Two lenses are placed along the x axis, with a diverging lens of focal length -8.50 cm on the left and a converging lens of focal length 13.0 cm on the right. When an object is placed 12.0 cm to the left of the diverging lens, what should the separation s of the two lenses be if the final image is to be focused at x = co? cm

Answers

Answer 1

The separation between the two lenses should be 19.21 cm for the final image to be focused at x = ∞.

To determine the separation (s) between the two lenses for the final image to be focused at x = ∞, we need to calculate the image distance formed by each lens and then find the difference between the two image distances.

Let's start by analyzing the diverging lens:

1. Diverging Lens:

   Given: Focal length [tex](f_1)[/tex] = -8.50 cm, Object distance [tex](u_1)[/tex]= -12.0 cm (negative sign indicates object is placed to the left of the lens)

Using the lens formula: [tex]\frac{1}{f_1} =\frac{1}{v_1} -\frac{1}{u_1}[/tex]

Substituting the values, we can solve for the image distance (v1) for the diverging lens.

[tex]\frac{1}{-8.50} =\frac{1}{v_1} -\frac{1}{-12.0}[/tex]

v1 = -30.0 cm.

The negative sign indicates that the image formed by the diverging lens is virtual and located on the same side as the object.

2.Converging Lens:

   Given: Focal length (f2) = 13.0 cm, Object distance (u2) = v1 (image distance from the diverging lens)

Using the lens formula: [tex]\frac{1}{f_2} =\frac{1}{v_2} -\frac{1}{u_2}[/tex]

Substituting the values, we can solve for the image distance (v2) for the converging lens.

[tex]\frac{1}{13.0} =\frac{1}{v_2} -\frac{1}{-30.0}[/tex]

v2 = 10.71 cm.

The positive value indicates that the image formed by the converging lens is real and located on the opposite side of the lens.

Calculating the Separation:

The separation (s) between the two lenses is given by the difference between the image distance of the converging lens (v2) and the focal length of the diverging lens (f1).

[tex]s=v_2-f_1[/tex]

= 10.71 cm - (-8.50 cm)

= 19.21 cm

Therefore, the separation between the two lenses should be 19.21 cm for the final image to be focused at x = ∞.

Learn more about lenses here: brainly.com/question/2289939

#SPJ11


Related Questions

The figure below shows a ball of mass m=1.9 kg which is connected to a string of length L=1.9 m and moves in a vertical circle. Only gravity and the tension in the string act on the ball. If the velocity of the ball at point A is v0=4.2 m/s, what is the tension T in the string when the ball reaches the point B?

Answers

The tension in the string at point B is approximately 29.24 N.

To find the tension in the string at point B, we need to consider the forces acting on the ball at that point. At point B, the ball is at the lowest position in the vertical circle.

The forces acting on the ball at point B are gravity (mg) and tension in the string (T). The tension in the string provides the centripetal force necessary to keep the ball moving in a circle.

At point B, the tension (T) and gravity (mg) add up to provide the net centripetal force. The net centripetal force is given by:

T + mg = mv^2 / R

Where m is the mass of the ball, g is the acceleration due to gravity, v is the velocity of the ball, and R is the radius of the circular path.

The radius of the circular path is equal to the length of the string (L) since the ball moves in a vertical circle. Therefore, R = L = 1.9 m.

The velocity of the ball at point B is not given directly, but we can use the conservation of mechanical energy to find it. At point A, the ball has gravitational potential energy (mgh) and kinetic energy (1/2 mv0^2), where h is the height from the lowest point of the circle to point A.

At point B, all the gravitational potential energy is converted into kinetic energy, so we have:

mgh = 1/2 mv^2

Solving for v, we find:

v = sqrt(2gh)

Substituting the given values of g (9.8 m/s^2) and h (L = 1.9 m), we can calculate the velocity at point B:

v = sqrt(2 * 9.8 * 1.9) ≈ 7.104 m/s

Now we can substitute the values into the equation for net centripetal force:

T + mg = mv^2 / R

T + (1.9 kg)(9.8 m/s^2) = (1.9 kg)(7.104 m/s)^2 / 1.9 m

Simplifying and solving for T, we get:

T ≈ 29.24 N

Therefore, the tension in the string at point B is approximately 29.24 N.

To know more about tension click here:

https://brainly.com/question/33231961

#SPJ11

In solving problems in which two objects are joined by rope, what assumptions do we make about the mass of the rope and the forces the rope exerts on each end?

Answers

When two objects are connected by a rope, it is assumed that the mass of the rope is negligible compared to the mass of the objects, and that the forces the rope exerts on each end are equal and opposite.

When solving problems where two objects are connected by a rope, it is assumed that the mass of the rope is negligible compared to the mass of the objects, and that the forces the rope exerts on each end are equal and opposite. This is known as the assumption of massless, frictionless ropes.

In other words, the rope's mass is usually assumed to be zero because the mass of the rope is very less compared to the mass of the two objects that are connected by the rope. It is also assumed that the rope is frictionless, which means that no friction acts between the rope and the objects connected by the rope. Furthermore, it is assumed that the tension in the rope is constant throughout the rope. The forces that the rope exerts on each end of the object are equal in magnitude but opposite in direction, which is the reason why they balance each other.

Learn more about mass https://brainly.com/question/86444

#SPJ11

Describe the difference between airspeed, windspeed and
groundspeed when solving vector problems associated with airplane
flight.

Answers

Answer:

:))

Explanation:

SCROLL ALL THE WAY DOWN FOR A SHORTER ANSWER.

When solving vector problems associated with airplane flight, it is important to understand the difference between airspeed, windspeed, and groundspeed.

Airspeed is the speed of the airplane relative to the air surrounding it. An airplane's airspeed is measured using an airspeed indicator and is typically expressed in knots. Airspeed does not take into account the effects of wind on the airplane's motion.

Windspeed is the speed and direction of the wind relative to the ground. Windspeed can be measured using a weather station or by observing the effect of the wind on objects such as flags and trees. Windspeed is important in airplane flight because it can affect the airplane's motion by changing its airspeed and direction of flight.

Groundspeed is the speed and direction of the airplane relative to the ground. Groundspeed takes into account the effects of both the airplane's airspeed and the windspeed. In other words, groundspeed is the actual speed and direction at which an airplane is moving over the ground.

When solving vector problems associated with airplane flight, it is important to understand the relationship between airspeed, windspeed, and groundspeed. For example, if an airplane is flying with an airspeed of 100 knots into a headwind with a windspeed of 20 knots, its groundspeed will be slower than its airspeed at only 80 knots. On the other hand, if the airplane is flying with the same airspeed of 100 knots but with a tailwind with a windspeed of 20 knots, its groundspeed will be faster at 120 knots. Therefore, understanding how airspeed, windspeed, and groundspeed are related will help pilots to accurately navigate and plan their flights.

Airspeed is the speed relative to the air. Windspeed is the speed and direction of wind relative to the ground. Groundspeed is the speed and direction relative to the ground. Understanding their relationship is important for accurate navigation and flight planning.

Determine the number of electrons, protons, and neutrons in
argon
3818Ar
.
HINT
(a)
electrons
(b)
protons
(c)
neutrons

Answers

The number of electrons in Argon is 18, the number of protons is 18, and the number of neutrons is 20.

Now, let's proceed to the second part of the question. Here's how to determine the number of electrons, protons, and neutrons in Argon 38  :18 Ar :Since the atomic number of Argon is 18, it has 18 protons in its nucleus, which is also equal to its atomic number.

Since Argon is neutral, it has 18 electrons orbiting around its nucleus.In order to determine the number of neutrons, we have to subtract the number of protons from the atomic mass. In this case, the atomic mass of Argon is 38.

Therefore: Number of neutrons = Atomic mass - Number of protons Number of neutrons = 38 - 18 Number of neutrons = 20 Therefore, the number of electrons in Argon is 18, the number of protons is 18, and the number of neutrons is 20

Know more about electrons here:

https://brainly.com/question/12001116

#SPJ11

Abusive behavior inventory total scale (abi) 36. 05 07. 49 psychological abuse 25. 40 6. 35 physical abuse 10. 66 1. 74

Answers

The total scale score of the Abusive Behavior Inventory (ABI) is 36.05, indicating the overall level of abusive behavior measured by the inventory. This score represents a combination of psychological abuse and physical abuse.

The psychological abuse score on the ABI is 25.40, suggesting the extent of psychological mistreatment or harm inflicted upon individuals. This score is based on responses to items related to psychological abuse within the inventory. A higher score indicates a higher level of psychological abuse experienced.

The physical abuse score on the ABI is 10.66, indicating the degree of physical harm or violence experienced by individuals. This score is derived from responses to items specifically related to physical abuse within the inventory. A higher score reflects a higher level of physical abuse endured.

These scores provide quantitative measures of abusive behavior, allowing for assessment and evaluation of individuals' experiences. It is important to interpret these scores within the context of the ABI and consider other relevant factors when assessing abusive behavior in individuals or populations.

To know more about Abusive Behavior with the given link

brainly.com/question/10279566

#SPJ

beginning with h=4.136x10-15 eV.s and c = 2.998x108 m/s , show that hc =1240 eV-nm.

Answers

Beginning with h=4.136x10-15 eV.s and c = 2.998x108 m/s , we have shown that hc is approximately equal to 1240 eV·nm

We'll start with the given values:

h =Planck's constant= 4.136 x 10^(-15) eV·s

c =  speed of light= 2.998 x 10^8 m/s

We want to show that hc = 1240 eV·nm.

We know that the energy of a photon (E) can be calculated using the formula:

E = hc/λ

where

h is Planck's constant

c is the speed of light

λ is the wavelength

E is the energy of the photon.

To prove hc = 1240 eV·nm, we'll substitute the given values into the equation:

hc = (4.136 x 10^(-15) eV·s) ×(2.998 x 10^8 m/s)

Let's multiply these values:

hc ≈ 1.241 x 10^(-6) eV·m

Now, we want to convert this value from eV·m to eV·nm. Since 1 meter (m) is equal to 10^9 nanometers (nm), we can multiply the value by 10^9:

hc ≈ 1.241 x 10^(-6) eV·m × (10^9 nm/1 m)

hc ≈ 1.241 x 10^3 eV·nm

Therefore, we have shown that hc is approximately equal to 1240 eV·nm

To learn more about  Planck's constant visit: https://brainly.com/question/28060145

#SPJ11

How far apart are an object and an image formed by a 75 -cm-focal-length converging lens if the image is 2.25× larger than the object and is real? Express your answer using two significant figures.

Answers

The magnification (M) of the image formed by a lens can be calculated using the formula:

M = -di/do

where di is the image distance and do is the object distance.

Given:

Focal length (f) = 75 cm

Magnification (M) = 2.25

Since the image is real and the magnification is positive, we can conclude that the lens forms an enlarged, upright image.

To find the object distance, we can rearrange the magnification formula as follows:

M = -di/do

2.25 = -di/do

do = -di/2.25

Now, we can use the lens formula to find the image distance:

1/f = 1/do + 1/di

Substituting the value of do obtained from the magnification formula:

1/75 = 1/(-di/2.25) + 1/di

Simplifying the equation:

1/75 = 2.25/di - 1/di

1/75 = 1.25/di

di = 75/1.25

di = 60 cm

Since the object and image are on the same side of the lens, the object distance (do) is positive and equal to the focal length (f).

do = f = 75 cm

The distance between the object and the image is the sum of the object distance and the image distance:

Distance = do + di = 75 cm + 60 cm = 135 cm

Therefore, the object and image are approximately 135 cm apart.

To know more about magnification click this link -

brainly.com/question/21370207

#SPJ11

6) Find the buoyant force on a 0.1 m3 block of wood with density 700 kg/m3 floating in a freshwater lake. (5 pts)

Answers

The buoyant force on the 0.1 m3 block of wood with a density of 700 kg/m3 floating in a freshwater lake is 686 N.

Buoyancy is the upward force exerted on an object immersed in a liquid and is dependent on the density of both the object and the liquid in which it is immersed. The weight of the displaced liquid is equal to the buoyant force acting on an object. In this case, the volume of the block of wood is 0.1 m3 and its density is 700 kg/m3. According to Archimedes' principle, the weight of the displaced water is equal to the buoyant force. Therefore, the buoyant force on the block of wood floating in the freshwater lake can be calculated by multiplying the volume of water that the block of wood displaces (0.1 m3) by the density of freshwater (1000 kg/m3), and the acceleration due to gravity (9.81 m/s2) as follows:

Buoyant force = Volume of displaced water x Density of freshwater x Acceleration due to gravity

= 0.1 m3 x 1000 kg/m3 x 9.81 m/s2

= 981 N

However, since the density of the block of wood is less than the density of freshwater, the weight of the block of wood is less than the weight of the displaced water. As a result, the buoyant force acting on the block of wood is the difference between the weight of the displaced water and the weight of the block of wood, which can be calculated as follows:

Buoyant force = Weight of displaced water -

Weight of block of wood

= [Volume of displaced water x Density of freshwater x Acceleration due to gravity] - [Volume of block x Density of block x Acceleration due to gravity]

= [0.1 m3 x 1000 kg/m3 x 9.81 m/s2] - [0.1 m3 x 700 kg/m3 x 9.81 m/s2]

= 686 N

Therefore, the buoyant force acting on the 0.1 m3 block of wood with a density of 700 kg/m3 floating in a freshwater lake is 686 N.

To learn more about buoyant force click brainly.com/question/11884584

#SPJ11

An unknown metal "X" is used to make a 5.0 kg container that is then used to hold 15 kg of water. Both the container and the water have an initial temperature of 25 °C. A 3.0 kg piece of the metal "X" is heated to 300 °C and dropped into the water. If the final temperature of the entire system is 30 °C when thermal equilibrium is reached, determine the specific heat of the mystery metal.

Answers

The specific heat of the unknown metal "X" is approximately 0.50 J/g°C, indicating its ability to store and release thermal energy.

To find the specific heat of the metal, we can use the equation Q = mcΔT, where Q represents the heat transferred, m is the mass, c is the specific heat, and ΔT is the change in temperature. In this case, the heat gained by the water is equal to the heat lost by the metal and the container.

We can calculate the heat gained by the water using Qwater = mwatercwaterΔT, where m water is the mass of water, cwater is the specific heat of water, and ΔT is the change in temperature. The heat lost by the metal and the container is given by Qmetal = (mmetal + mcontainer)cmetalΔT. By equating Qwater and Qmetal, we can solve for the specific heat of the metal, cm.

Substituting the given values, we have:

(mmetal + mcontainer)cmetalΔT = mwatercwaterΔT

Simplifying, we get:

(3.0 kg + 5.0 kg)cmetal(30 °C - 300 °C) = 15 kg(4.18 J/g°C)(30 °C - 25 °C)

Solving the equation, we find the value of cm to be:

cmetal ≈ 0.50 J/g°C

Therefore, the specific heat of the unknown metal "X" is approximately 0.50 J/g°C.

To learn more about specific heat click here:

brainly.com/question/31608647

#SPJ11

A block, W 180 lbs rests on a rough level plane. The coefficient of friction is 0.42, what horizontal push will cause the block to move? What inclined push making 45° with the horizontal will cause the block to move?

Answers

The inclined push making a 45° angle with the horizontal should satisfy the equation: Horizontal component = inclined push × cos(45°) ≥ Frictional force

To determine the horizontal push required to make the block move, we need to consider the force of friction acting on the block. The force of friction can be calculated using the formula:

Frictional force = coefficient of friction × normal force

The normal force is equal to the weight of the block, which is 180 lbs. Therefore, the normal force is 180 lbs × acceleration due to gravity.

To find the horizontal push, we need to overcome the force of friction. The force of friction is given by the equation:

Frictional force = coefficient of friction × normal force

Let's calculate the force of friction:

Frictional force = 0.42 × (180 lbs × acceleration due to gravity)

Now we can calculate the horizontal push:

Horizontal push = Frictional force

To Know the inclined push making a 45° angle with the horizontal, we need to consider the force components acting on the block. The horizontal component of the inclined push will contribute to overcoming the force of friction, while the vertical component will assist in counteracting the weight of the block.

Since the inclined push makes a 45° angle with the horizontal, the horizontal component can be calculated using the formula:

Horizontal component = inclined push × cos(45°)

To make the block move, the horizontal component of the inclined push should be equal to or greater than the force of friction calculated previously.

Therefore, the inclined push making a 45° angle with the horizontal should satisfy the equation:

Horizontal component = inclined push × cos(45°) ≥ Frictional force

Learn more about Frictional force from the link

https://brainly.com/question/24386803

#SPJ11

Two point charges produce an electrostatic force of 6.87 × 10-3 N Determine the electrostatic force produced if charge 1 is doubled, charge 2 is tripled and the distance between them is
alf.
elect one:
) a. 1.65 x 10-1 N • b. 6.87 × 10-3 N ) c. 4.12 × 10-2.N
) d. 2.06 x 10-2 N

Answers

The electrostatic force produced when charge 1 is doubled, charge 2 is tripled, and the distance between them is halved is approximately 1.48 N. None of the provided answer choices (a), (b), (c), or (d) match this value.

To determine the electrostatic force produced when charge 1 is doubled, charge 2 is tripled, and the distance between them is halved, we can use Coulomb's Law.

Coulomb's Law states that the electrostatic force (F) between two point charges is given by the equation:

F = k * (|q1| * |q2|) / r^2

where k is the electrostatic constant (k ≈ 8.99 × 10^9 Nm^2/C^2), |q1| and |q2| are the magnitudes of the charges, and r is the distance between them.

Let's denote the original values of charge 1, charge 2, and the distance as q1, q2, and r, respectively. Then the modified values can be represented as 2q1, 3q2, and r/2.

According to the problem, the electrostatic force is 6.87 × 10^(-3) N for the original configuration. Let's denote this force as F_original.

Now, let's calculate the modified electrostatic force using the modified values:

F_modified = k * (|(2q1)| * |(3q2)|) / ((r/2)^2)

= k * (6q1 * 9q2) / (r^2/4)

= k * 54q1 * q2 / (r^2/4)

= 216 * (k * q1 * q2) / r^2

Since k * q1 * q2 / r^2 is the original electrostatic force (F_original), we have:

F_modified = 216 * F_original

Substituting the given value of F_original = 6.87 × 10^(-3) N into the equation, we get:

F_modified = 216 * (6.87 × 10^(-3) N)

= 1.48 N

Therefore, the electrostatic force produced when charge 1 is doubled, charge 2 is tripled, and the distance between them is halved is approximately 1.48 N.

None of the provided answer choices matches this value, so none of the options (a), (b), (c), or (d) are correct.

To learn more about electrostatic force visit : https://brainly.com/question/17692887

#SPJ11

"A coil with 450 turns is exposed to a magnetic flux (see picture). The flow through the coil cross section increases by 1.5 miliweber per second.
a) Determine the voltage induced in the coil.

Answers

The number of turns in a coil is 450, and the magnetic flux passing through the coil cross-section increases at a rate of 1.5 mWb/s, we need to determine the voltage induced in the coil using Faraday's law of electromagnetic induction.

What is Faraday's law of electromagnetic induction? Faraday's law of electromagnetic induction states that the rate of change of magnetic flux through a closed loop induces an electromotive force (emf) and a corresponding electrical current in the loop. The induced electromotive force is directly proportional to the rate of change of magnetic flux through the loop.

Mathematically, Faraday's law of electromagnetic induction can be expressed as; EMF = -dΦ/dt where, EMF is the electromotive force (V),dΦ is the change in magnetic flux through the coil cross-section (Wb), and dt is the change in time (s).Therefore, the voltage induced in the coil is given by; EMF = -dΦ/dtEMF = -1.5 mWb/s * 450EMF = -675 V. Thus, the voltage induced in the coil is -675 V. The negative sign indicates that the voltage is induced in the opposite direction to the change in magnetic flux.

Learn more about magnetic flux:

brainly.com/question/10736183

#SPJ11

Explain what invariants in special relativity mean, why they are
important, and give an example.

Answers

Invariants in special relativity are quantities that remain constant regardless of the frame of reference or the relative motion between observers.

These invariants play a crucial role in the theory as they provide consistent and universal measurements that are independent of the observer's perspective. One of the most important invariants in special relativity is the spacetime interval, which represents the separation between two events in spacetime. The spacetime interval, denoted as Δs, is invariant, meaning its value remains the same for all observers, regardless of their relative velocities. It combines the notions of space and time into a single concept and provides a consistent measure of the distance between events.

For example, consider two events: the emission of a light signal from a source and its detection by an observer. The spacetime interval between these two events will always be the same for any observer, regardless of their motion. This invariant nature of the spacetime interval is a fundamental aspect of special relativity and underlies the consistent measurements and predictions made by the theory.

Invariants are important because they allow for the formulation of physical laws and principles that are valid across different frames of reference. They provide a foundation for understanding relativistic phenomena and enable the development of mathematical formalisms that maintain their consistency regardless of the observer's motion. Invariants help establish the principles of relativity and contribute to the predictive power and accuracy of special relativity.

To know more about spacetime interval, visit:

https://brainly.com/question/28232104

#SPJ11

A cylinder of radius 10 cm has a thread wrapped around its edge. If the cylinder is initially at rest and begins to rotate with an angular acceleration of 1 rad/s2, determine the length of thread that unwinds in 10 seconds.

Answers

Given

,Radius of cylinder

= r = 10 cm = 0.1 mAngular acceleration of cylinder = α = 1 rad/s²Time = t = 10s

Let’s find the angle covered by the cylinder in 10 seconds using the formula:θ = ωit + 1/2 αt²whereωi = initial angular velocity = 0 rad/st = time = 10 sα = angular acceleration = 1 rad/s²θ = 0 + 1/2 × 1 × (10)² = 50 rad

Now, let's find the length of the

thread

that unwinds using the formula:L = θrL = 50 × 0.1 = 5 mTherefore, the length of the thread that unwinds in 10 seconds is 5 meters.

Here, we used the formula for the arc

length of a circle

, which states that the length of an arc (in this case, the thread) is equal to the angle it subtends (in radians) times the radius.

to know more about

,Radius of cylinder

pls visit-

https://brainly.com/question/6499996

#SPJ11

QUESTION 3 What is the mutual inductance in nk of these two loops of wire? Loop 1 Leop 44 20 Both loops are rectangles, but the length of the horizontal components of loop 1 are infinite compared to the size of loop 2 The distance d-5 cm and the system is in vacuum

Answers

Mutual inductance is an electromagnetic quantity that describes the induction of one coil in response to a variation of current in another nearby coil.

Mutual inductance is denoted by M and is measured in units of Henrys (H).Given that both loops are rectangles, the length of the horizontal components of loop 1 are infinite compared to the size of loop 2. The distance d-5 cm and the system is in vacuum, we are to calculate the mutual inductance of both loops.

The formula for calculating mutual inductance is given as:

[tex]M = (µ₀ N₁N₂A)/L, whereµ₀ = 4π × 10−7 H/m[/tex] (permeability of vacuum)

N₁ = number of turns of coil

1N₂ = number of turns of coil 2A = area of overlap between the two coilsL = length of the coilLoop 1,Leop 44,20 has a rectangular shape with dimensions 44 cm and 20 cm, thus its area

[tex]A1 is: A1 = 44 x 20 = 880 cm² = 0.088 m²[/tex].

Loop 2, on the other hand, has a rectangular shape with dimensions 5 cm and 20 cm, thus its area A2 is:

[tex]A2 = 5 x 20 = 100 cm² = 0.01 m².[/tex]

To know more about electromagnetic visit:

https://brainly.com/question/23727978

#SPJ11

What is the electrostatic force of attraction between 2 positively charged particles separated by 0.30 meter distance and with a charge of 8.0x10-6 C and 5.0x10-6 C respectively? A
8.0×10^5 N 1.2 N
2.4×10^5 N 4.0 N

Answers

The electrostatic force of attraction between the two positively charged particles is approximately 4.4 × 10^-9 N.

The electrostatic force of attraction between two charged particles can be calculated using Coulomb's law, which states that the force is directly proportional to the product of the charges and inversely proportional to the square of the distance between them. Mathematically, it can be expressed as:

F = (k * q1 * q2) / r^2

Where: F is the electrostatic force of attraction, k is the electrostatic constant (approximately 9 × 10^9 Nm^2/C^2), q1 and q2 are the charges of the particles, and r is the distance between the particles.

Plugging in the given values: q1 = 8.0 × 10^-6 C q2 = 5.0 × 10^-6 C r = 0.30 m

F = (9 × 10^9 Nm^2/C^2) * (8.0 × 10^-6 C) * (5.0 × 10^-6 C) / (0.30 m)^2

Simplifying the equation: F = (9 × 8.0 × 5.0 × 10^-6 × 10^-6) / (0.09) F = 36 × 10^-12 / 0.09 F = 4 × 10^-10 / 0.09 F ≈ 4.4 × 10^-9 N

Therefore, the electrostatic force of attraction between the two positively charged particles is approximately 4.4 × 10^-9 N.

Learn more about electrostatic force from the link

https://brainly.com/question/20797960

#SPJ11

A beam of laser light with a wavelength of =510.00 nm passes through a circular aperture of diameter =0.177 mm. What is the angular width of the central diffraction maximum formed on a screen?

Answers

The angular width of the central diffraction maximum formed on a screen is 0.00354 rad.

The angular width of the central diffraction maximum formed on a screen when a beam of laser light with a wavelength of = 510.00 nm passes through a circular aperture of diameter = 0.177 mm is given by the formula below;

[tex]$\theta=1.22\frac{\lambda}{d}$[/tex]

where ;λ = 510.00 nm

= 510.00 x 10⁻⁹ m is the wavelength of light passing through the circular aperture.

d = 0.177 mm = 0.177 x 10⁻³ m is the diameter of the circular aperture.

θ is the angular width of the central diffraction maximum formed on a screen.

Substituting the given values into the formula above;

[tex]$\theta=1.22\frac{\lambda}{d}=1.22\frac{510.00\times10^{-9}}{0.177\times10^{-3}}=0.00354\;rad$[/tex]

To know more about angular width visit:

https://brainly.com/question/32239395

#SPJ11

A distant star has a single planet circling it in a circular orbit of radius 2.68×10 ^11 m. The period of the planet's motion about the star is 740 days. What is the mass of the star? The value of the universal gravitational constant is 6.67259×10 ^−11 N⋅m 2/kg2.
Assume that it takes 90 minutes for a satellite near the Earth's surface to orbit around Earth of radius R E . What distance does a geo-synchronous satellite (i.e. has a period around the Earth of 24 hours) have to be from Earth? 1. 3R E

2. 6R E

3. 13R E

4. 24R E

5. 16R E

Answers

The mass of the star is 9.77 * 10^30 kg.

The distance of a geo-synchronous satellite from Earth is 42,164 km.

Here is the solution for the mass of the star:

We can use Kepler's third law to calculate the mass of the star. Kepler's third law states that the square of the period of a planet's orbit is proportional to the cube of the semi-major axis of its orbit. In this case, the period of the planet's orbit is 740 days, and the semi-major axis of its orbit is 2.68 * 10^11 m. Plugging in these values, we get:

T^2 = a^3 * k

where:

* T is the period of the planet's orbit in seconds

* a is the semi-major axis of the planet's orbit in meters

* k is Kepler's constant (6.67259 * 10^-11 N⋅m^2/kg^2)

(740 * 24 * 60 * 60)^2 = (2.68 * 10^11)^3 * k

1.43 * 10^16 = 18.3 * 10^23 * k

k = 7.8 * 10^-6

Now that we know the value of Kepler's constant, we can use it to calculate the mass of the star. The mass of the star is given by the following formula

M = (4 * π^2 * a^3 * T^2) / G

where:

* M is the mass of the star in kilograms

* a is the semi-major axis of the planet's orbit in meters

* T is the period of the planet's orbit in seconds

* G is the gravitational constant (6.67259 * 10^-11 N⋅m^2/kg^2)

M = (4 * π^2 * (2.68 * 10^11)^3 * (740 * 24 * 60 * 60)^2) / (6.67259 * 10^-11)

M = 9.77 * 10^30 kg

Here is the solution for the distance of the geo-synchronous satellite from Earth:

The geo-synchronous satellite is in a circular orbit around Earth, and it has a period of 24 hours. The radius of Earth is 6371 km. The distance of the geo-synchronous satellite from Earth is given by the following formula

r = a * (1 - e^2)

where:

* r is the distance of the satellite from Earth in meters

* a is the semi-major axis of the satellite's orbit in meters

* e is the eccentricity of the satellite's orbit

The eccentricity of the geo-synchronous satellite's orbit is very close to zero, so we can ignore it. This means that the distance of the geo-synchronous satellite from Earth is equal to the semi-major axis of its orbit. The semi-major axis of the geo-synchronous satellite's orbit is given by the following formula:

a = r_e * sqrt(GM/(2 * π^2))

where:

* r_e is the radius of Earth in meters

* G is the gravitational constant (6.67259 * 10^-11 N⋅m^2/kg^2)

* M is the mass of Earth in kilograms

* π is approximately equal to 3.14

a = 6371 km * sqrt(6.67259 * 10^-11 * 5.972 * 10^24 / (2 * (3.14)^2))

a = 42,164 km

Therefore, the distance of the geo-synchronous satellite from Earth is 42,164 km.

Learn more about mass with the given link,

https://brainly.com/question/86444

#SPJ11

Two objects of mass 7.20 kg and 6.90 kg collide head-on in a perfectly elastic collision. If the initial velocities of the objects are respectively 3.60 m/s [N] and 13.0 m/s [S], what is the velocity of both objects after the collision? 8.20 m/s [S]; 0.353 m/s [N] 0.30 m/s [S]; 17.0 m/s [N] 12.6 m/s [S]; 3.95 m/s [N] 16 m/s [N]; 0 m/s

Answers

Two objects of mass 7.20 kg and 6.90 kg collide head-on in a perfectly elastic collision. If the initial velocities of the objects are respectively 3.60 m/s [N] and 13.0 m/s [S], the velocity of both objects after the collision is 0.30 m/s [S]; 17.0 m/s [N] .

The correct answer would be 0.30 m/s [S]; 17.0 m/s [N] .

In a perfectly elastic collision, both momentum and kinetic energy are conserved. To determine the velocities of the objects after the collision, we can apply the principles of conservation of momentum.

Let's denote the initial velocity of the 7.20 kg object as v1i = 3.60 m/s [N] and the initial velocity of the 6.90 kg object as v2i = 13.0 m/s [S]. After the collision, let's denote their velocities as v1f and v2f.

Using the conservation of momentum, we have:

m1v1i + m2v2i = m1v1f + m2v2f

Substituting the given values:

(7.20 kg)(3.60 m/s) + (6.90 kg)(-13.0 m/s) = (7.20 kg)(v1f) + (6.90 kg)(v2f)

25.92 kg·m/s - 89.70 kg·m/s = 7.20 kg·v1f + 6.90 kg·v2f

-63.78 kg·m/s = 7.20 kg·v1f + 6.90 kg·v2f

We also know that the relative velocity of the objects before the collision is equal to the relative velocity after the collision due to the conservation of kinetic energy. In this case, the relative velocity is the difference between their velocities:

[tex]v_r_e_l_i[/tex]= v1i - v2i

[tex]v_r_e_l_f[/tex] = v1f - v2f

Since the collision is head-on, the relative velocity before the collision is (3.60 m/s) - (-13.0 m/s) = 16.6 m/s [N]. Therefore, the relative velocity after the collision is also 16.6 m/s [N]:

v_rel_f = 16.6 m/s [N]

Now we can solve the system of equations:

v1f - v2f = 16.6 m/s [N]        (1)

7.20 kg·v1f + 6.90 kg·v2f = -63.78 kg·m/s    (2)

Solving equations (1) and (2) simultaneously will give us the velocities of the objects after the collision.

After solving the system of equations, we find that the velocity of the 7.20 kg object (v1f) is approximately 0.30 m/s [S], and the velocity of the 6.90 kg object (v2f) is approximately 17.0 m/s [N].

Therefore, after the head-on collision between the objects of masses 7.20 kg and 6.90 kg, the 7.20 kg object moves with a velocity of approximately 0.30 m/s in the south direction [S], while the 6.90 kg object moves with a velocity of approximately 17.0 m/s in the north direction [N].

For more such information on: velocity

https://brainly.com/question/80295

#SPJ8

Suppose the magnetic field along an axis of a cylindrical region is given by B₂ = Bo(1 + vz²) sin wt, where is a constant. Suppose the o-component of B is zero, that is B = 0. (a) Calculate the radial B,(s, z) using the divergence of the magnetic field. (b) Assuming there is zero charge density p, show the electric field can be given by 1 E = (1 + vz²) Bow coswto, using the divergence of E and Faraday's Law. (c) Use Ampere-Maxwell's Equation to find the current density J(s, z).

Answers

a) The radial component of the magnetic field is:

                B_r = Bo(2vwtz + C₁)

b) The radial component of the electric field is:

        E_r = -2v Bow (vz/wt) sin(wt) - 2v Bow C₂

Comparing this with the given expression (1 + vz²) Bow cos(wt), we can equate the corresponding terms:

                     -2v Bow (vz/wt) sin(wt) = 0

This implies that either v = 0 or w = 0. However, since v is given as a constant, it must be that w = 0.

c) The current density J:

             J = ε₀ Bow (1 + vz²) sin(wt)

Explanation:

To solve the given problem, we'll go step by step:

(a) Calculate the radial B(r, z) using the divergence of the magnetic field:

The divergence of the magnetic field is given by:

∇ · B = 0

In cylindrical coordinates, the divergence can be expressed as:

∇ · B = (1/r) ∂(rB_r)/∂r + ∂B_z/∂z + (1/r) ∂B_θ/∂θ

Since B does not have any θ-component, we have:

∇ · B = (1/r) ∂(rB_r)/∂r + ∂B_z/∂z = 0

We are given that B_θ = 0, and the given expression for B₂ can be written as B_z = Bo(1 + vz²) sin(wt).

Let's find B_r by integrating the equation above:

∂B_z/∂z = Bo ∂(1 + vz²)/∂z sin(wt) = Bo(2v) sin(wt)

Integrating with respect to z:

B_r = Bo(2v) ∫ sin(wt) dz

Since the integration of sin(wt) with respect to z gives us wtz + constant, we can write:

B_r = Bo(2v) (wtz + C₁)

where C₁ is the constant of integration.

So, the radial component of the magnetic field is:

B_r = Bo(2vwtz + C₁)

(b) Assuming zero charge density p, show the electric field can be given by E = (1 + vz²) Bow cos(wt) using the divergence of E and Faraday's Law:

The divergence of the electric field is given by:

∇ · E = ρ/ε₀

Since there is zero charge density (ρ = 0), we have:

∇ · E = 0

In cylindrical coordinates, the divergence can be expressed as:

∇ · E = (1/r) ∂(rE_r)/∂r + ∂E_z/∂z + (1/r) ∂E_θ/∂θ

Since E does not have any θ-component, we have:

∇ · E = (1/r) ∂(rE_r)/∂r + ∂E_z/∂z = 0

Let's find E_r by integrating the equation above:

∂E_z/∂z = ∂[(1 + vz²) Bow cos(wt)]/∂z = -2vz Bow cos(wt)

Integrating with respect to z:

E_r = -2v Bow ∫ vz cos(wt) dz

Since the integration of vz cos(wt) with respect to z gives us (vz/wt) sin(wt) + constant, we can write:

E_r = -2v Bow [(vz/wt) sin(wt) + C₂]

where C₂ is the constant of integration.

So, the radial component of the electric field is:

E_r = -2v Bow (vz/wt) sin(wt) - 2v Bow C₂

Comparing this with the given expression (1 + vz²) Bow cos(wt), we can equate the corresponding terms:

-2v Bow (vz/wt) sin(wt) = 0

This implies that either v = 0 or w = 0. However, since v is given as a constant, it must be that w = 0.

(c) Use Ampere-Maxwell's Equation to find the current density J(s, z):

Ampere-Maxwell's equation in differential form is given by:

∇ × B = μ₀J + μ₀ε₀ ∂E/∂t

In cylindrical coordinates, the curl of B can be expressed as:

∇ × B = (1/r) ∂(rB_θ)/∂z - ∂B_z/∂θ + (1/r) ∂(rB_z)/∂θ

Since B has no θ-component, we can simplify the equation to:

∇ × B = (1/r) ∂(rB_z)/∂θ

Differentiating B_z = Bo(1 + vz²) sin(wt) with respect to θ, we get:

∂B_z/∂θ = -Bo(1 + vz²) w cos(wt)

Substituting this back into the curl equation, we have:

∇ × B = (1/r) ∂(rB_z)/∂θ = -Bo(1 + vz²) w (1/r) ∂(r)/∂θ sin(wt)

∇ × B = -Bo(1 + vz²) w ∂r/∂θ sin(wt)

Since the cylindrical region does not have an θ-dependence, ∂r/∂θ = 0. Therefore, the curl of B is zero:

∇ × B = 0

According to Ampere-Maxwell's equation, this implies:

μ₀J + μ₀ε₀ ∂E/∂t = 0

μ₀J = -μ₀ε₀ ∂E/∂t

Taking the time derivative of E = (1 + vz²) Bow cos(wt), we get:

∂E/∂t = -Bow (1 + vz²) sin(wt)

Substituting this into the equation above, we have:

μ₀J = μ₀ε₀ Bow (1 + vz²) sin(wt)

Finally, dividing both sides by μ₀, we obtain the current density J:

J = ε₀ Bow (1 + vz²) sin(wt)

To know more about Faraday's Law, visit:

https://brainly.com/question/32089008

#SPJ11

A horse runs into a crate so that it slides up a ramp and then stops on the ramp. The direction of the friction on the crate is:

Answers

When a horse runs into a crate and slides up a ramp, the direction of the friction on the crate is (option c.) up the ramp and then down the ramp.

The direction of the friction on the crate, when the horse runs into it and slides up the ramp, can be determined based on the information given. Since the horse is initially running into the crate, it imparts a force on the crate in the direction of the ramp (up the ramp). According to Newton's third law of motion, there will be an equal and opposite force of friction acting on the crate in the opposite direction.

Therefore, the correct answer is option c. Up the ramp and then down the ramp.

The complete question should be:

A horse runs into a crate so that it slides up a ramp and then stops on the ramp. The direction of the friction on the crate is:

a. Down the ramp and then up the ramp

b. Cannot be determined

c. Up the ramp and then down the

d. Always down the ramp

e. Always up the ramp

To learn more about Newton's third law of motion, Visit:

https://brainly.com/question/62770

#SPJ11

Eric wants to test his caramel candies he made to see if they are sticky. He designs a tube he can put the clay in, pump it up with air, and release it with an impressive velocity. A particular piece of caramel is 14.0 g and is launched horizontally at a 124.0 g wooden block initially at rest on a level driveway. The caramel sticks to the block. The caramel and block slide 9.5 m before coming to rest. As measured in an earlier lab exercise, the coefficient of friction between block and pavement is 0.580 (it is pretty rough). What was the speed of the caramel (in m/s) immediately before impact with the block?
m/s

Answers

The speed of the caramel immediately before impact with the block was approximately 8.63 m/s.

Given:

- Mass of caramel (m₁) = 14.0 g = 0.014 kg

- Mass of wooden block (m₂) = 124.0 g = 0.124 kg

- Distance traveled (d) = 9.5 m

- Coefficient of friction (μ) = 0.580

To find the speed of the caramel before impact, we can use the principle of conservation of mechanical energy. The initial mechanical energy of the system is equal to the final mechanical energy.

The initial mechanical energy is the kinetic energy of the caramel, and the final mechanical energy is the work done by friction.

The initial kinetic energy (KE₁) of the caramel can be calculated using:

KE₁ = (1/2) * m₁ * v₁²

The work done by friction (W_friction) can be calculated using:

W_friction = μ * m₂ * g * d

Setting the initial kinetic energy equal to the work done by friction, we have:

(1/2) * m₁ * v₁² = μ * m₂ * g * d

Solving for v₁ (the speed of the caramel before impact), we get:

v₁ = sqrt((2 * μ * m₂ * g * d) / m₁)

Plugging in the given values, we have:

v₁ = sqrt((2 * 0.580 * 0.124 kg * 9.8 m/s² * 9.5 m) / 0.014 kg) ≈ 8.63 m/s

Therefore, the speed of the caramel immediately before impact with the block was approximately 8.63 m/s.

The speed of the caramel immediately before impact with the block was approximately 8.63 m/s.

To know more about impact visit:

https://brainly.com/question/29972013

#SPJ11

Askater extends her arms horizontally, holding a 5-kg mass in each hand. She is rotating about a vertical axis with an angular velocity of one revolution per second. If she drops her hands to her sides, what will the final angular velocity (in rev/s) be if her moment of inertia remains approximately constant at 5 kg m and the distance of the masses from the axis changes from 1 m to 0.1 m? 6 4 19 7

Answers

Initial moment of inertia, I = 5 kg m. The distance of the masses from the axis changes from 1 m to 0.1 m.

Using the conservation of angular momentum, Initial angular momentum = Final angular momentum

⇒I₁ω₁ = I₂ω₂ Where, I₁ and ω₁ are initial moment of inertia and angular velocity, respectively I₂ and ω₂ are final moment of inertia and angular velocity, respectively

The final moment of inertia is given by I₂ = I₁r₁²/r₂²

Where, r₁ and r₂ are the initial and final distances of the masses from the axis respectively.

I₂ = I₁r₁²/r₂²= 5 kg m (1m)²/(0.1m)²= 5000 kg m

Now, ω₂ = I₁ω₁/I₂ω₂ = I₁ω₁/I₂= 5 kg m × (2π rad)/(1 s) / 5000 kg m= 6.28/5000 rad/s= 1.256 × 10⁻³ rad/s

Therefore, the final angular velocity is 1.256 × 10⁻³ rad/s, which is equal to 0.0002 rev/s (approximately).

Learn more about angular momentum: https://brainly.com/question/4126751

#SPJ11

A merry-go-round has a mass of 1550 kg and a radius of 7.70 mm.How much net work is required to accelerate it from rest to a rotation rate of 1.00 revolution per 8.60 ss ? Assume it is a solid cylinder.

Answers

To calculate the net work required to accelerate a solid cylinder merry-go-round from rest to a rotation rate of 1.00 revolution per 8.60 s, we can follow several steps.

First, we need to determine the moment of inertia of the merry-go-round. Using the formula for a solid cylinder, I = (1/2)mr², where m is the mass of the merry-go-round and r is its radius. Given that the mass is 1550 kg and the radius is 0.0077 m, we can substitute these values to find I = 0.045 kgm².

Next, we can calculate the initial kinetic energy of the merry-go-round. Since it is initially at rest, the initial angular velocity, w₁, is zero. Therefore, the initial kinetic energy, KE₁, is also zero.

To find the final kinetic energy, we use the formula KE = (1/2)Iw², where w is the angular velocity. Given that the final angular velocity, w₂, is 1 revolution per 8.60 s, which is equivalent to 1/8.60 rad/s, we can substitute the values of I and w₂ into the formula to find KE₂ = 2.121 × 10⁻⁴ J (rounded to three decimal places).

Finally, we can determine the net work done on the system using the Work-Energy theorem. The net work done is equal to the change in kinetic energy, so we subtract KE₁ from KE₂. Since KE₁ is zero, the net work, W, is equal to KE₂. Therefore, W = 2.121 × 10⁻⁴ J.

In summary, the net work required to accelerate the solid cylinder merry-go-round is 2.121 × 10⁻⁴ J (rounded to three decimal places).

To Learn more about revolution, Click this!

brainly.com/question/31473219

#SPJ11

quick answer
please
QUESTION 17 An observatory uses a large refracting telescope that has an objective lens of diameter, 1.00 m. The telescope resolves images with green light of wavelength 550 nm. If the telescope can b

Answers

The telescope can resolve objects with an angular size greater than or equal to 1.21 arcseconds.

The resolving power of a telescope determines its ability to distinguish fine details in an observed object. It is determined by the diameter of the objective lens or mirror and the wavelength of the light being observed. The formula for resolving power is given by:

R = 1.22 * (λ / D)

Where R is the resolving power, λ is the wavelength of light, and D is the diameter of the objective lens or mirror.

In this case, the diameter of the objective lens is given as 1.00 m, and the wavelength of green light is 550 nm (or 550 x 10^-9 m). Plugging in these values into the formula, we can calculate the resolving power:

R = 1.22 * (550 x 10^-9 m / 1.00 m)

R ≈ 1.21 x 10^-3 radians

To convert the resolving power to angular size, we can use the fact that there are approximately 206,265 arcseconds in a radian:

Angular size = R * (206,265 arcseconds/radian)

Angular size ≈ 1.21 x 10^-3 radians * 206,265 arcseconds/radian

The result is approximately 1.21 arcseconds. Therefore, the telescope can resolve objects with an angular size greater than or equal to 1.21 arcseconds.

Learn more about telescope here: brainly.com/question/31173247

#SPJ11

Three negative charged particles of equal charge, -15x10^-6, are located at the corners of an equilateral triangle of side 25.0cm. Determine the magnitude and direction of the net electric force on each particle.

Answers

The magnitude of the net electric force on each particle is 2.025 N directed away from the triangle.

Charge on each particle, q1 = q2 = q3 = -15 × 10⁻⁶C

∴ Net force on particle 1 = F1

Net force on particle 2 = F2

Net force on particle 3 = F3

The magnitude of the net electric force on each particle:

It can be determined by using Coulomb's Law:

F = kqq / r²

where

k = Coulomb's constant = 9 × 10⁹ Nm²/C²

q = charge on each particle

r = distance between the particles

We know that all three charges are negative, so they will repel each other. Therefore, the direction of net force on each particle will be away from the triangle.

From the given data,

Side of equilateral triangle, a = 25cm = 0.25m

∴ Distance between each corner of the triangle = r = a = 0.25m

Net force on particle 1 = F1

F1 = kq² / r² = 9 × 10⁹ × (-15 × 10⁻⁶)² / (0.25)²= -2.025 N

∴ Net force on particle 2 = F2

F2 = kq² / r² = 9 × 10⁹ × (-15 × 10⁻⁶)² / (0.25)²= -2.025 N

∴ Net force on particle 3 = F3

F3 = kq² / r² = 9 × 10⁹ × (-15 × 10⁻⁶)² / (0.25)²= -2.025 N

Learn more about the net electric force: https://brainly.com/question/14620591

#SPJ11

What is the frequency of a sound wave with a wavelength of 2.81 m
traveling in room-temperature air (v
= 340 m/s)?

Answers

The speed of sound in air is approximately 340 m/s, which represents the rate at which sound waves travel through the medium of air. So, the frequency of the sound wave is approximately 121.00 Hz.  It is commonly measured in hertz (Hz), where 1 Hz represents one cycle per second.

The speed of sound in air is approximately 340 m/s. The formula to calculate the frequency of a wave is given by:

frequency = speed / wavelength

Substituting the given values:

frequency = 340 m/s / 2.81 m

frequency ≈ 121.00 Hz

Therefore, the frequency of the sound wave is approximately 121.00 Hz.  It is commonly measured in hertz (Hz), where 1 Hz represents one cycle per second.

To learn more about, speed of sound, click here, https://brainly.com/question/32259336

#SPJ11

How much heat in joules is required to convery 1.00 kg of ice at 0 deg C into steam at 100 deg C? (Lice = 333 J/g; Lsteam= 2.26 x 103 J/g.)

Answers

The heat required to convert 1.00 kg of ice at 0°C to steam at 100°C is 1.17 x 10⁶ J.

To calculate the heat required to convert 1.00 kg of ice at 0°C to steam at 100°C, we need to consider three different processes: heating the ice to 0°C, melting the ice into water at 0°C, and heating the water to 100°C and converting it into steam.

1. Heating the ice to 0°C:

The heat required is given by Q1 = m × Cice × ∆T, where m is the mass of ice, Cice is the heat capacity of ice, and ∆T is the temperature change.

Q1 = 1.00 kg × (333 J/g) × (0 - (-273.15)°C) = 3.99 x 10⁵ J

2. Melting the ice into water at 0°C:

The heat required is given by Q2 = m × L_ice, where Lice is the heat of fusion of ice.

Q2 = 1.00 kg × (333 J/g) = 3.33 x 10⁵ J

3. Heating the water to 100°C and converting it into steam:

The heat required is given by Q3 = m × Cwater × ∆T + m × Lsteam, where Cwater is the heat capacity of water, Lsteam is the heat of vaporization of water, and ∆T is the temperature change.

Q3 = 1.00 kg × (4.18 J/g°C) × (100 - 0)°C + 1.00 kg × (2.26 x 10³ J/g) = 4.44 x 10⁵ J

The total heat required is the sum of the three processes:

Total heat = Q1 + Q2 + Q3 = 3.99 x 10⁵ J + 3.33 x 10⁵ J + 4.44 x 10⁵ J = 1.17 x 10⁶ J

Therefore, the heat required to convert 1.00 kg of ice at 0°C to steam at 100°C is 1.17 x 10⁶ J.

Read more on Heat Capacity here: https://brainly.com/question/29792498

#SPJ11

Why does tightening a string on a guitar or violin cause the frequency of the sound produced by that
string to increase?
AO Tightening the string increases the linear mass density.
BO Tightening the string decreases the wavelength of the string's vibration.
CO Tightening the string does not actually change the frequency.
DO Tightening the string increases the tension and therefore the wave speed and frequency of the vibration in
the string.

Answers

When a string is tightened on a guitar or violin, it increases the tension, linear mass density, wave speed and frequency of the vibration in the string. Therefore, option DO is the correct answer.

Vibration is an oscillating motion about an equilibrium point. A simple harmonic motion, like vibration, takes place when the motion is periodic and the restoring force is proportional to the displacement of the object from its equilibrium position. Frequency is defined as the number of cycles per unit time. It is typically measured in hertz (Hz), which is one cycle per second. The higher the frequency of a wave, the more compressed its waves are and the higher its pitch is. linear mass Density is the measure of mass per unit length. When the linear mass density is increased, the wave speed in the string increases, and its frequency also increases as frequency is directly proportional to the wave speed and inversely proportional to the wavelength. So, tightening a string on a guitar or violin causes an increase in tension, linear mass density, wave speed, and frequency of the vibration in the string.

Learn more about vibration: https://brainly.com/question/2279743

#SPJ11

A quantity is calculated bases on (20 + 1) + [(50 + 1)/(5.0+ 0.2)] value of the quantity is 30, but what is the uncertainty in this?

Answers

Thus, the uncertainty in the calculated quantity is approximately 0.10. The formula to calculate the uncertainty of a quantity is given by δQ=√(δA²+δB²)

Given (20 + 1) + [(50 + 1)/(5.0+ 0.2)] = 30. (20 + 1) + [(50 + 1)/(5.0+ 0.2)] is the quantity whose uncertainty we want to calculate.

We know that: δA = uncertainty in 20.1 = ±0.1δ

B = uncertainty in (50 + 1)/(5.0+ 0.2) = uncertainty in (51/5.2)

We have to calculate δB:δB = uncertainty in (51/5.2) = δ[(50 + 1)/(5.0+ 0.2)] = δ(51/5.2) = [(1/5.2)² + (0.2*51)/(5.2²)]½= (0.00641 + 0.00293)½= 0.0083

∴δQ = √(δA² + δB²) = √(0.1² + 0.0083²) = √(0.01009) = 0.1005 ≈ 0.10

Thus, the uncertainty in the calculated quantity is approximately 0.10.

Learn further about uncertainty of quantities: https://brainly.com/question/31185232

#SPJ11

Other Questions
In the following case, which cognitive bias, if any, is it reasonable to conclude is occurring in Ava?Ava decides to take an evening stroll through the public park. It is around 6:00 at night, and the park does not close until 10:00 at night. She stops to sit on the bench, when a man wearing a Park Ranger uniform and a Park Ranger truck drives up in front of her and rolls down the window. The man tells Ava that she needs to get into the truck. Ava, noticing his uniform and truck, instinctively moves towards the truck and intends to enter the man's vehicle.Obedience to AuthorityOverconfidence EffectActor-Observer ErrorAvailability HeuristicPlausible that there is no cognitive bias On 1 January 2019 Westgate acquired all of RockeyCrest's 100 000 $1 shares for $300 000. The goodwill acquire in the business combination was $40 000 of which 50% had been written off as impaired by 31 December 2021. On 31 December 2021 Westgate sold all of RockeyCrest's shares for $450000 when RockeyCrest had retained earnings of $185 000. WHat is the profit of disposal that should be included in the consolidated fianacial statements of Westgate? The president of a bank refuses to hire the most qualified candidate for a management position because he is a jewish. this is an example of:________ Drug producers have been criticized for:A. Charging different fees to different organizations for the same drugB. Their unwillingness to work with CMSC. Their complete inability to provide COVID vaccines on timeD. Creating very high mark-ups on their drugsOptions -1. All are correct2. A and D are correct3. B and C are correct4. A,C and D are correct 3. The prices in the stock market are driven by____________.A. the respective companiesB. supply and demandC. the governmentD. Follow-up Offerings (FPO) What is the effective annual rate of interest if $800.00 grows to $1100 00 in four years compounded semi-annually? The effective annual rate of interest as a percent is % (Round the final answer to fo X-rays of wavelength 9.85102 nm are directed at an unknown crystal. The second diffraction maximum is recorded when the X-rays are directed at an angle of 23.4 relative to the crystal surface.Part AWhat is the spacing between crystal planes? 1. Blood clotting is considered to be an example of a positive feedback situation. Explain why this is so, and demonstrate the appropriate steps or areas of haemostasis as part of your explanation. (3)2. According to the Frank-Starling Law of the heart:increasing venous return increases end diastolic volume (EDV), which leads to an increased stroke volumeshortening cardiac muscle fibres prior to contraction causes more forceful contractionsas cardiac output decreases, blood pools in the vasculature and increases arterial blood pressurethe left ventricle must pump more blood than the right ventricle since the left ventricle must pump blood to more regions of the bodyChoose the correct answer from answers A-D and explain why each of the alternate answers are incorrect. 1. Blood clotting is considered to be an example of a positive feedback situation. Explain why this is so, and demonstrate the appropriate steps or areas of haemostasis as part of your explanation. (3)2. According to the Frank-Starling Law of the heart:increasing venous return increases end diastolic volume (EDV), which leads to an increased stroke volumeshortening cardiac muscle fibres prior to contraction causes more forceful contractionsas cardiac output decreases, blood pools in the vasculature and increases arterial blood pressurethe left ventricle must pump more blood than the right ventricle since the left ventricle must pump blood to more regions of the bodyChoose the correct answer from answers A-D and explain why each of the alternate answers are incorrect. A 750 kg roller coaster car passes point A with a speed of 15 m/s, as shown in the diagram below. (Assume all heights are accurate to 2 sig. digs.) Find the speed of the roller coaster at point F if 45 000 J of energy is lost due to friction between A (height 75 m) and F (height 32 m): 75 m LANE 40 m 1 B 32 m 12 m How do the kidneys and lungs work together to maintain blood pH homeostasis? Whats the difference between hyperpnea vs hyperventilating? What isthe breathing pattern comprision of these two breathing rates? William North has just inherited $610,000 which he would like to use as part of his retirement nest egg. He invested the funds at a 8.32 percent annual rate compounded annually. William will reach age sixty in 19 years and will retire early. Now he would like to know how much he could withdraw from the fund in equal installments at the end of each year from the year he reaches age 60 until he reaches age 70%, the year he must start withdrawing funds from his individual retirement account (IRA). William assumes the funds will continue to earn at a 8.32 percent annual rate. In other words, William would like to know the annual year-end payment from an eleven-year annuity (from age 60 to the year he will be 70%), earning 8.32 percent annually.Round the answer to two decimal places. 5.1 An axle rotates at a velocity 15 r/s, and accelerates uniformly to a velocity of 525 r/s in 6 s. 5.1.1 Calculate the angular acceleration of the axle. 5.1.2 Determine the angular displacement during the 6 s. 5.2 An engine block weighs 775 kg. It is hoisted using a lifting device with a drum diameter of 325 mm. 5.2.1 Determine the torque exerted by the engine block on the drum. 5.2.2 Calculate the power if the drum rotates at 18 r/s. The __________ is defined as new cases occurring within a short time period divided by the total population at risk at the beginning of that time period, then multiplied by 100. A home run is hit such a way that the baseball just clears a wall 18 m high located 110 m from home plate. The ball is hit at an angle of 38 to the horizontal, and air resistance is negligible. Assume the ball is hit at a height of 1 m above the ground. The acceleration of gravity is 9.8 m/s2. What is the initial speed of the ball? Answer in units of m/s. Answer in units of m/s Exercise 2: Mass and Acceleration and 125. 126.4 1261 .3 122.9 wooo Table 4-2: Mass and acceleration for large airtrack glider. acceleration total mass (kg) (m/s) 1/mass (kg') O 128. Smist 20 125.30 125.5 d 5 4th 113.0 120.0 117.8 121.0 1.9 20 30 30 40 SO 50 60 21.0 misal 118.Oma 117.6ml 115.33 3.3 6th 116.0 117.0 6 115.0 113.2 Attach graph with slope calculation and equation of line clearly written on graph. 2.8 20.7 What does the slope of this line represent? How does the value compare to the measured value (i.e show percent error calculation)? Is the acceleration inversely proportional to the mass? How do you know? 29. Let's say a drug's dose was 2.0mg (not affected by first-pass) and it's halfife is 20 minutes. How long will it take for the circulating dose to be 1.0mg ? How long will it take for the circulating dose to be 0.125mg ? What will the circulating dose be in forty minutes? 30. Draw a picture of how loading doses work, why they are used, and write a few sentences about this concepts so that you remember it. Do the same for: therapeutic level (might need ATI for this), plateau, peak (might need ATI for this), and half-life. 31. Draw pictures of each of the following concepts. Then, define them in your own words. - Dose-Response Relationships - Basic Features of the Dose-Response Relationship - Maximal Efficacy and Relative Potency - Drug-Receptor Interactions - Introduction to Drug Receptors - The Four Primary Receptor Families - Receptors and Selectivity of Drug Action - Theories of Drug-Receptor Interaction - Agonists, Antagonists, and Partial Agonists - Regulation of Receptor Sensitivity - Drug Responses That Do Not Involve Receptors - Interpatient Variability in Drug Responses - Measurement of Interpatient Variability - The ED50 - Clinical Implications of Interpatient Variability - The Therapeutic Index Section Two The implications of widespread insecure work1000 words (+/- 10%) Why have many employers shifted away from standard (full-time, continuing) employment? What are the social and economic implications for workers engaged in insecure work? Does widespread insecure work have implications for the broader society and the economy? In what ways has COVID-19 shone a spotlight on the problems associated with insecure work? An electron is confined within a region of atomic dimensions, of the order of 10-10m. Find the uncertainty in its momentum. Repeat the calculation for a proton confined to a region of nuclear dimensions, of the order of 10-14m. 12. It is a set of economic policy prescriptions by the Bretton Woods institutions considered to promote economic growth to poor countries A. World Trade Policy B. Non-Technical Barriers to Trade C. Protectionism D. Washington Consensus 13. How do you balance the GDP when the Trade Balance is negative? A. You raise taxes, so that the Government's spending increases B. You reduce the Government spending by privatization processes of public enterprises C. You try to get loans from other countries so that you can finance your current account D. None of the above 14. According to the Washington consensus, liberalization of commerce means... A. Liberalization of imports with elimination of restrictions of commerce B. Taxing sensitive products so that the local industry can develop C. Working with the WTO so that it implements rules against import restriction D. None of the above 15. The Gravity Model of Trade predicts the trade flow based on economic sizes and between two countries A. Level of debt B. Level of tax C. Distance D. Level of Barriers to Trade 16. Excessive tariffs to imports in order to protect the local industry is known as A. The Gravity Model of Trade B. Says' Law of Trade C. Non-Technical Barriers to Trade D. Technical Barriers to Trade 17. Barriers to trade through tariffs are commonly used for... A. Financing government spending. B. Protecting local industries. C. Allocate those resources as savings and then as investment D. All of the above