.8 m/s²

Solve for the current (I):

Rearranging the equation, we find:

I = (10.0 g × 9.8 m/s²) / (L × B × (√2 / 2))

Substituting the given values, we have:

I = (10.0 g × 9.8 m/s²) / (5.00 cm × 2.0 T × (√2 / 2))

Converting 5.00 cm to meters and simplifying, we have:

I = (10.0 g × 9.8 m/s²) / (0.050 m × 2.0 T)

Calculate the current (I):

Evaluating the expression, we find that the current required to keep the wire at rest on the incline is approximately 196 A.

Therefore, the magnitude of the current in the wire that will cause it to remain at rest is approximately 196 A.

Learn more about magnitude here,

https://brainly.com/question/30337362

#SPJ11

. The hottest place on the Earth is Al-'Aziziyah, Libya, where the temperature has soared to 136.4 ∘ F. The coldest place is Vostok, Antarctica, where the temperature has plunged to −126.9 ∘ F. Express these temperatures in degrees Celsius and in Kelvins.

Answers

Here are the temperatures in degrees Celsius and Kelvins

Temperature | Degrees Fahrenheit | Degrees Celsius | Kelvins

Al-'Aziziyah, Libya | 136.4 | 58.0 | 331.15

Vostok, Antarctica | −126.9 | −88.28 | 184.87

To convert from degrees Fahrenheit to degrees Celsius, you can use the following formula:

°C = (°F − 32) × 5/9

To convert from degrees Celsius to Kelvins, you can use the following formula:

K = °C + 273.15

Lern more about degrees with the given link,

https://brainly.com/question/30403653

#SPJ11

The gravitational field strength at the surface of an hypothetical planet is smaller than the value at the surface of earth. How much mass (in kg) that planet needs to have a gravitational field strength equal to the gravitational field strength on the surface of earth without any change in its size? The radius of that planet is 14.1 x 106 m. Note: Don't write any unit in the answer box. Your answer is required with rounded off to minimum 2 decimal places. An answer like 64325678234.34 can be entered as 6.43E25 A mass m = 197 kg is located at the origin; an identical second mass m is at x = 33 cm. A third mass m is above the first two so the three masses form an equilateral triangle. What is the net gravitational force on the third mass? All masses are same. Answer:

Answers

1. Calculation of mass to get equal gravitational field strengthThe gravitational field strength is given by g = GM/R2, where M is the mass of the planet and R is the radius of the planet. We are given that the radius of the planet is 14.1 x 106 m, and we need to find the mass of the planet that will give it the same gravitational field strength as that on Earth, which is approximately 9.81 m/s2.

2. Calculation of net gravitational force on the third massIf all masses are the same, then we can use the formula for the gravitational force between two point masses: F = Gm2/r2, where m is the mass of each point mass, r is the distance between them, and G is the gravitational constant.

The net gravitational force on the third mass will be the vector sum of the gravitational forces between it and the other two masses.

To know more about the gravitational field, visit:

https://brainly.com/question/31829401

#SPJ11

Part B What is the current through the 3.00 2 resistor? | ΑΣφ I = A Submit Previous Answers Request Answer X Incorrect; Try Again; 4 attempts remaining Part C What is the current through the 6.00 2 resistor? V] ΑΣφ ? I = A Submit Previous Answers Request Answer X Incorrect; Try Again; 4 attempts remaining Part D What is the current through the 12.00 resistor? | ΑΣΦ I = A < 1 of 1 Submit Request Answer E = 60.0 V, r = 0 + Part E 3.00 12 12.0 12 Ω What is the current through the 4.00 resistor? ХМУ | ΑΣΦ 6.00 12 4.00 12 I = А

Answers

We are given a circuit with resistors of different values and are asked to determine the currents passing through each resistor.

Specifically, we need to find the current through a 3.00 Ω resistor, a 6.00 Ω resistor, a 12.00 Ω resistor, and a 4.00 Ω resistor. The previous answers were incorrect, and we have four attempts remaining to find the correct values.

To find the currents through the resistors, we need to apply Ohm's Law, which states that the current (I) flowing through a resistor is equal to the voltage (V) across the resistor divided by its resistance (R). Let's go through each resistor individually:

Part B: For the 3.00 Ω resistor, we need to know the voltage across it in order to calculate the current. Unfortunately, the voltage information is missing, so we cannot determine the current at this point.

Part C: Similarly, for the 6.00 Ω resistor, we require the voltage across it to find the current. Since the voltage information is not provided, we cannot calculate the current through this resistor.

Part D: The current through the 12.00 Ω resistor can be determined if we have the voltage across it. However, the given information only mentions the resistance value, so we cannot find the current for this resistor.

Part E: Finally, we are given the necessary information for the 4.00 Ω resistor. We have the voltage (E = 60.0 V) and the resistance (R = 4.00 Ω). Applying Ohm's Law, the current (I) through the resistor is calculated as I = E/R = 60.0 V / 4.00 Ω = 15.0 A.

In summary, we were able to find the current through the 4.00 Ω resistor, which is 15.0 A. However, the currents through the 3.00 Ω, 6.00 Ω, and 12.00 Ω resistors cannot be determined with the given information.

Learn more about resistors here: brainly.com/question/30672175

#SPJ11

Review. A window washer pulls a rubber squeegee down a very tall vertical window. The squeegee has mass 160 g and is mounted on the end of a light rod. The coefficient of kinetic friction between the squeegee and the dry glass is 0.900. The window washer presses it against the window with a force having a horizontal component of 4.00N .(a) If she pulls the squeegee down the window at constant velocity, what vertical force component must she exert?

Answers

The squeegee's acceleration in this situation is 3.05 m/s^2.

To find the squeegee's acceleration in this situation, we need to consider the forces acting on it.

First, let's calculate the normal force (N) exerted by the window on the squeegee. Since the squeegee is pressed against the window, the normal force is equal to its weight.

The mass of the squeegee is given as 160 g, which is equivalent to 0.16 kg. Therefore, N = mg = 0.16 kg * 9.8 m/s^2 = 1.568 N.

Next, let's determine the force of friction (F_friction) opposing the squeegee's motion.

The coefficient of kinetic friction (μ) is provided as 0.900. The force of friction can be calculated as F_friction = μN = 0.900 * 1.568 N = 1.4112 N.

The horizontal component of the force applied by the window washer is given as 4.00 N. Since the squeegee is pulled down the window, this horizontal force doesn't affect the squeegee's vertical motion.

The net force (F_net) acting on the squeegee in the vertical direction is the difference between the downward force component (F_downward) and the force of friction. F_downward is increased by 25%, so F_downward = 1.25 * N = 1.25 * 1.568 N = 1.96 N.

Now, we can calculate the squeegee's acceleration (a) using Newton's second law, F_net = ma, where m is the mass of the squeegee. Rearranging the equation, a = F_net / m. Plugging in the values, a = (1.96 N - 1.4112 N) / 0.16 kg = 3.05 m/s^2.

Therefore, the squeegee's acceleration in this situation is 3.05 m/s^2.

Note: It's important to double-check the given values, units, and calculations for accuracy.

to learn more about acceleration

https://brainly.com/question/2303856

#SPJ11

please help!
An uncharged 10-µF capacitor is being charged in series with a 720-22 resistor across a 100-V battery. From the given equation, at the end of one time constant: q = % (1 - e-t/RC) the charge on the c

Answers

At the end of one time constant, the charge on the capacitor is approximately 6.32 µC. This can be calculated using the equation q = C (1 - e^(-t/RC)), where C is the capacitance and RC is the time constant.

To find the charge on the capacitor at the end of one time constant, we can use the equation q = C (1 - e^(-t/RC)), where q is the charge, C is the capacitance, t is the time, R is the resistance, and RC is the time constant. In this case, the capacitance is given as 10 µF and the time constant can be calculated as RC = 720 Ω * 10 µF = 7200 µs.

At the end of one time constant, the time is equal to the time constant, which means t/RC = 1. Substituting these values into the equation, we get q = 10 µF (1 - e^(-1)) ≈ 6.32 µC. Therefore, the charge on the capacitor is approximately 6.32 µC at the end of one time constant.

To learn more about capacitor click here:

brainly.com/question/31627158

#SPJ11

A horizontal beam of laser light of wavelength
574 nm passes through a narrow slit that has width 0.0610 mm. The intensity of the light is measured
on a vertical screen that is 2.00 m from the slit.
What is the minimum uncertainty in the vertical component of the momentum of each photon in the beam
after the photon has passed through the slit?

Answers

The minimum uncertainty in the vertical component of the momentum of each photon after passing through the slit is approximately[tex]5.45 * 10^{(-28)} kg m/s.[/tex]

We can use the Heisenberg uncertainty principle. The uncertainty principle states that the product of the uncertainties in position and momentum of a particle is greater than or equal to Planck's constant divided by 4π.

The formula for the uncertainty principle is given by:

Δx * Δp ≥ h / (4π)

where:

Δx is the uncertainty in position

Δp is the uncertainty in momentum

h is Planck's constant [tex](6.62607015 * 10^{(-34)} Js)[/tex]

In this case, we want to find the uncertainty in momentum (Δp). We know the wavelength of the laser light (λ) and the width of the slit (d). The uncertainty in position (Δx) can be taken as half of the width of the slit (d/2).

Given:

Wavelength (λ) = 574 nm = [tex]574 *10^{(-9)} m[/tex]

Slit width (d) = 0.0610 mm = [tex]0.0610 * 10^{(-3)} m[/tex]

Distance to the screen (L) = 2.00 m

We can find the uncertainty in position (Δx) as:

Δx = d / 2 = [tex]0.0610 * 10^{(-3)} m / 2[/tex]

Next, we can calculate the uncertainty in momentum (Δp) using the uncertainty principle equation:

Δp = h / (4π * Δx)

Substituting the values, we get:

Δp = [tex](6.62607015 * 10^{(-34)} Js) / (4\pi * 0.0610 * 10^{(-3)} m / 2)[/tex]

Simplifying the expression:

Δp = [tex](6.62607015 * 10^{(-34)} Js) / (2\pi * 0.0610 * 10^{(-3)} m)[/tex]

Calculating Δp:

Δp ≈  [tex]5.45 * 10^{(-28)} kg m/s.[/tex]

To know more about Planck's constant, here

brainly.com/question/30763530

#SPJ4

Explain the working principle of scanning tunnelling microscope.
List examples of
barrier tunnelling occurring in the nature and in manufactured
devices?

Answers

The scanning tunneling microscope is based on the principle of quantum tunneling, which enables atomic-scale imaging of surfaces. Barrier tunneling occurs in various natural processes and is harnessed in manufactured devices for various applications.

The scanning tunneling microscope (STM) operates based on the principle of quantum tunneling. It uses a sharp conducting probe to scan the surface of a sample and measures the tunneling current that flows between the probe and the surface.

By maintaining a constant tunneling current, the STM can create a topographic image of the surface at the atomic level. Examples of barrier tunneling can be found in various natural phenomena, such as radioactive decay and electron emission, as well as in manufactured devices like tunnel diodes and flash memory.

The scanning tunneling microscope (STM) works by bringing a sharp conducting probe very close to the surface of a sample. When a voltage is applied between the probe and the surface, quantum tunneling occurs.

Quantum tunneling is a phenomenon in which particles can pass through a potential barrier even though they do not have enough energy to overcome it classically. In the case of STM, electrons tunnel between the probe and the surface, resulting in a tunneling current.

By scanning the probe across the surface and measuring the tunneling current, the STM can create a topographic map of the surface with atomic-scale resolution. Variations in the tunneling current reflect the surface's topography, allowing scientists to visualize individual atoms and manipulate them on the atomic level.

Barrier tunneling is a phenomenon that occurs in various natural and manufactured systems. Examples of natural barrier tunneling include radioactive decay, where atomic nuclei tunnel through energy barriers to decay into more stable states, and electron emission, where electrons tunnel through energy barriers to escape from a material's surface.

In manufactured devices, barrier tunneling is utilized in tunnel diodes, which are electronic components that exploit tunneling to create a negative resistance effect.

This allows for applications in oscillators and high-frequency circuits. Another example is flash memory, where charge is stored and erased by controlling electron tunneling through a thin insulating layer.

Overall, the scanning tunneling microscope is based on the principle of quantum tunneling, which enables atomic-scale imaging of surfaces. Barrier tunneling occurs in various natural processes and is harnessed in manufactured devices for various applications.

Learn more about scanning tunneling from the given link:

https://brainly.com/question/17091478

#SPJ11

Identify three things in Figure 5 that help make the skier complete the race faster. Figure 5

Answers

This enables the skier to make quick and accurate turns, which is especially important when skiing downhill at high speeds.

In Figure 5, the following are the three things that help the skier complete the race faster:

Reduced air resistance: The skier reduces air resistance by crouching low, which decreases air drag. This enables the skier to ski faster and more aerodynamically. This is demonstrated by the skier in Figure 5 who is crouching low to reduce air resistance.

Rounded ski tips: Rounded ski tips help the skier to make turns more quickly. This is because rounded ski tips make it easier for the skier to glide through the snow while turning, which reduces the amount of time it takes for the skier to complete a turn.

Sharp edges: Sharp edges on the skier’s skis allow for more precise turning and edge control.

To know more about accurate:

https://brainly.com/question/30350489


#SPJ11

State and derive all the components of field tensor in Electrodynamics with 16 components for each component and derive Biot-Savart law by only considering electrostatics and Relativity as fundamental effects?

Answers

This is the vector potential equation in electrostatics. Solving this equation yields the vector potential A, which can then be used to calculate the magnetic field B using the Biot-Savart law:     B = ∇ × A

In electrodynamics, the field tensor, also known as the electromagnetic tensor or the Faraday tensor, is a mathematical construct that combines the electric and magnetic fields into a single entity. The field tensor is a 4x4 matrix with 16 components.

The components of the field tensor are typically denoted by Fᵘᵛ, where ᵘ and ᵛ represent the indices ranging from 0 to 3. The indices 0 to 3 correspond to the components of spacetime: 0 for the time component and 1, 2, 3 for the spatial components.

The field tensor components are derived from the electric and magnetic fields as follows:

Fᵘᵛ = ∂ᵘAᵛ - ∂ᵛAᵘ

where Aᵘ is the electromagnetic 4-potential, which combines the scalar potential (φ) and the vector potential (A) as Aᵘ = (φ/c, A).

Deriving the Biot-Savart law by considering only electrostatics and relativity as fundamental effects:

The Biot-Savart law describes the magnetic field produced by a steady current in the absence of time-varying electric fields. It can be derived by considering electrostatics and relativity as fundamental effects.

In electrostatics, we have the equation ∇²φ = -ρ/ε₀, where φ is the electric potential, ρ is the charge density, and ε₀ is the permittivity of free space.

Relativistically, we know that the electric field (E) and the magnetic field (B) are part of the electromagnetic field tensor (Fᵘᵛ). In the absence of time-varying electric fields, we can ignore the time component (F⁰ᵢ = 0) and only consider the spatial components (Fⁱʲ).

Using the field tensor components, we can write the equations:

∂²φ/∂xⁱ∂xⁱ = -ρ/ε₀

Fⁱʲ = ∂ⁱAʲ - ∂ʲAⁱ

By considering the electrostatic potential as A⁰ = φ/c and setting the time component F⁰ᵢ to 0, we have:

F⁰ʲ = ∂⁰Aʲ - ∂ʲA⁰ = 0

Using the Lorentz gauge condition (∂ᵤAᵘ = 0), we can simplify the equation to:

∂ⁱAʲ - ∂ʲAⁱ = 0

From this equation, we find that the spatial components of the electromagnetic 4-potential are related to the vector potential A by:

Aʲ = ∂ʲΦ

Substituting this expression into the original equation, we have:

∂ⁱ(∂ʲΦ) - ∂ʲ(∂ⁱΦ) = 0

This equation simplifies to:

∂ⁱ∂ʲΦ - ∂ʲ∂ⁱΦ = 0

Taking the curl of both sides of this equation, we obtain:

∇ × (∇ × A) = 0

Applying the vector identity ∇ × (∇ × A) = ∇(∇ ⋅ A) - ∇²A, we have:

∇²A - ∇(∇ ⋅ A) = 0

Since the divergence of A is zero (∇ ⋅ A = 0) for electrostatics, the equation

reduces to:

∇²A = 0

This is the vector potential equation in electrostatics. Solving this equation yields the vector potential A, which can then be used to calculate the magnetic field B using the Biot-Savart law:

B = ∇ × A

Therefore, by considering electrostatics and relativity as fundamental effects, we can derive the Biot-Savart law for the magnetic field produced by steady currents.

To know more about electrostatics refer here:

https://brainly.com/question/16489391#

#SPJ11

Lifting an elephant with a forklift is an energy intensive task requiring 200,000 J of energy. The average forklift has a power output of 10 kW (1 kW is equal to 1000 W)
and can accomplish the task in 20 seconds. How powerful would the forklift need to be
to do the same task in 5 seconds?

Answers

Lifting an elephant with a forklift is an energy intensive task requiring 200,000 J of energy. The average forklift has a power output of 10 kW (1 kW is equal to 1000 W) and can accomplish the task in 20 seconds. The forklift would need to have a power output of 40,000 W or 40 kW to lift the elephant in 5 seconds.

To determine the power required for the forklift to complete the task in 5 seconds, we can use the equation:

Power = Energy / Time

Given that the energy required to lift the elephant is 200,000 J and the time taken to complete the task is 20 seconds, we can calculate the power output of the average forklift as follows:

Power = 200,000 J / 20 s = 10,000 W

Now, let's calculate the power required to complete the task in 5 seconds:

Power = Energy / Time = 200,000 J / 5 s = 40,000 W

Therefore, the forklift would need to have a power output of 40,000 W or 40 kW to lift the elephant in 5 seconds.

For more such questions on power, click on:

https://brainly.com/question/2248465

#SPJ8

Two blocks with masses 0.325 kg (A) and 0.884 kg (B) sit on a frictionless surface. Between them is a spring with spring constant 28.5 N/m, which is not attached to either block The two blocks are pushed together, compressing the spring by 0.273 meter, after which the system is released from rest. What is the final speed of the block A? (Hint: you will need to use both conservation of energy and conservation of momentum to solve this problem).

Answers

The final speed of block A is approximately 1.48 m/s. To determine the final speed of block A, we can apply the principles of conservation of mechanical energy.

First, let's calculate the potential energy stored in the compressed spring:

Potential energy (PE) = 0.5 * k * x^2

Where k is the spring constant and x is the compression of the spring. Substituting the given values:

PE = 0.5 * 28.5 N/m * (0.273 m)^2 = 0.534 J

Since the system is released from rest, the initial kinetic energy is zero. Therefore, the total mechanical energy of the system remains constant throughout.

Total mechanical energy (E) = PE

Now, let's calculate the final kinetic energy of block A:

Final kinetic energy (KE) = E - PE

Since the total mechanical energy remains constant, the final kinetic energy of block A is equal to the potential energy stored in the spring:

Final kinetic energy (KE) = 0.534 J

Finally, using the kinetic energy formula:

KE = 0.5 * m * v^2

Where m is the mass of block A and v is its final speed. Rearranging the formula:

v = sqrt(2 * KE / m)

Substituting the values for KE and m:

v = sqrt(2 * 0.534 J / 0.325 kg) ≈ 1.48 m/s

Therefore, the final speed of block A is approximately 1.48 m/s.

Learn more about spring constant here:

brainly.com/question/3148447

#SPJ11

An object is rotating in a circle with radius 2m centered around the origin. When the object is at location of x = 0 and y = -2, it's linear velocity is given by v = 2i and linear acceleration of q = -3i. which of the following gives the angular velocity and angular acceleration at that instant?

Answers

The angular velocity at that instant is 1 rad/s and the angular acceleration is -1.5 rad/s².

To determine the angular velocity and angular acceleration at the instant, we need to convert the linear velocity and linear acceleration into their corresponding angular counterparts.

The linear velocity (v) of an object moving in a circle is related to the angular velocity (ω) by the equation:

v = r * ω

where:

v is the linear velocity,

r is the radius of the circle,

and ω is the angular velocity.

The radius (r) is 2m and the linear velocity (v) is 2i, we can find the angular velocity (ω):

2i = 2m * ω

ω = 1 rad/s

So, the angular velocity at that instant is 1 rad/s.

Similarly, the linear acceleration (a) of an object moving in a circle is related to the angular acceleration (α) by the equation:

a = r * α

where:

a is the linear acceleration,

r is the radius of the circle,

and α is the angular acceleration.

The radius (r) is 2m and the linear acceleration (a) is -3i, we can find the angular acceleration (α):

-3i = 2m * α

α = -1.5 rad/s²

Therefore, the angular velocity at that instant is 1 rad/s and the angular acceleration is -1.5 rad/s².

Learn more about velocity from the given link

https://brainly.com/question/80295

#SPJ11

What is the wave speed if a wave with a wavelength of 8.30 cm
has a period of 2.44 s? Answer to the hundredths place or two
decimal places.

Answers

The wave speed is approximately 3.40 cm/s.The wave speed is determined by dividing the wavelength by the period of the wave.

The wave speed represents the rate at which a wave travels through a medium. It is determined by dividing the wavelength of the wave by its period. In this scenario, the wavelength is given as 8.30 cm and the period as 2.44 s.

To calculate the wave speed, we divide the wavelength by the period: wave speed = wavelength/period. Substituting the given values, we have wave speed = 8.30 cm / 2.44 s. By performing the division and rounding the answer to two decimal places, we can determine the wave speed.

To learn more about speed click here:
brainly.com/question/28224010

#SPJ11

Question 38 1 pts What caused Earth's lithosphere to fracture into plates? volcanism, which produced heavy volcanoes that bent and cracked the lithosphere tidal forces from the Moon and Sun internal temperature changes that caused the crust to expand and stretch impacts of asteroids and planetesimals convection of the underlying mantle

Answers

The lithosphere of the Earth fractured into plates as a result of the convection of the underlying mantle. The mantle convection is what is driving the movement of the lithospheric plates

The rigid outer shell of the Earth, composed of the crust and the uppermost part of the mantle, is known as the lithosphere. It is split into large, moving plates that ride atop the planet's more fluid upper mantle, the asthenosphere. The lithosphere fractured into plates as a result of the convection of the underlying mantle. As the mantle heats up and cools down, convection currents occur. Hot material is less dense and rises to the surface, while colder material sinks toward the core.

This convection of the mantle material causes the overlying lithospheric plates to move and break up over time.

Learn more about lithosphere visit:

brainly.com/question/454260

#SPJ11

: Suppose 45 cm of wire is experiencing a magnetic force of 0.55 N. 50% Part (a) What is the angle in degrees between the wire and the 1.25 T field if it is carrying a 6.5 A current?

Answers

To find the angle between the wire and the magnetic field, we can use the formula for the magnetic force on a current-carrying wire:

F = BILsinθ

Where:

F = Magnetic force

B = Magnetic field strength

I = Current

L = Length of the wire

θ = Angle between the wire and the magnetic field

We are given:

F = 0.55 N

B = 1.25 T

I = 6.5 A

L = 45 cm = 0.45 m

Let's rearrange the formula to solve for θ:

θ = sin^(-1)(F / (BIL))

Substituting the given values:

θ = sin^(-1)(0.55 N / (1.25 T * 6.5 A * 0.45 m))

Now we can calculate θ:

θ = sin^(-1)(0.55 / (1.25 * 6.5 * 0.45))

Using a calculator, we find:

θ ≈ sin^(-1)(0.0558)

θ ≈ 3.2 degrees (approximately)

Therefore, the angle between the wire and the magnetic field is approximately 3.2 degrees.

Learn more about angle on:

https://brainly.com/question/30147425

#SPJ4

The angle is approximately 6.6°.

The formula for finding the magnetic force acting on a current carrying conductor in a magnetic field is,

F = BILSinθ Where,

F is the magnetic force in Newtons,

B is the magnetic field in Tesla

I is the current in Amperes

L is the length of the conductor in meters and

θ is the angle between the direction of current flow and the magnetic field lines.

Substituting the given values, we have,

F = 0.55 NB

  = 1.25 TI

  = 6.5 AL

  = 45/100 meters (0.45 m)

Let θ be the angle between the wire and the 1.25 T field.

The force equation becomes,

F = BILsinθ 0.55

  = (1.25) (6.5) (0.45) sinθ

sinθ = 0.55 / (1.25 x 6.5 x 0.45)

       = 0.11465781711

sinθ = 0.1147

θ = sin^-1(0.1147)

θ = 6.6099°

  = 6.6°

Learn more about magnetic force from the given link

https://brainly.com/question/2279150

#SPJ11

Other Questions
Part A A metal rod with a length of 21.0 cm lies in the ry-plane and makes an angle of 36.3 with the positive z-axis and an angle of 53.7 with the positive y-axis. The rod is moving in the +1-direction with a speed of 6.80 m/s. The rod is in a uniform magnetic field B = (0.150T)i - (0.290T); -(0.0400T ) What is the magnitude of the emf induced in the rod? Express your answer in volts. IVO AEO ? E = 0.015 V Submit Previous Answers Request Answer X Incorrect; Try Again; 2 attempts remaining Provide Feedback Arterial disease can occur in any part of the body. Choose a location for the disease process (i.e. heart, legs, brain) and discuss signs and symptoms the patient may be complaining of, how it might be diagnosed, how it may be evaluated, the role of ultrasound, and think of pitfalls the sonographer might encounter. Present a brief explanation of how electrical activity in the human body interacts with electromagnetic waves outside the human body to either your eyesight or your sense of touch. 185 said they like dogs170 said they like cats86 said they liked both cats and dogs74 said they don't like cats or dogs.How many people were surveyed?Please explain how you got answer What is the minimum number of binary place values required to store the sum of the decimal numbers 2 and 6? For each scenario state whether this is positive reinforcement, negative reinforcement or punishment#Example 2You stay out all night with your friends while your parents are home waiting for you. What operant conditioning processes are your parents using on you in the examples below? a) Your parents take away your cell phone as soon as you get home.b) Your parents ground you for a month because you stayed out all night.c) Your parents order your favorite take-out dinner when you come home at 6:30 P.M.#Example 3Your parents really want you to become a nurse. What operant conditioning processes are your parents using on you in the examples below? a) Your mother complains and nags until you say you will apply to nurse school.b) Your parents write a check to cover your first years tuition when you tell them you were admitted to nursing school.c) Your parents yell at you when you tell them that you hate nursing.d) Your parents refuse to let you use the car when you tell them that you are going to drop out of nursing school.#Example 4You are babysitting a 7-year-old child. What operant conditioning processes are you using on the child in the examples below? a) You send the child to her room because she was rude to you.b) You help the child finish her broccoli, which she hates, every time she shows polite behavior "Which of the following is not a key aspect of the sensing step in active listening?A) Avoid interruptions B) Organize information C) Wait for speaker to stop before forming opinions D) Maintain interest E) Postpone" Complete each step to solve the inequality for x.Remove the coefficient of "3" to get x by itself. How willyou do this?-7+ 3x > 143x > 21REMEMBER INVERSE OPERATIONS.A. subtract 3 from both sidesC. divide both sides by 3B. add 3 to both sidesD. multiply both sides by 3 you sit with friends around a campfire roasting marshmallows which transfer of thermal energy involved in the system is an example of convection . Define agenda. Define tickler file Define reminder mailing and give an example. Define open-hours scheduling. Examples of cool colors. In determining parking spaces a medical office needs is to: the average time spends in office and number of appointments scheduling during that time. How far should the monitor be positioned at a computer workstation? Jack's company is looking to hire new employees and Jack wants to make sure that the hiring process is as unbiased as possible. He comes to you for advice. Based on the results of the resume bias study we discussed in class, which of the following would you recommend to Jack, to ensure an unbiased hiring process? O Require personality tests from all applicants before evaluating their qualifications O Automate the process: have an algorithm choose the best applicants O Remove applicants' names and other identifying information from their application when evaluating their qualifications O Choose only applicants with college degrees from prestigious universities What anatomical feature of the fallopian tubesallows sexually transmitted infections tosometimes spread into the abdomen in women? Let C(x) = 11x + 6000 be the cost function and R(x) = 16x be the revenue functiondepending on the quantity of a product. (Hint: Ex in P. 6 of Ch 1.3 in LN).a. Find the unit cost of the product.b. Find the fixed cost of the product.c. Find the profit function of the product.d. Find the break even point of the product. 01n+92235U 3692Kr+ZAX+201n a nuclear reaction is given in where 01n indicates a neutron. You will need the following mass data: - mass of 92235U=235.043924u, - mass of 3692Kr=91.926165u, - mass of ZAX=141.916131u, and - mass of 01n=1.008665u. Part A - What is the number of protons Z in the nucleus labeled X? Answer must be an exact integer. (Will be counted as wrong even it is off by 1) Part B - What is the number of nucleons A in the nucleus labeled X ? Answer must be an exact integer. (Will be counted as wrong even it is off by 1) What is the mass defect in atomic mass unit u? Report a positive value. Keep 6 digits after the decimal point. Part D What is the energy (in MeV) corresponding to the mass defect? Keep 1 digit after the decimal point. According to the Black-Scholes option pricing model, two options on the same stock but with different exercise prices should always have the same _________________. Group of answer choices maximum loss price implied volatility expected return The prototype model was found to be a good predictor of categorization when the information was_________ but not when the information was______ O continuous; discrete O discrete; continuous O the average; the median. O the median; the average Question 10: Jenny is currently 20 years old and is planning for her retirement. She has \( \$ 10,000 \) in her savings account today. She plans to retire at age 40 and receive an annual benefit payme Which question relates to finding the theme of a text? (10 points) What happens first in this story? What do the characters experience? What is the setting of the story? What lesson did I learn from this story? = Q.3 Two firms produce homogeneous products. The inverse demand function is given by: p(x, x) = 80x-x2, where x is the quantity chosen by firm 1 and x the quantity chosen simultaneously by firm 2. the cost function of firm 2 is c2(x2) = 20x2 . the cost function of firm 1 is c1(x1) = 15 with probability of 0.5 . Identify the static bayesian nash equilibrium. (A) Consider the market for Gym clothes, here's the supply function QS = 11 + 3Pg + OPo and the demand function: QD = -4Pg + 4Po.; Where Pg and Po are the prices of Gym Clothes and Office clothes, respectively. If the price of office clothes is $6, what is the market price of Gym clothes? (B) Calculate the Willingness to Pay and the Economic Cost (C). Now, suppose the regulated price of Gym clothes is fixed at $6, ceteris paribus, will there be a surplus or shortage? (D) Calculate the amount of surplus/shortage. (E) Suppose that the market for Gym clothes is not regulated anymore. If the price of Office clothes is increased from $6 to $10, what will be the new market price of Gym clothes?