Two fair dice are tossed and the number on each die is recorded, e.g. (3,2) indicates the first die had 3 and the second die had a 2. In total, there are 36 (equally likely) outcomes in the sample space. What is the probability the sum of the two dice is 7 or 11? Group of answer choices

Answers

Answer 1

Answer:

P(7 or 11) = 0.2222

Step-by-step explanation:

First let's find the cases where we get a sum of 7 and a sum of 11:

The cases where we get a sum of 7 are:

(1,6), (2,5), (3,4), (4,3), (5,2), (6,1)

And the cases where we get a sum of 11 are:

(5,6), (6,5)

So we have a total of 8 cases among the 36 total possible outcomes.

So the probability of the sum of the two dice being 7 or 11 is:

P(7 or 11) = 8 / 36 = 0.2222


Related Questions

Write the expression in simplest form 3(5x) + 8(2x)

Answers

Answer:

31x

[tex]solution \\ 3(5x) + 8(2x) \\ = 3 \times 5x + 8 \times 2x \\ = 15x + 16x \\ = 31x[/tex]

hope this helps...

Good luck on your assignment...

The expression  [tex]3(5x) + 8(2x)[/tex] in simplest form is 31x.

To simplify the expression [tex]3(5x) + 8(2x)[/tex], we can apply the distributive property:

[tex]3(5x) + 8(2x)[/tex]

[tex]= 15x + 16x[/tex]

Combining like terms, we have:

[tex]15x + 16x = 31x[/tex]

Therefore, the expression [tex]3(5x) + 8(2x)[/tex] simplifies to [tex]31x.[/tex]

To learn more on Expressions click:

https://brainly.com/question/14083225

#SPJ6

Find the equation of the line.
Use exact numbers.
y=

Answers

Answer:

y = 2x+4

Step-by-step explanation:

First we need to find the slope using two points

(-2,0) and (0,4)

m = (y2-y1)/(x2-x1)

m = (4-0)/(0--2)

   = 4/+2

   = 2

we have the y intercept  which is 4

Using the slope intercept form of the line

y = mx+b where m is the slope and b is the y intercept

y = 2x+4

plz help me divide and simplify

Answers

Answer:

Step-by-step explanation:

In an office complex of 1110 employees, on any given day some are at work and the rest are absent. It is known that if an employee is at work today, there is an 77% chance that she will be at work tomorrow, and if the employee is absent today, there is a 54% chance that she will be absent tomorrow. Suppose that today there are 899 employees at work.

Required:
a. Find the transition matrix for this scenario.
b. Predict the number that will be at work five days from now.
c. Find the steady-state vector.

Answers

Answer:

B

Step-by-step explanation:

An economist at Vanderbilt University devised a study to compare different types of online auctions. In one experiment he compared a Dutch auction to a first-place sealed bid auction. In the Dutch auction the item for sale starts at a very high price and is lowered gradually until someone finds the price low enough to buy. In the first-price sealed bid auction each bidder submits a single sealed bid before a particular deadline. After the deadline, the person with the highest bid wins. The researcher auctioned off collectible trading cards from the game Magic: The Gathering. He placed pairs of identical cards up for auction; one would go into Dutch auction and the other to the first-price sealed bid auction. He then looked at the difference in the prices he received on the pair. He repeated this for a total of 88 pairs.
[a] Explained why the data should be analyzed using paired samples as opposed to two independent samples.
[b] What makes a pair?
[c] What is the explanatory variable? Is it categorical or quantitative?
[d] What is the response variable? Is it categorical or quantitative?
[e] State the relevant hypotheses in words:
Null hypothesis:
Alternative hypothesis:
[f] Define the parameter of interest and give the symbol that should be assigned to it.
[g] State the relevant hypotheses in symbols (using a parameter):
Null hypothesis:
Alternative hypothesis:
[h] Assume the p-value is 0.17 (write a conclusion).

Answers

Answer:

Step-by-step explanation:

a. The data should be analyzed using paired samples because the economist made two measurements (samples) drawn from the same pair of identical cards. Each data point in one sample is uniquely paired to a data point in the second sample.

b. A pair is made up of two identical cards where one would go into Dutch auction and the other to the first-price sealed bid auction.

c. The explanatory variables are the types of online auction which are the Dutch auction and the first price sealed bid auction. The explanation variable here is categorical: the Dutch auction and the first price sealed bid auction.

d. The response variable which is also known as the outcome variable is prices for the 2 different auction for each pair of identical cards. This variable is quantitative.

e. Null Hypothesis in words: There is no difference in the prices obtained in the two different online auction.

Alternative hypothesis: There is a difference in the prices obtained in the two different online auction.

f. The parameter of interest in this case is the mean prices of pairs of identical cards for both auction and is assigned p.

g. Null hypothesis: p(dutch) = p(first-price sealed auction)

Alternative hypothesis: p(dutch) =/ p(first-price sealed auction)

h. Assuming the p-value is 0.17 at an assed standard 0.05 significance level, our conclusion would be to fail to reject the null hypothesis as 0.17 is greater than 0.05 or even 0.01 and we can conclude that, there is no statistically significant evidence to prove that there is a difference in the prices obtained in the two different online auction.

Let the sample space be
S = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10.
Suppose the outcomes are equally likely. Compute the probability of the event E = 1, 2.

Answers

Answer:

probability of the event E = 1/5

Step-by-step explanation:

We are given;

Sample space, S = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10},

Number of terms in sample S is;

n(S) = 10

We are given the event; E = {1, 2}

Thus, number of terms in event E is;

n(E) = 2

Now, Probability = favorable outcomes/total outcomes

Thus, the probability of the event E is;

P(E) = n(E)/n(S)

P(E) = 2/10

P(E) = 1/5

A ladder leans against the side of a house. The angle of elevation of the ladder is 66 degrees, and the top of the ladder is 15 ft above the ground. Find the distance from the bottom of the ladder to the side of the house. Round your answer to the nearest tenth.

Answers

Answer:

x ≈ 6.7 ft

Step-by-step explanation:

We are going to use tan∅ to find our answer:

tan66° = 15/x

xtan66° = 15

x = 15/tan66°

x = 6.67843 ft

A basketball coach is looking over the possessions per game during last season. Assume that the possessions per game follows an unknown distribution with a mean of 56 points and a standard deviation of 12 points. The basketball coach believes it is unusual to score less than 50 points per game. To test this, she randomly selects 36 games. Use a calculator to find the probability that the sample mean is less than 50 points. Round your answer to three decimal places if necessary.

Answers

Answer:

The probability that the sample mean is less than 50 points = 0.002    

Step-by-step explanation:

Step(i):-

Given mean of the normal distribution = 56 points

Given standard deviation of the normal distribution = 12 points

Random sample size 'n' = 36 games

Step(ii):-

Let x⁻ be the random variable of normal distribution

Let x⁻ = 50

[tex]Z = \frac{x^{-}-mean }{\frac{S.D}{\sqrt{n} } }[/tex]

[tex]Z = \frac{50-56 }{\frac{12}{\sqrt{36} } }= -3[/tex]

The probability that the sample mean is less than 50 points

P( x⁻≤ 50) = P( Z≤-3)

                = 0.5 - P(-3 <z<0)

               = 0.5 -P(0<z<3)

               =  0.5 - 0.498

               = 0.002

Final answer:-

The probability that the sample mean is less than 50 points = 0.002

Answer:

56

2

.001

Step-by-step explanation:

The Central Limit Theorem for Means states that the mean of any sampling distribution of the means is equal to the mean of the population distribution. The standard deviation is equal to the standard deviation of the population divided by the square root of the sample size. So, the mean of this sampling distribution of the means with sample size 36 is 56 points and the standard deviation is 1236√=2 points. The z-score for 50 using the formula z=x¯¯¯−μσ is −3.

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

-3.0 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

-2.9 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.001 0.001 0.001

-2.8 0.003 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002

-2.7 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003

-2.6 0.005 0.005 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004

-2.5 0.006 0.006 0.006 0.006 0.006 0.005 0.005 0.005 0.005 0.005

Using the Standard Normal Table, the area to the left of −3 is approximately 0.001. Therefore, the probability that the sample mean will be less than 50 points is approximately 0.001.

Suppose that we want to generate the outcome of the flip of a fair coin, but that all we have at our disposal is a biased coin which lands on heads with some unknown probability p that need not be equal to1/2. Consider the following procedure for accomplishing our task:
1. Flip the coin.
2. Flip the coin again.
3. If both flips land on heads or both land on tails, return to step 1. 4. Let the result of the last flip be the result of the experiment.
(a) Show that the result is equally likely to be either heads or tails.
(b) Could we use a simpler procedure that continues to flip the coin until the last two flips are different and then lets the result be the outcome of the final flip?

Answers

Answer:

Step-by-step explanation:

Given that;

the following procedure for accomplishing our task are:

1. Flip the coin.

2. Flip the coin again.

From here will know that the coin is first flipped twice

3. If both flips land on heads or both land on tails, it implies that we return to step 1 to start again. this makes the flip to be insignificant since both flips land on heads or both land on tails

But if the outcomes of the two flip are different i.e they did not land on both heads or both did not land on tails , then we will consider such an outcome.

Let the probability of head = p

so P(head) = p

the probability of tail be = (1 - p)

This kind of probability follows a conditional distribution and the probability  of getting heads is :

[tex]P( \{Tails, Heads\})|\{Tails, Heads,( Heads ,Tails)\})[/tex]

[tex]= \dfrac{P( \{Tails, Heads\}) \cap \{Tails, Heads,( Heads ,Tails)\})}{ {P( \{Tails, Heads,( Heads ,Tails)\}}}[/tex]

[tex]= \dfrac{P( \{Tails, Heads\}) }{ {P( \{Tails, Heads,( Heads ,Tails)\}}}[/tex]

[tex]= \dfrac{P( \{Tails, Heads\}) } { {P( Tails, Heads) +P( Heads ,Tails)}}[/tex]

[tex]=\dfrac{(1-p)*p}{(1-p)*p+p*(1-p)}[/tex]

[tex]=\dfrac{(1-p)*p}{2(1-p)*p}[/tex]

[tex]=\dfrac{1}{2}[/tex]

Thus; the probability of getting heads is [tex]\dfrac{1}{2}[/tex] which typically implies that the coin is fair

(b) Could we use a simpler procedure that continues to flip the coin until the last two flips are different and then lets the result be the outcome of the final flip?

For a fair coin (0<p<1) , it's certain that both heads and tails at the end of the flip.

The procedure that is talked about in (b) illustrates that the procedure gives head if and only if the first flip comes out tail with probability 1 - p.

Likewise , the procedure gives tail if and and only if the first flip comes out head with probability of  p.

In essence, NO, procedure (b) does not give a fair coin flip outcome.

hey guys please help ​

Answers

Answer:

[tex]7.98 \:m[/tex]

Step-by-step explanation:

Area of a triangle is base times height divided by 2.

[tex]A= \frac{bh}{2}[/tex]

[tex]69.6= \frac{b \times 17.45}{2}[/tex]

[tex]69.6 \times 2= b \times 17.45[/tex]

[tex]139.2=b \times 17.45[/tex]

[tex]\frac{17.45b}{17.45}=\frac{139.2}{17.45}[/tex]

[tex]b=\frac{2784}{349}[/tex]

[tex]b=7.97707[/tex]

The appropriate unit is meters.

Answer:

7.98 m

Step-by-step explanation:

UTGENT! I really need help, can anyone help me?

Answers

Answer:

x = 3.6

Step-by-step explanation:

By the Postulate of intersecting chords inside a circle.

[tex]x \times 5 = 3 \times 6 \\ 5x = 18 \\ x = \frac{18}{5} \\ x = 3.6 \\ [/tex]

A study conducted at a certain college shows that "53%" of the school's graduates find a job in their chosen field within a year after graduation. Find the probability that among 6 randomly selected graduates, at least one finds a job in his or her chosen field within a year of graduating. 0.989 0.978 0.927 0.167 0.530

Answers

Answer:

0.989

Step-by-step explanation:

For each graduate, there are only two possible outcomes. Either they find a job in their chosen field within a year after graduation, or they do not. The probability of a graduate finding a job is independent of other graduates. So we use the binomial probability distribution to solve this question.

Binomial probability distribution

The binomial probability is the probability of exactly x successes on n repeated trials, and X can only have two outcomes.

[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]

In which [tex]C_{n,x}[/tex] is the number of different combinations of x objects from a set of n elements, given by the following formula.

[tex]C_{n,x} = \frac{n!}{x!(n-x)!}[/tex]

And p is the probability of X happening.

A study conducted at a certain college shows that "53%" of the school's graduates find a job in their chosen field within a year after graduation.

This means that [tex]p = 0.53[/tex]

6 randomly selected graduates

This means that [tex]n = 6[/tex]

Probability that at least one finds a job in his or her chosen field within a year of graduating:

Either none find a job, or at least one does. The sum of the probabilities of these outcomes is 1. So

[tex]P(X = 0) + P(X \geq 1) = 1[/tex]

We want [tex]P(X \geq 1)[/tex]

So

[tex]P(X \geq 1) = 1 - P(X = 0)[/tex]

In which

[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]

[tex]P(X = 0) = C_{6,0}.(0.53)^{0}.(0.47)^{6} = 0.011[/tex]

So

[tex]P(X \geq 1) = 1 - P(X = 0) = 1 - 0.011 = 0.989[/tex]

You are given an n×n board, where n is an even integer and 2≤n≤30. For how many such boards is it possible to cover the board with T-shaped tiles like the one shown? Each cell of the shape is congruent to one cell on the board.

Answers

Answer:

  7

Step-by-step explanation:

The number of cells in a tile is 4. If colored alternately, there are 3 of one color and 1 of the alternate color. To balance the coloring, an even number of tiles is needed. Hence the board dimensions must be multiples of 4.

In the given range, there are 7 such boards:

  4×4, 8×8, 12×12, 16×16, 20×20, 24×24, and 28×28

A triangular window has an area of 594 square meters. The base is 54 meters. What is the height?

Answers

Answer:

  22 m

Step-by-step explanation:

Use the formula for the area of a triangle. Fill in the known values and solve for the unknown.

  A = (1/2)bh

  594 m^2 = (1/2)(54 m)h

  h = (594 m^2)/(27 m) = 22 m

The height of the window is 22 meters.

A door delivery florist wishes to estimate the proportion of people in his city that will purchase his flowers. Suppose the true proportion is 0.070.07. If 492492 are sampled, what is the probability that the sample proportion will differ from the population proportion by greater than 0.030.03?

Answers

Answer:

The probability that the sample proportion will differ from the population proportion by greater than 0.03 is 0.009.

Step-by-step explanation:

According to the Central limit theorem, if from an unknown population large samples of sizes n > 30, are selected and the sample proportion for each sample is computed then the sampling distribution of sample proportion follows a Normal distribution.

The mean of this sampling distribution of sample proportion is:

 [tex]\mu_{\hat p}=p[/tex]

The standard deviation of this sampling distribution of sample proportion is:

 [tex]\sigma_{\hat p}=\sqrt{\frac{p(1-p)}{n}}[/tex]

As the sample size is large, i.e. n = 492 > 30, the central limit theorem can be used to approximate the sampling distribution of sample proportion by the normal distribution.

The mean and standard deviation of the sampling distribution of sample proportion are:

[tex]\mu_{\hat p}=p=0.07\\\\\sigma_{\hat p}=\sqrt{\frac{p(1-p)}{n}}=\sqrt{\frac{0.07(1-0.07)}{492}}=0.012[/tex]

Compute the probability that the sample proportion will differ from the population proportion by greater than 0.03 as follows:

[tex]P(|\hat p-p|>0.03)=P(|\frac{\hat p-p}{\sigma_{\hat p}}|>\frac{0.03}{0.012})[/tex]

                           [tex]=P(|Z|>2.61)\\\\=1-P(|Z|\leq 2.61)\\\\=1-P(-2.61\leq Z\leq 2.61)\\\\=1-[P(Z\leq 2.61)-P(Z\leq -2.61)]\\\\=1-0.9955+0.0045\\\\=0.0090[/tex]

Thus, the probability that the sample proportion will differ from the population proportion by greater than 0.03 is 0.009.

Find f(x) - g(x) when f(x) = 2x^2 - 4x g(x) = x^2 + 6x
3x^2

x^2 + 2x


x^2 - 10x


3x^2 + 2x

Answers

the last one 3x^ + 2x

Answer:

x^2 - 10x

Step-by-step explanation:

2x^2 - 4x - x^2 +6x

You subtract x^2 from 2x^2 and you get x^2

Then you add 6x and 4x together and get 10x

So then you have x^2 - 10x

(plus I took the test and this was the correct answer.)

AC =
Round your answer to the nearest hundredth.
с
6
B
40°
А

Answers

Answer:

  5.03

Step-by-step explanation:

Answer:

5.03 = AC

Step-by-step explanation:

Since this is a right triangle, we can use trig functions

tan theta = opp/ adj

tan 40 = AC /6

6 tan 40 = AC

5.034597787 = AC

To the nearest hundredth

5.03 = AC

SOMEONE PLEASE HELP ME ASAP PLEASE!!!​

Answers

Answer:

38 units

Step-by-step explanation:

We can find the perimeter of the shaded figure be finding out the number of unit lengths we have along the boundary of the given figure.

Thus, see attachment below for the number of units of each length of the figure that we have counted.

The perimeter of the figure = sum of all the lengths = 7 + 7 + 10 + 2 + 2 + 6 + 2 + 2 = 38

Perimeter of the shaded figure = 38 units

Write the Algebraic expression for each of the following.
1. Sum of 35 and 65
2. Take away 14 from y
3. Subtract 3 from the product of 6 and s
4. 10 times the sum of x and 8 5. Take away p from 6

Answers

Step-by-step explanation:

1. 35 + 65

2. y - 14

3. (6 x s) - 3

4. 10(x+8.5).. 6-p

Determine if the expressions are equivalent.

when w = 11:

2w + 3 + 4     4 + 2w + 3

2(11) + 3 + 4    4 + 2(11) + 3

22 + 3 + 4      4 + 22 + 3

25 + 4      26 + 3

29        29

Complete the statements.

Answers

Answer:

Determine if the expressions are equivalent.

when w = 11:

2w + 3 + 4     4 + 2w + 3

2(11) + 3 + 4    4 + 2(11) + 3

22 + 3 + 4      4 + 22 + 3

25 + 4      26 + 3

29        29

Complete the statements.

Now, check another value for the variable.

When w = 2, the first expression is  

11

.

When w = 2, the second expression is  

11

.

Therefore, the expressions are  

equivalent

.

Step-by-step explanation:

i did the math hope this helps

Answer:

Hii its Nat here to help! :)

Step-by-step explanation: A is 11 and b is 11.

C is Equal

Screenshot included.

2x^2+8x = x^2-16
Solve for x

Answers

Answer:

x=-4

Step-by-step explanation:

[tex]2x^2+8x=x^2-16[/tex]

Move everything to one side:

[tex]x^2+8x+16=0[/tex]

Factor:

[tex](x+4)^2=0[/tex]

By the zero product rule, x=-4. Hope this helps!

Answer:

x=-4

Step-by-step explanation:

Move everything to one side and combine like-terms

x²+8x+16

Factor

(x+4)²

x=-4

All the employees of ABC Company are assigned ID numbers. The ID number consists of the first letter of an employee's last name, followed by three numbers. (a) How many possible different ID numbers are there

Answers

Answer:

there will be 9 id no. which it contains

An insurance company examines its pool of auto insurance customers and gathers the following information: (i) All customers insure at least one car. (ii) 70% of the customers insure more than one car. (iii) 20% of the customers insure a sports car. (iv) Of those customers who insure more than one car, 15% insure a sports car. Calculate the probability that a randomly se

Answers

The question is incomplete! Complete question along with answer and step by step explanation is provided below.

Question:

An insurance company examines its pool of auto insurance customers and gathers the following information: (i) All customers insure at least one car. (ii) 70% of the customers insure more than one car. (iii) 20% of the customers insure a sports car. (iv) Of those customers who insure more than one car, 15% insure a sports car. Calculate the probability that a randomly selected customer insures exactly one car, and that car is not a sports car?

Answer:

P( X' ∩ Y' ) = 0.205

Step-by-step explanation:

Let X is the event that the customer insures more than one car.

Let X' is the event that the customer insures exactly one car.

Let Y is the event that customer insures a sport car.

Let Y' is the event that customer insures not a sport car.

From the given information we have

70% of customers insure more than one car.

P(X) = 0.70

20% of customers insure a sports car.

P(Y) = 0.20

Of those customers who insure more than one car, 15% insure a sports car.

P(Y | X) = 0.15

We want to find out the probability that a randomly selected customer insures exactly one car, and that car is not a sports car.

P( X' ∩ Y' ) = ?

Which can be found by

P( X' ∩ Y' ) = 1 - P( X ∪ Y )

From the rules of probability we know that,

P( X ∪ Y ) = P(X) + P(Y) - P( X ∩ Y )    (Additive Law)

First, we have to find out P( X ∩ Y )

From the rules of probability we know that,

P( X ∩ Y ) = P(Y | X) × P(X)       (Multiplicative law)

P( X ∩ Y ) = 0.15 × 0.70

P( X ∩ Y ) = 0.105

So,

P( X ∪ Y ) = P(X) + P(Y) - P( X ∩ Y )

P( X ∪ Y ) = 0.70 + 0.20 - 0.105

P( X ∪ Y ) = 0.795

Finally,

P( X' ∩ Y' ) = 1 - P( X ∪ Y )

P( X' ∩ Y' ) = 1 - 0.795

P( X' ∩ Y' ) = 0.205

Therefore, there is 0.205 probability that a randomly selected customer insures exactly one car, and that car is not a sports car.

Which of the following is a polynomial with roots: − square root of 3 , square root of 3, and −2? (6 points) Question 7 options: 1) x3 − 2x2 − 3x + 6 2) x3 − 3x2 − 5x + 15 3) x3 + 2x2 − 3x − 6 4) x3 + 3x2 − 5x − 15

Answers

Answer:

The polynomial is [tex]x^{3} - 1.46x^{2} - 3.93x + 6[/tex]

Step-by-step explanation:

A nth order polynomial f(x) has roots [tex]x_{1}, x_{2}, ..., x_{n}[/tex] such that [tex]f(x) = (x - x_{1})*(x - x_{2})*...*(x - x_{n}}[/tex],

Which of the following is a polynomial with roots: − square root of 3 , square root of 3, and −2?

So

[tex]x_{1} = x_{2} = \sqrt{3}[/tex]

[tex]x_{3} = -2[/tex]

Then

[tex](x - \sqrt{3})^{2}*(x - (-2)) = (x - \sqrt{3})^{2}*(x + 2) = (x^{2} -2x\sqrt{3} + 3)*(x + 2) = x^{3} + 2x^{2} - 2x^{2}\sqrt{3} - 4x\sqrt{3} + 3x + 6[/tex]

Since [tex]\sqrt{3} = 1.73[/tex]

[tex]x^{3} + 2x^{2} - 3.46x^{2} - 6.93x + 3x + 6 = x^{3} - 1.46x^{2} - 3.93x + 6[/tex]

The polynomial is [tex]x^{3} - 1.46x^{2} - 3.93x + 6[/tex]

The sum of a number and its reciprocal is 41/20. Find the numbers. smaller value larger value

Answers

Answer:

The numbers are 5/4 and 4/5The smaller value is 4/5The larger value is 5/4

Step-by-step explanation:

Let the number be x.

The reciprocal of the number will be 1/x

If the sum of the number and its reciprocal is 41/20, this can be represented as;

[tex]x+\frac{1}{x} = 41/20\\\frac{x^{2}+1}{x} = \frac{41}{20} \\20x^{2} +20 = 41x\\20x^{2} -41x+20 = 0\\[/tex]

Uisng the general formula to get x

x = -b±√b²+4ac/2a

x = 41±√41²-4(20)(20)/2(20)

x = 41±√1681-1600/40

x = 41±√81/40

x = 41±9/40

x = 50/40 or 32/40

x = 5/4 or 4/5

if the value is 5/4, the other value will be 4/5

The numbers are 5/4 and 4/5

The smaller value is 4/5

The larger value is 5/4

Answer:

a=5/4 or 4/5

Therefore, the smaller value = 4/5

The larger value = 5/4

Step-by-step explanation:

Let the number be represented by a

And it's reciprocal be represented by 1/a

So we have

a + 1/a = 41/20

Cross Multiply

20( a +1/a) = 41

20a +20/a =41

Find the LCM which is a

20a² + 20 = 41a

20a² + 20 - 41a =0

20a² - 41a +20 = 0

20a²-25a - 16a + 20 =0

5a(4a - 5) -4( 4a - 5) = 0

(5a - 4)(4a - 5) = 0

5a - 4 = 0

5a = 4

a = 4/5

or

4a - 5 = 0

4a =5

a = 5/4

Therefore, the number which is represented by a is

1) a = 4/5 while it's reciprocal which is 1/a is 5/4

or

2) a = 5/4 which it's reciprocal which is 1/a = 4/5

Therefore, the smaller value = 4/5

The larger value = 5/4

Let x1 = 12, y1 = 15, and y2 = 3. Let y vary inversely with x. Find x2.

Answers

Answer:

x2 = 60

Step-by-step explanation:

If the variables x and y are inversely proportional, the product x * y is a constant.

So using x1 and y1 we can find the value of this constant:

[tex]x1 * y1 = k[/tex]

[tex]12 * 15 = k[/tex]

[tex]k = 180[/tex]

Now, we can use the same constant to find x2:

[tex]x2 * y2 = k[/tex]

[tex]x2 * 3 = 180[/tex]

[tex]x2 = 180 / 3 = 60[/tex]

So the value of x2 is 60.

Given z = 4x – 6y, solve for y.​

Answers

Answer:

Step-by-step explanation:

-6y+4x=z

-6y=z-4x

y=(z-4x)/-6

Answer:

[tex]y=\frac{z-4x}{-6}[/tex]

Step-by-step explanation:

Which of the following is the graph of y = negative StartRoot x EndRoot + 1?

Answers

Answer:

see below

Step-by-step explanation:

y = -sqrt(x) +1

We know that the domain is from 0 to infinity

The range is from 1 to negative infinity

Answer:

b

Step-by-step explanation:

e2020

combine like terms to create an equivalent expression -1/2(-3y+10)

Answers

Answer:

3/2y - 5

Step-by-step explanation:

-1/2(-3y+10)

Expand the brackets.

-1/2(-3y) -1/2(10)

Multiply.

3/2y - 5

Answer:

[tex]= \frac{ 3y}{2} - 5 \\ [/tex]

Step-by-step explanation:

we know that,

[tex]( - ) \times ( - ) = ( + ) \\ ( - ) \times ( + ) = ( - )[/tex]

Let's solve now,

[tex] - \frac{1}{2} ( - 3y + 10) \\ \frac{3y}{2} - \frac{10}{2} \\ = \frac{ 3y}{2} - 5[/tex]

Given a normal distribution with (mean) μ= 50 and (standard deviation) σ = 4, what is the probability that:__________.
a) x>43
b) x<42
c) x>57.5
d) 42 e) x<40 or x>55
f) 5% of the values are less than what X value?
g) 60% of the values are between what two X values (symmetrically distributed around the mean)?
h) 85% of the values will be above what X value?

Answers

Answer:

a) P(x > 43) = 0.9599

b) P(x < 42) = 0.0228

c) P(x > 57.5) = 0.03

d) P(x = 42) = 0.

e) P(x<40 or x>55) = 0.1118

f) 43.42

g) Between 46.64 and 53.36.

h) Above 45.852.

Step-by-step explanation:

When the distribution is normal, we use the z-score formula.

In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the zscore of a measure X is given by:

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.

In this question, we have that:

[tex]\mu = 50, \sigma = 4[/tex]

a) x>43

This is 1 subtracted by the pvalue of Z when X = 43. So

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

[tex]Z = \frac{43 - 50}{4}[/tex]

[tex]Z = -1.75[/tex]

[tex]Z = -1.75[/tex] has a pvalue of 0.0401

1 - 0.0401 = 0.9599

P(x > 43) = 0.9599

b) x<42

This is the pvalue of Z when X = 42.

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

[tex]Z = \frac{42 - 50}{4}[/tex]

[tex]Z = -2[/tex]

[tex]Z = -2[/tex] has a pvalue of 0.0228

P(x < 42) = 0.0228

c) x>57.5

This is 1 subtracted by the pvalue of Z when X = 57.5. So

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

[tex]Z = \frac{57.5 - 50}{4}[/tex]

[tex]Z = 1.88[/tex]

[tex]Z = 1.88[/tex] has a pvalue of 0.97

1 - 0.97 = 0.03

P(x > 57.5) = 0.03

d) P(x = 42)

In the normal distribution, the probability of an exact value is 0. So

P(x = 42) = 0.

e) x<40 or x>55

x < 40 is the pvalue of Z when X = 40. So

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

[tex]Z = \frac{40 - 50}{4}[/tex]

[tex]Z = -2.5[/tex]

[tex]Z = -2.5[/tex] has a pvalue of 0.0062

x > 55 is 1 subtracted by the pvalue of Z when X = 55. So

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

[tex]Z = \frac{55 - 50}{4}[/tex]

[tex]Z = 1.25[/tex]

[tex]Z = 1.25[/tex] has a pvalue of 0.8944

1 - 0.8944 = 0.1056

0.0062 + 0.1056 = 0.1118

P(x<40 or x>55) = 0.1118

f) 5% of the values are less than what X value?

X is the 5th percentile, which is X when Z has a pvalue of 0.05, so X when Z = -1.645.

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

[tex]-1.645 = \frac{X - 50}{4}[/tex]

[tex]X - 50 = -1.645*4[/tex]

[tex]X = 43.42[/tex]

43.42 is the answer.

g) 60% of the values are between what two X values (symmetrically distributed around the mean)?

Between the 50 - (60/2) = 20th percentile and the 50 + (60/2) = 80th percentile.

20th percentile:

X when Z has a pvalue of 0.2. So X when Z = -0.84.

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

[tex]-0.84 = \frac{X - 50}{4}[/tex]

[tex]X - 50 = -0.84*4[/tex]

[tex]X = 46.64[/tex]

80th percentile:

X when Z has a pvalue of 0.8. So X when Z = 0.84.

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

[tex]0.84 = \frac{X - 50}{4}[/tex]

[tex]X - 50 = 0.84*4[/tex]

[tex]X = 53.36[/tex]

Between 46.64 and 53.36.

h) 85% of the values will be above what X value?

Above the 100 - 85 = 15th percentile, which is X when Z has a pvalue of 0.15. So X when Z = -1.037.

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

[tex]-1.037 = \frac{X - 50}{4}[/tex]

[tex]X - 50 = -1.037*4[/tex]

[tex]X = 45.852[/tex]

Above 45.852.

Other Questions
In Mrs. Alvarez's communication class, each student created a personal Johari Window. In Allison's window the largest window pane was in the upper-left. Based on how the Johari Window is constructed, which of the following is/are probably true about Allison? Select all that apply. Allison's open self is dominant. Allison is likely a shy person. Allison tends to ask for feedback. Allison tends to avoid self-disclosure. Using Python I need to Prompt the user to enter in a numerical score for a Math Class. The numerical score should be between 0 and 100. Prompt the user to enter in a numerical score for a English Class. The numerical score should be between 0 and 100. Prompt the user to enter in a numerical score for a PE Class. The numerical score should be between 0 and 100. Prompt the user to enter in a numerical score for a Science Class. The numerical score should be between 0 and 100. Prompt the user to enter in a numerical score for an Art Class. The numerical score should be between 0 and 100. Call the letter grade function 5 times (once for each class). Output the numerical score and the letter grade for each class. The partial Lewis structure that follows is for a hydrocarbon molecule. In the full Lewis structure, each carbon atom satisfies the octet rule, and there are no unshared electron pairs in the molecule. The carbon-carbon bonds are labeled 1, 2, and 3. A) How many hydrogen atoms are in the molecule? B) Rank the carbon-carbon bonds in order of increasing bond length. C) Which carbon-carbon bond is the strongest one? whats the solution of y=x-4 and y=1/3x Rashida no maneja; ella camina a su oficina para mantenerse ________ y saludable. activa dulce mal triste what is ud. form of the verb dormir in the preterite tense a. durmieron b. dormiste c. duerme d. durmio (02.06)If 1 pint is equal to 2 cups, then 5 pints would equal ___ cups. CAN I GET SOME HELP PLEASE?????Brainliest?? Match the following terms with their definitions. 1. audience the spectators or listeners 2. procedural text explains how to do something 3. point of view suited for the audience 4. reader-friendly perspective The probability that any postcard posted in Portugal on Monday is delivered to the UK within a week is 0.62. The probability that any postcard posted in Portugal on Friday is delivered to the UK within a week is 0.41. Anna is on holiday in Portugal. She posts 15 postcards to the UK on Monday. How many of her postcards can she expect to be delivered within a week? Please describe the regulation of the blood glucose 6 hours after a meal?Please include all relevant organs, hormones, and actions. 2 less than a number times 6 A car travels 22 miles for every gallon of gasoline used. The table below represents this relationship. Gas Mileage Distance Traveled (miles) Gasoline Used (gallons) 22 1 44 2 x 3 88 4 Which equation correctly shows a pair of equivalent ratios that can be used to find the unknown? StartFraction 1 over 22 EndFraction = StartFraction x over 2 EndFraction StartFraction 22 over 1 EndFraction = StartFraction x over 2 EndFraction StartFraction 1 over 22 EndFraction = StartFraction x over 3 EndFraction StartFraction 22 over 1 EndFraction = StartFraction x over 3 EndFraction what type of matter is toluene The process of succession is necessary to maintain and establish stable communities. T or F During World War I, Japan demonstrated its growing power by:A. using its large navy to capture German colonies in the Pacific andIndian oceans.B. convincing China and Korea to join it in a military alliance againstGermany.C. providing food and military equipment to the United Statesthroughout the war.D. sending troops to Europe to help end the stalemate on theWestern Front.SUBMIT difference between plastic and rubber( at least ten) Imagine you are in a small boat on a small pond that has no inflow or outflow. If you take an anchor that was sitting on the floor of the boat and lower it over the side until it sits on the ground at the bottom of the pond, will the water level rise slightly, stay the same, or lower slightly?Two students, Ian and Owen, are discussing this. Ian says that the anchor will still displace just as much water when it is sitting on the bottom of the pond as it does when it is in the boat. After all, adding the anchor to the boat causes the water level in the lake to rise, and so would immersing the anchor in the pond. So Ian reasons that both displacements would be equal, and the lake level remains unchanged. Which of the following inter-particle forces has the lowest potential energy? A. ion-ion interaction b. hydrogen bonding c. dipole-dipole interaction d. ion-dipole moment Simplify 18 - 2[x + (x - 5)]. 28 - 4 x 8 - 4 x 28 - 2 x