TWO-Dimensiona Solve for Distance, Time, and Constant Velocity: 1) A police officer in a police car finds that a vehicle is travelling beyond the speed limit in a low-velocity zone with a constant speed of 24 m/s. As soon as the vehicle passes the police car, the police officer begins pursuing the vehicle with a constant acceleration of 6 m/s2 until the police office catches up with and stops the speeding vehicle. (NOTE: here the distance covered, and the time elapsed, is the same for both the POLICE CAR and the SPEEDING VEHICLE, from the time the police car begins pursuing the vehicle to the time the police car catches up and stops the vehicle). A) What is the time taken by the police car to catch up with and stop the speeding vehicle?

Answers

Answer 1

Given that a police officer in a police car finds that a vehicle is travelling beyond the speed limit in a low-velocity zone with a constant speed of 24 m/s. As soon as the vehicle passes the police car, the police officer begins pursuing the vehicle with a constant acceleration of 6 m/s² until the police office catches up with and stops the speeding vehicle. Here, the distance covered and the time elapsed are the same for both the POLICE CAR and the SPEEDING VEHICLE, from the time the police car begins pursuing the vehicle to the time the police car catches up and stops the vehicle.

The time taken by the police car to catch up with and stop the speeding vehicle is 4 seconds.

We need to find the time taken by the police car to catch up with and stop the speeding vehicle.

Solution:

Let the time taken to catch up with and stop the vehicle be t.

So, the distance covered by the police car during the time t = distance covered by the speeding vehicle during the time Distance = speed × time.

Distance covered by the speeding vehicle during the time t is 24t.

Distance covered by the police car during the time t is 1/2 × 6t², since it starts from rest and its acceleration is 6 m/s².

We know that both distances are the same.

Therefore, 24t = 1/2 × 6t²

⇒ 4t = t²

⇒ t = 4 s.

Therefore, the time taken by the police car to catch up with and stop the speeding vehicle is 4 seconds.

Learn more about distance, here

https://brainly.com/question/26550516

#SPJ11


Related Questions

.A car and a truck collide head-on a) Will the force be greatest on the car, the .truck, or the same on both? Motivate b) Which of the drivers is exposed to the greatest acceleration? Motivate

Answers

A head-on collision between a car and a truck is a type of accident that can cause a significant amount of damage and injuries. The force that is generated in this type of accident depends on the mass of the vehicles involved.

In this case, the truck has a greater mass compared to the car, which means that it will generate more force during the collision. The force will be greater on the car than the truck because the car has less mass compared to the truck.Both drivers are exposed to the same acceleration during the collision. This is because the acceleration that a driver is exposed to during a collision depends on the force generated during the collision and the mass of the driver. Since both drivers have the same mass, they will be exposed to the same acceleration during the collision.

The driver of the car will experience a greater force due to the impact of the collision, which can result in more severe injuries compared to the driver of the truck.In conclusion, during a head-on collision between a car and a truck, the force will be greater on the car compared to the truck. However, both drivers will be exposed to the same acceleration during the collision.

To know more about acceleration visit:

https://brainly.com/question/12550364

#SPJ11

A ball is thrown at 12 m/s from a 15-m tall tower. What is the speed of the ball just before it hits the ground if (a) air resistance is ignored and if (b) air resistance removes 1/4 of the total mechanical energy?

Answers

The ball will have a speed of 20.2 m/s just before it hits the ground and the ball will have a speed of 17.1 m/s just before it hits the ground.

a) If air resistance is ignored:

The ball will have a speed of 20.2 m/s just before it hits the ground.

The initial potential energy of the ball is mgh, where m is the mass of the ball, g is the acceleration due to gravity, and h is the height of the tower. The final kinetic energy of the ball is mv^2/2, where v is the speed of the ball just before it hits the ground.

When air resistance is ignored, the total mechanical energy of the ball is conserved. This means that the initial potential energy is equal to the final kinetic energy.

mgh = mv^2/2

v^2 = 2gh

v = sqrt(2gh)

v = sqrt(2 * 9.8 m/s^2 * 15 m) = 20.2 m/s

b) If air resistance removes 1/4 of the total mechanical energy:

The ball will have a speed of 17.1 m/s just before it hits the ground.

When air resistance removes 1/4 of the total mechanical energy, the final kinetic energy is 3/4 of the initial kinetic energy.

KE_f = 3/4 KE_i

mv^2_f/2 = 3/4 * mv^2_i/2

v^2_f = 3/4 v^2_i

v_f = sqrt(3/4 v^2_i)

v_f = sqrt(3/4 * 2 * 9.8 m/s^2 * 15 m) = 17.1 m/s

Learn more about speed with the given link,

https://brainly.com/question/13943409

#SPJ11

X-rays of wavelength 0.116 nm reflect off a crystal and a second-order maximum is recorded at a Bragg angle of 22.1°. What is the spacing between the scattering planes in this crystal?

Answers

To determine the spacing between the scattering planes in the crystal, we can use Bragg's Law.

Bragg's Law relates the wavelength of X-rays, the angle of incidence (Bragg angle), and the spacing between the scattering planes.

The formula for Bragg's Law is: nλ = 2d sinθ

In this case, we are dealing with second-order diffraction (n = 2), and the wavelength of the X-rays is given as 0.116 nm. The Bragg angle is 22.1°.

We need to rearrange the equation to solve for the spacing between the scattering planes (d):

d = nλ / (2sinθ)

Plugging in the values:

d = (2 * 0.116 nm) / (2 * sin(22.1°))

 ≈ 0.172 nm

Therefore, the spacing between the scattering planes in the crystal is approximately 0.172 nm.

when X-rays with a wavelength of 0.116 nm are incident on the crystal, and a second-order maximum is observed at a Bragg angle of 22.1°, the spacing between the scattering planes in the crystal is approximately 0.172 nm.

To know more about bragg's law , visit:- brainly.com/question/14617319

#SPJ11

A paperweight is made of a solid glass hemisphere of index of refraction 1.53. The radius of the circular cross section is 4.0 cm. The hemisphere is placed on its flat surface, with the center directly over a 2.5 mm long line drawn on a sheet of paper. What length of line is seen by someone looking vertically down on the hemisphere?

Answers

The length of the line seen by someone looking vertically down on the glass hemisphere is 1.73 mm.

When light travels from one medium (air) to another (glass), it undergoes refraction due to the change in the speed of light. In this case, the light from the line on the paper enters the glass hemisphere, and the glass-air interface acts as the refracting surface.Since the line is drawn on the paper and the observer is looking vertically down on the hemisphere, we can consider a right triangle formed by the line, the center of the hemisphere, and the point where the line enters the glass. The length of the line seen will be the hypotenuse of this triangle.Using the properties of refraction, we can calculate the angle of incidence (θ) at which the light enters the glass hemisphere. The sine of the angle of incidence is given by the ratio of the radius of the circular cross-section (4.0 cm) to the distance between the center of the hemisphere and the point where the line enters the glass (2.5 mm).

To learn more about hemisphere:

https://brainly.com/question/867172

#SPJ11

Timer A typical exposure from a dental X-ray is 7 mrem. A typical human head has a mass of 4 ka. How much energy is deposited in your head when you got an X-ray?

Answers

The energy deposited in your head during an X-ray is approximately 0.028 Joules.

To calculate the energy deposited in your head during an X-ray, we can use the given exposure of 7 mrem (millirem) and the mass of a typical human head, which is 4 kg.

First, let's convert the exposure from millirem to rem. Since 1 rem is equal to 0.001 J/kg, we can convert it as follows:

Exposure = 7 mrem × (1 rem / 1000 mrem) = 0.007 rem

Next, we can use the formula:

Energy = Exposure × Mass

Substituting the values into the equation:

Energy = 0.007 rem × 4 kg = 0.028 J

Therefore, approximately 0.028 Joules of energy is deposited in your head during an X-ray. This represents the amount of energy absorbed by the tissues in your head during the X-ray procedure. It's important to note that X-ray exposures are carefully controlled to minimize the risks and ensure the safety of patients.

To learn more about energy deposited, Visit:

https://brainly.com/question/31980920

#SPJ11

The beam expander is shown above. Ideally, the separation between the two lenses will be f1 + f2. Why? Describe what happens to the beam exiting the second lens when it is closer and farther than f1 + f2? Why might the ideal distance between the lenses differ from f1 + f2?

Answers

The distance between the two lenses of a beam expander should ideally be f1 + f2 where f1 is the focal length of the first lens and f2 is the focal length of the second lens. This is because the two lenses work together to expand the diameter of the beam while maintaining its parallelism.

What happens to the beam exiting the second lens when it is closer or farther than f1 + f2?When the separation between the two lenses is greater than f1 + f2, the beam exiting the second lens will diverge more. When the separation between the two lenses is less than f1 + f2, the beam exiting the second lens will converge, causing it to cross at some point.Ideal distance between the lenses can differ from f1 + f2 due to several reasons.

For instance, the quality of the lenses used can affect the beam expander's performance. Also, aberrations such as spherical and chromatic aberrations, which can cause the beam to diverge, can also influence the ideal separation between the lenses.

The distance between the two lenses of a beam expander should ideally be f1 + f2, where f1 is the focal length of the first lens and f2 is the focal length of the second lens. When the separation between the two lenses is greater than f1 + f2, the beam exiting the second lens will diverge more, while a separation less than f1 + f2 will result in the beam converging. The ideal separation between the lenses can differ from f1 + f2 due to several factors such as the quality of the lenses and the presence of aberrations.

To know more about focal length  visit:

brainly.com/question/16188698

#SPJ11

The electronic density of a metal is 4.2*1024 atoms/m3 and has a refraction index n = 1.53 + i2.3.
a)find the plasma frequency. The charge of electrons is qe = 1.6*10-19C and the mass of these e- is me=9.1*10-31kg , єo = 8.85*10-12 c2/Nm2.
b) please elaborate in detail if this imaginary metal is transparent or not
c) calculate the skin depth for a frequency ω = 2*1013 rad/s

Answers

a) The plasma frequency is approximately [tex]1.7810^{16}[/tex] rad/s.

b) The imaginary metal is not transparent.

c) The skin depth is approximately [tex]6.3410^{-8}[/tex] m.

The plasma frequency is calculated using the given electronic density, charge of electrons, electron mass, and vacuum permittivity. The plasma frequency (ωp) can be calculated using the formula ωp = √([tex]Ne^{2}[/tex] / (me * ε0)). Plugging in the given values, we have Ne = [tex]4.210^{24}[/tex] atoms/[tex]m^{3}[/tex], e = [tex]1.610^{19}[/tex] C, me = [tex]9.110^{-31}[/tex] kg, and ε0 = 8.8510-12 [tex]C^{2}[/tex]/[tex]Nm^{2}[/tex]. Evaluating the expression, the plasma frequency is approximately 1.78*[tex]10^{16}[/tex] rad/s.

The presence of a non-zero imaginary part in the refractive index indicates that the metal is not transparent. To determine if the imaginary metal is transparent or not, we consider the imaginary part of the refractive index (2.3). Since the absorption coefficient is non-zero, the metal is not transparent.

The skin depth is determined by considering the angular frequency, conductivity, and permeability of free space. The skin depth (δ) can be calculated using the formula δ = √(2 / (ωμσ)), where ω is the angular frequency, μ is the permeability of free space, and σ is the conductivity of the metal.

To learn more about frequency click here:

brainly.com/question/254161

#SPJ11

Pablo is running in a half marathon at a velocity of 2 m/s. Another runner, Jacob, is 41 meters behind Pablo with the same velocity, Jacob begins to accelerate at 0.01 m/s? (a) How long does it take Jacob to catch Pablo (in s)? s (b) What is the distance in m) covered by Jacob? m (C) What is Jacoba v ocity (in m/s)?
Previous question

Answers

It will take Jacob 4100 seconds to catch up to Pablo.Jacob will cover a distance of 41 meters. Jacob's final velocity will be 42 m/s.

To calculate the time it takes for Jacob to catch up to Pablo, we can use the formula:

Time = Distance / Relative Velocity.

The relative velocity between Jacob and Pablo is the difference between their velocities, which is 0.01 m/s since Jacob is accelerating. The distance between them is 41 meters. Therefore, the time it takes for Jacob to catch Pablo is:

Time = 41 m / 0.01 m/s = 4100 s.

To calculate the distance covered by Jacob, we can use the formula:

Distance = Velocity * Time.

Since Jacob's velocity remains constant at 0.01 m/s, the distance covered by Jacob is:

Distance = 0.01 m/s * 4100 s = 41 m.

Finally, Jacob's final velocity can be calculated by adding his initial velocity to the product of his acceleration and time:

Final Velocity = Initial Velocity + (Acceleration * Time).

Since Jacob's initial velocity is 2 m/s and his acceleration is 0.01 m/s², the final velocity is:

Final Velocity = 2 m/s + (0.01 m/s² * 4100 s) = 42 m/s.

To learn more about Acceleration click here:

brainly.com/question/2303856

#SPJ11

The wavefunction of an electron (x) = Bxe^(-(mw/2h)x²) is a solution to the simple harmonic oscillator problem, where w 2/h a. What is the energy (in eV) of this state? b. At what position (in nm) are you least likely to find the particle? c. At what distance (in nm) from the equilibrium point are you most likely to find the particle? d. Determine the value of B?

Answers

a. The energy (in eV) of this state is -13.6 eV because the wave function represents the ground state of the

hydrogen atom.

b. The position (in nm) where you are least likely to find the

particle

is 0 nm. It is because the electron has a higher probability of being found closer to the nucleus.

c. The distance (in nm) from the

equilibrium

point at which you are most likely to find the particle is at 1 nm from the equilibrium point. The probability density function has a maximum value at this distance.

d. The value of B can be found by

normalizing

the wave function. To do this, we use the normalization condition: ∫|ψ(x)|² dx = 1 where ψ(x) is the wave function and x is the position of the electron. In this case, the limits of integration are from negative infinity to positive infinity since the electron can be found anywhere in the space.

So,∫B² x²e^-(mw/2h) x² dx = 1By solving the integral, we get,B = [(mw)/(πh)]^1/4Normalizing the wave function gives a probability density function that can be used to determine the probability of finding the electron at any point in space. The wave function given in the question is a solution to the simple

harmonic

oscillator problem, and it represents the ground state of the hydrogen atom.

to know more about

hydrogen atom

pls visit-

https://brainly.com/question/30886690

#SPJ11

A golf ball is hit off a tee at the edge of a cliff. Its x and y coordinates as functions of time are given by x= 18.3t and y-3.68 -4.90², where x and y are in meters and it is in seconds. (a) Write a vector expression for the ball's position as a function of time, using the unit vectors i and j. (Give the answer in terms of t.) m r= _________ m
By taking derivatives, do the following. (Give the answers in terms of t.) (b) obtain the expression for the velocity vector as a function of time v= __________ m/s (c) obtain the expression for the acceleration vector a as a function of time m/s² a= ____________ m/s2 (d) Next use unit-vector notation to write expressions for the position, the velocity, and the acceleration of the golf ball at t = 2.79 1. m/s m/s²
r= ___________ m v= ___________ m/s
a= ____________ m/s2

Answers

a) The vector expression for the ball's position as a function of time is given as follows:

r= (18.3t) i + (3.68 - 4.9t²) j

b) The velocity vector is obtained by differentiating the position vector with respect to time. The derivative of x = 18.3t with respect to time is dx/dt = 18.3. The derivative of y = 3.68 - 4.9t² with respect to time is dy/dt = -9.8t.

Therefore, the velocity vector is given by the expression: v = (18.3 i - 9.8t j) m/s

c) The acceleration vector is obtained by differentiating the velocity vector with respect to time. The derivative of v with respect to time is dv/dt = -9.8 j.

Therefore, the acceleration vector is given by the expression: a = (-9.8 j) m/s²

d) At t = 2.79 s, we have:r = (18.3 × 2.79) i + (3.68 - 4.9 × 2.79²) j ≈ 51.07 i - 29.67 j m

v = (18.3 i - 9.8 × 2.79 j) ≈ 2.91 i - 27.38 j m/s

a = -9.8 j m/s²

Learn more about projectile motion: https://brainly.com/question/24216590

#SPJ11

Calculate the resistance of a wire which has a uniform diameter 10.74mm and a length of 70.63cm If the resistivity is known to be 0.00092 ohm m Give your answer in units of Ohms up to 3 decimals. Take it as 3.1416 Answer:

Answers

The resistance of the wire is approximately 0.007 ohms.

To calculate the resistance of the wire, we can use the formula: R = (ρ * L) / A where R is the resistance, ρ is the resistivity, L is the length of the wire, and A is the cross-sectional area of the wire. The cross-sectional area of the wire can be calculated using the formula:

A = π * r^2

where r is the radius of the wire.

Given that the diameter of the wire is 10.74 mm, we can calculate the radius as:

r = (10.74 mm) / 2 = 5.37 mm = 0.00537 m

Substituting the values into the formulas, we have:

A = π * (0.00537 m)^2 = 0.00009075 m^2

R = (0.00092 ohm m * 0.7063 m) / 0.00009075 m^2 ≈ 0.007168 ohms

Therefore, the resistance of the wire is approximately 0.007 ohms.

To learn more about, resistance, click here, https://brainly.com/question/31367014

#SPJ11

Resolve the given vector into its x-component and y-component. The given angle 0 is measured counterclockwise from the positive x-axis (in standard position). Magnitude 2.24 mN, 0 = 209.47° The x-component Ax is mN. (Round to the nearest hundredth as needed.) The y-component A, ismN. (Round to the nearest hundredth as needed.)

Answers

The x-component (Ax) is approximately -1.54 mN and the y-component (Ay) is approximately -1.97 mN.

To resolve the given vector into its x-component and y-component, we can use trigonometry. The magnitude of the vector is given as 2.24 mN, and the angle is 209.47° counterclockwise from the positive x-axis.

To find the x-component (Ax), we can use the cosine function:

Ax = magnitude * cos(angle)

Substituting the given values:

Ax = 2.24 mN * cos(209.47°)

Calculating the value:

Ax ≈ -1.54 mN

To find the y-component (Ay), we can use the sine function:

Ay = magnitude * sin(angle)

Substituting the given values:

Ay = 2.24 mN * sin(209.47°)

Calculating the value:

Ay ≈ -1.97 mN

To know more about x-component refer to-

https://brainly.com/question/29030586

#SPJ11

What is the critical angle for light going from ethanol to air? Submit Answer Incorrect. Tries 1/40 Previous Tries

Answers

The critical angle for light going from ethanol to air the critical angle for light going from ethanol to air is approximately 48.6 degrees.

To calculate the critical angle for light going from ethanol to air, we need to use Snell's law, which relates the angles of incidence and refraction for light traveling between two different media. Snell's law is given by:

n₁ * sin(θ₁) = n₂ * sin(θ₂)

Where:

n₁ is the refractive index of the initial medium (ethanol)

n₂ is the refractive index of the final medium (air)

θ₁ is the angle of incidence

θ₂ is the angle of refraction

The critical angle occurs when the angle of refraction is 90 degrees (light travels along the boundary). So we can rewrite Snell's law as:

n₁ * sin(θ_c) = n₂ * sin(90)

Since sin(90) = 1, the equation simplifies to:

n₁ * sin(θ_c) = n₂

To find the critical angle (θ_c), we need to know the refractive indices of ethanol and air. The refractive index of ethanol (n₁) is approximately 1.36, and the refractive index of air (n₂) is approximately 1.

Plugging in the values, we get:

1.36 * sin(θ_c) = 1

Now, we can solve for the critical angle:

sin(θ_c) = 1 / 1.36

θ_c = arcsin(1 / 1.36)

Using a calculator, we find:

θ_c ≈ 48.6 degrees

Therefore, the critical angle for light going from ethanol to air is approximately 48.6 degrees.

To know more about ethanol refer here:

https://brainly.com/question/29294678#

#SPJ11

In a demolition derby, a car known as 'slippery Pete' has a mass of 1520 kg is moving east with a speed of 15.79 m/s. the driver small truck named 'vindicator" has a mass of 1350 kg is driving north at 17.4 m/s. when the two cars collide their bodies stick together.
what is the common speed of the cars after the collision?
a) 11.5 m/s
b) 11.7 m/s
c) 11.1 m/s
d) 11.3 m/s

Answers

Counties fairs and international events frequently feature demolition derbies.

Thus, The traditional demolition derby event features five or more drivers compete by purposefully smashing their automobiles into one another, though restrictions vary depending on the event. The winner is the last driver whose car is still in working order. 

The United States is where demolition derbies first appeared, and other Western countries swiftly caught on. For instance, the country of Australia hosted its inaugural demolition derby in January 1963. Demolition derbies—also known as "destruction derbies"—are frequently held in the UK and other parts of Europe after a long day of banger racing.

Whiplash and other major injuries are uncommon in demolition derbies, although they do occur.

Thus, Counties fairs and international events frequently feature demolition derbies.

Learn more about Demolition, refer to the link:

https://brainly.com/question/15817190

#SPJ4

The correct option is (none of the above). The given masses of the cars involved in the collision are:

Mass of 'slippery Pete' = 1520 kg

Mass of 'vindicator' = 1350 kg

The given velocities of the cars involved in the collision are:

Velocity of 'slippery Pete' = 15.79 m/s

Velocity of 'vindicator' = 17.4 m/s

The initial momentum of the system is given by: P(initial) = m1v1 + m2v2

where m1 and v1 are the mass and velocity of car 1, and m2 and v2 are the mass and velocity of car 2. Substituting the given values, we get:

P(initial) = (1520 kg) (15.79 m/s) + (1350 kg) (17.4 m/s)P(initial) = 23969 + 23490P(initial) = 47459 kg m/s

Since the two cars stick together after the collision, they can be considered as a single body. The final momentum of the system is given by:P(final) = (m1 + m2) vf

where m1 and m2 are the masses of the two cars, and vf is the final velocity of the combined cars. Substituting the given values, we get:

P(final) = (1520 kg + 1350 kg) vfP(final) = 2870 kg vf

Since momentum is conserved in the system, we can equate P(initial) to P(final) and solve for vf. So:

P(initial) = P(final)47459 kg m/s = 2870 kg vf vf = 47459 kg m/s ÷ 2870 kg vf = 16.51 m/s

The common speed of the cars after the collision is 16.51 m/s, which when rounded off to one decimal place, is 16.5 m/s.Therefore, the correct option is (none of the above).

Learn more about collision from the given link

https://brainly.com/question/13138178

#SPJ11

A blue puck has a velocity of 0i – 3j m/s and a mass of
4 kg. A gold puck has a velocity of 12i – 5j m/s and a mass of 6
kg. What is the kinetic energy of the system?
a. 90 J
b. 489 J
c. 525 J
d.

Answers

Kinetic energy (KE) is the energy of motion, which is the energy that an object has when it is in motion.

Thus, the answer is d.

When an object is in motion, it can do work by moving other objects, and kinetic energy is the energy that is needed to do this work. KE is given by KE= 1/2mv^2, where m is the mass of the object and v is the velocity of the object. The kinetic energy of the system is given by the sum of the kinetic energy of both the blue puck and the gold puck.

The kinetic energy of the blue puck is given by: KE_blue = (1/2) × 4 kg × (0i - 3j m/s)²= (1/2) × 4 kg × 9 m²/s²= 18 J The kinetic energy of the gold puck is given by: KE_gold = (1/2) × 6 kg × (12i - 5j m/s)²= (1/2) × 6 kg × (144 + 25) m²/s²= 870 J Therefore, the kinetic energy of the system is given by:KE_system = KE_blue + KE_gold= 18 J + 870 J= 888 J.

To know more about energy of motion visit:-

https://brainly.com/question/22252564

#SPJ11

The diameter of an oxygen (02) molecule is approximately 0.300 nm.
For an oxygen molecule in air at atmospheric pressure and 18.3°C, estimate the total distance traveled during a 1.00-s time interval.

Answers

The actual distance traveled by the molecule in a straight line will be much smaller than 484 meters.

The mean free path of a gas molecule is the average distance it travels between collisions with other molecules. At atmospheric pressure and 18.3°C, the mean free path of an oxygen molecule is approximately 6.7 nm.

During a 1.00-s time interval, an oxygen molecule will travel a distance equal to the product of its speed and the time interval. The speed of an oxygen molecule at atmospheric pressure and 18.3°C can be estimated using the root-mean-square speed equation:

[tex]v_{rms}[/tex] = √(3kT/m)

where k is Boltzmann's constant, T is the temperature in Kelvin, and m is the mass of the molecule.

For an oxygen molecule, [tex]k = 1.38 * 10^{-23}[/tex] J/K, T = 291.45 K (18.3°C + 273.15), and [tex]m = 5.31 * 10^{-26}[/tex] kg.

Plugging in the values, we get:

[tex]v_{rms} = \sqrt {(3 * 1.38 * 10^{-23} J/K * 291.45 K / 5.31 * 10^{-26} kg)} = 484 m/s[/tex]

Therefore, during a 1.00-s time interval, an oxygen molecule will travel approximately:

distance = speed * time = 484 m/s * 1.00 s ≈ 484 meters

However, we need to take into account that the oxygen molecule will collide with other molecules in the air, and its direction will change randomly after each collision. The actual distance traveled by the molecule in a straight line will be much smaller than 484 meters, and will depend on the number of collisions it experiences during the time interval. Therefore, the estimate of the total distance traveled by an oxygen molecule in air during a 1.00-s time interval should be considered a very rough approximation.

Learn more about "Distance travelled by the molecule" : https://brainly.com/question/29409777

#SPJ11

A rod made of insulating material has a length L=7.3 cm, and it carries a chatge of Q=−230 n C that is not distributed uniormly in the fod. Twice as much charge is on one side of the rod as is on the other. Calculate the strength of the rod's electric field at a point 4 m away from the rod's center along an axis perpendicular to the rod. 32 V/m 108Vim 70 Vim 121 Vim 54Vim 130 Vim 100 Vim B. V/M

Answers

The strength of the electric field at a point 4 m away from the center of the rod, along an axis perpendicular to the rod, is 54 V/m.

To calculate the electric field strength, we can divide the rod into two segments and treat each segment as a point charge. Let's assume the charge on one side of the rod is q, so the charge on the other side is 2q. We are given that the total charge on the rod is Q = -230 nC.

Since the charges are not uniformly distributed, we need to find the position of the center of charge (x_c) along the length of the rod. The center of charge is given by:

x_c = (Lq + (L/2)(2q)) / (q + 2q)

Simplifying the expression, we get:

x_c = (7.3q + 3.652q) / (3q)

x_c = (7.3 + 7.3) / 3

x_c = 4.87 cm

Now we can calculate the electric field strength at the point 4 m away from the center of the rod. Since the rod is made of an insulating material, the electric field outside the rod can be calculated using Coulomb's law:

E = k * (q / r^2)

where k is the electrostatic constant (k = 9 x 10^9 Nm^2/C^2), q is the charge, and r is the distance from the center of charge to the point where we want to calculate the electric field.

Converting the distance to meters:

r = 4 m

Plugging in the values into the formula:

E = (9 x 10^9 Nm^2/C^2) * (2q) / (4^2)

E = (9 x 10^9 Nm^2/C^2) * (2q) / 16

E = (9 x 10^9 Nm^2/C^2) * (2q) / 16

E = 0.1125 * (2q) N/C

Since the total charge on the rod is Q = -230 nC, we have:

-230 nC = q + 2q

-230 nC = 3q

Solving for q:

q = -230 nC / 3

q = -76.67 nC

Plugging this value back into the electric field equation:

E = 0.1125 * (2 * (-76.67 nC)) N/C

E = -0.1125 * 153.34 nC / C

E = -17.23 N/C

The electric field is a vector quantity, so its magnitude is always positive. Taking the absolute value:

|E| = 17.23 N/C

Converting this value to volts per meter (V/m):

1 V/m = 1 N/C

|E| = 17.23 V/m

Therefore, the strength of the rod's electric field at a point 4 m away from the rod's center along an axis perpendicular to the rod is approximately 17.23 V/m.

To learn more about electric field  click here:

brainly.com/question/30544719

#SPJ11

At one instant, 7 = (-3.61 î+ 3.909 - 5.97 ) mis is the velocity of a proton in a uniform magnetic field B = (1.801-3.631 +7.90 Â) mT. At that instant what are the (a) x.(b) y, and (c) 2 components of the magnetic force on the proton? What are (d) the angle between Vand F and (e)the angle between 7 and B?

Answers

At one instant, 7 = (-3.61 î+ 3.909 - 5.97 ) m is the velocity of a proton in a uniform magnetic field B = (1.801-3.631 +7.90 Â) mT then, (a) x-component of magnetic force on proton is 5.695 x 10⁻¹⁷N ; (b) y-component of magnetic force on proton is -1.498 x 10⁻¹⁷N ; (c) z-component of magnetic force on proton is -1.936 x 10⁻¹⁷N ; (d) angle between v and F is 123.48° (approx) and (e) angle between v and B is 94.53° (approx).

Given :

Velocity of the proton, v = -3.61i+3.909j-5.97k m/s

The magnetic field, B = 1.801i-3.631j+7.90k mT

Conversion of magnetic field from mT to Tesla = 1 mT = 10⁻³ T

=> B = 1.801i x 10⁻³ -3.631j x 10⁻³ + 7.90k x 10⁻³ T

= 1.801 x 10⁻³i - 3.631 x 10⁻³j + 7.90 x 10⁻³k T

We know that magnetic force experienced by a moving charge particle q is given by, F = q(v x B)

where, v = velocity of charge particle

q = charge of particle

B = magnetic field

In Cartesian vector form, F = q[(vyBz - vzBy)i + (vzBx - vxBz)j + (vxBy - vyBx)k]

Part (a) To find x-component of magnetic force on proton,

Fx = q(vyBz - vzBy)

Fx = 1.6 x 10⁻¹⁹C x [(3.909 x 10⁻³) x (7.90 x 10⁻³) - (-5.97 x 10⁻³) x (-3.631 x 10⁻³)]

Fx = 5.695 x 10⁻¹⁷N

Part (b)To find y-component of magnetic force on proton,

Fy = q(vzBx - vxBz)

Fy = 1.6 x 10⁻¹⁹C x [(-3.61 x 10⁻³) x (7.90 x 10⁻³) - (-5.97 x 10⁻³) x (1.801 x 10⁻³)]

Fy = -1.498 x 10⁻¹⁷N

Part (c) To find z-component of magnetic force on proton,

Fz = q(vxBy - vyBx)

Fz = 1.6 x 10⁻¹⁹C x [(-3.61 x 10⁻³) x (-3.631 x 10⁻³) - (3.909 x 10⁻³) x (1.801 x 10⁻³)]

Fz = -1.936 x 10⁻¹⁷N

Part (d) Angle between v and F can be calculated as, cos θ = (v . F) / (|v| x |F|)θ

= cos⁻¹ [(v . F) / (|v| x |F|)]θ

= cos⁻¹ [(3.909 x 5.695 - 5.97 x 1.498 - 3.61 x (-1.936)) / √(3.909² + 5.97² + (-3.61)²) x √(5.695² + (-1.498)² + (-1.936)²)]θ

= 123.48° (approx)

Part (e) Angle between v and B can be calculated as, cos θ = (v . B) / (|v| x |B|)θ

= cos⁻¹ [(v . B) / (|v| x |B|)]θ

= cos⁻¹ [(-3.61 x 1.801 + 3.909 x (-3.631) - 5.97 x 7.90) / √(3.61² + 3.909² + 5.97²) x √(1.801² + 3.631² + 7.90²)]θ

= 94.53° (approx)

Therefore, the corect answers are : (a) 5.695 x 10⁻¹⁷N

(b) -1.498 x 10⁻¹⁷N

(c) -1.936 x 10⁻¹⁷N

(d) 123.48° (approx)

(e) 94.53° (approx).

To learn more about magnetic field :

https://brainly.com/question/14411049

#SPJ11

12. (1 p) Consider two different media, one water and the other unknown. With them, the critical angle is determined to be 550 What is the refractive index of this unknown medium?

Answers

The refractive index of an unknown medium, using the critical angle of 550, is 1.53.

This can be determined using Snell's law which states that the ratio of the sine of the angle of incidence to the sine of the angle of refraction is equal to the refractive index of the medium. The critical angle is the angle of incidence that results in an angle of refraction of 90°. When the angle of incidence is greater than the critical angle, the light undergoes total internal reflection, meaning that it does not leave the medium but is reflected back into it.

In this question, we are given two different media, water and an unknown medium. We are also given the critical angle for these media, which is 55°.

Using Snell's law, we can write: n1 sin θ1 = n2 sin θ2

where n1 is the refractive index of water, θ1 is the angle of incidence in water, n2 is the refractive index of the unknown medium, and θ2 is the angle of refraction in the unknown medium.

At the critical angle, θ2 = 90°.

Therefore, we can write:

n1 sin θ1 = n2 sin 90°n1 sin θ1 = n2

We know that the refractive index of water is approximately 1.33.

Substituting this value into the equation above, we get:

1.33 sin 55° = n2sin 55°

= n2/1.33

n2 = sin 55° × 1.33

n2 = 1.53

Therefore, the refractive index of the unknown medium is approximately 1.53.

To learn more about refractive visit;

https://brainly.com/question/14760207

#SPJ11

Question 6 of 7 The femur bone in a human leg has a minimum effective cross section of 2.75 cm² and an ultimate strength of 1.70 x 10² N How much compressive force Fax can the femur withstand before breaking?

Answers

The femur bone in a human leg can withstand a compressive force of Fax before breaking.

To determine this, we need to use the given information about the minimum effective cross-section and ultimate strength of the femur. The minimum effective cross-section is 2.75 cm², and the ultimate strength is 1.70 x 10² N.

To calculate the compressive force Fax, we can use the formula:

Fax = Ultimate Strength × Minimum Effective Cross-Section

Substituting the given values:

Fax = (1.70 x 10² N) × (2.75 cm²)

To perform the calculation, we need to convert the area from cm² to m²:

Fax = (1.70 x 10² N) × (2.75 x 10⁻⁴ m²)

Simplifying the expression:

Fax ≈ 4.68 x 10⁻² N

Therefore, the femur bone can withstand a compressive force of approximately 0.0468 N before breaking.

To know more about femur bone, visit:

https://brainly.com/question/31720235

#SPJ11

8. b) Find the total excess charge on the outer surface in
uc.
9. Find the magnitude of the electric field at r = 9.5cm in
N/C
10. Find the magnitude the electric field at r = 15cm in 10^6
N/C

Answers

Given data,Inner radius (r1) = 5cmOuter radius (r2) = 9cmPotential difference between the cylinders = 1200VPermittivity of free space 8.854 × 10−12 C²/N·m²a).

Find the electric field between the cylinders The electric field between the cylinders can be calculated as follows,E = ΔV/d Where ΔV Potential difference between the cylinders = 1200Vd , Distance between the cylinders Find the total excess charge.

The capacitance of the capacitor can be calculated using the formula,C = (2πε0L)/(l n(r2/r1))Where L = Length of the cylinders The total excess charge on the outer surface can be calculated using the formula.cylinder between the cylinders the electric field.

To know more about difference visit:

https://brainly.com/question/30241588

#SPJ11

A stationary charge a generates an electric field. Find the incorrect statement a) The magnitude of E measures the change in potential per unit length b) The magnitude of E is directly proportional to the charge.
c) The magnitude of E measures the electric force per unit of charge. d) The magnitude of E is directly proportional to the distance of separation

Answers

The incorrect statement is d) The magnitude of E is directly proportional to the distance of separation.

The correct statement is that the magnitude of the electric field (E) is inversely proportional to the distance of separation. In other words, as the distance between the charge generating the electric field and a point in space increases, the magnitude of the electric field decreases.

Learn more about electric field:

https://brainly.com/question/19878202

#SPJ11

A 60.5-kg man lies on his back on a bed of nails, with 1,206 of the nails in contact with his body. The end of each nail has area 1.10 ✕ 10−6 m2. What average pressure is exerted by each nail on the man's body?
Pa

Answers

Each nail exerts an average pressure of approximately 5.02 × 10^6 Pascal (Pa) on the man's body.

To determine the average pressure exerted by each nail on the man's body, we can use the formula:Pressure = Force / Area. The force exerted by each nail can be calculated by multiplying the weight of the man by the number of nails in contact with his body. The weight can be calculated as:Weight = mass * gravitational acceleration.where the mass of the man is given as 60.5 kg and the gravitational acceleration is approximately 9.8 m/s².Weight = 60.5 kg * 9.8 m/s².Next, we divide the weight by the number of nails in contact to find the force exerted by each nail:Force = Weight / Number of nails

Force = (60.5 kg * 9.8 m/s²) / 1206 nails
Now, we can calculate the average pressure exerted by each nail bydividing the force by the area of each nail:Pressure = Force / Area

Pressure = [(60.5 kg * 9.8 m/s²) / 1206 nails] / (1.10 × 10^(-6) m²)

Simplifying the expression gives us the average pressure:

Pressure ≈ 5.02 × 10^6 Pa
Therefore, each nail exerts an average pressure of approximately 5.02 × 10^6 Pascal (Pa) on the man's body.

To learn more about pressure:

https://brainly.com/question/29341536

#SPJ11

If the distance between two charged objects is doubled, will the electrostatic force that one object exerts on the other be cut in half?
A. No, it will be twice as big
B. No, it will be 4 times bigger
C No, it will be 4 times smaller
D. Yes, because force depends on distance

Answers

If the distance between two charged objects is doubled, the electrostatic force that one object exerts on the other will be cut in half. The correct option is D. Yes, because the force depends on distance.

What is the Electrostatic force?

The force between charged particles is referred to as the electrostatic force. The electrostatic force is the amount of force that one charged particle exerts on another charged particle. The charged particles' magnitudes and the distance between them determine the electrostatic force.

Therefore, the strength of the electrostatic force decreases as the distance between the charged objects increases. When the distance between two charged objects is doubled, the electrostatic force that one object exerts on the other is cut in half. When the distance between two charged objects is reduced to one-half, the electrostatic force between them quadruples.

To summarize, when the distance between two charged objects is doubled, the electrostatic force that one object exerts on the other will be cut in half, as the force is inversely proportional to the square of the distance between the charged particles. The correct option is D. Yes, because the force depends on distance.

Learn more About  electrostatic force from the given link

https://brainly.com/question/20797960

#SPJ11

A mass attached to the end of a spring is oscillating with a period of 2.25s on a horontal Inctionless surface. The mass was released from restat from the position 0.0460 m (a) Determine the location of the mass att - 5.515 m (b) Determine if the mass is moving in the positive or negative x direction at t-5515. O positive x direction O negative x direction

Answers

a) The location of the mass at -5.515 m is not provided.

(b) The direction of motion at t = -5.515 s cannot be determined without additional information.

a)The location of the mass at -5.515 m is not provided in the given information. Therefore, it is not possible to determine the position of the mass at that specific point.

(b) To determine the direction of motion at t = -5.515 s, we need additional information. The given data only includes the period of oscillation and the initial position of the mass. However, information about the velocity or the phase of the oscillation is required to determine the direction of motion at a specific time.

In an oscillatory motion, the mass attached to a spring moves back and forth around its equilibrium position. The direction of motion depends on the phase of the oscillation at a particular time. Without knowing the phase or velocity of the mass at t = -5.515 s, we cannot determine whether it is moving in the positive or negative x direction.

To accurately determine the direction of motion at a specific time, additional information such as the amplitude, phase, or initial velocity would be needed.

To learn more about mass click here

brainly.com/question/86444
#SPJ11

A baseball player is running with a speed of 7 m/s towards home base. The player slides the final 5 meters and comes to a stop, directly over the plate. What is the approximate coefficient of friction

Answers

The approximate coefficient of friction is approximately -0.25.

The force of kinetic friction can be calculated using the equation [tex]F_{friction} = \mu_k N[/tex], where [tex]F_{friction}[/tex] is the force of kinetic friction, [tex]\mu_k[/tex] is the coefficient of kinetic friction, and N is the normal force.

In this scenario, the player comes to a stop, indicating that the force of kinetic friction is equal in magnitude and opposite in direction to the force exerted by the player.

We know that the player's initial velocity is 7 m/s and the distance covered while sliding is 5 meters.

To calculate the deceleration (negative acceleration) experienced by the player, we can use the equation [tex]v^2 = u^2 + 2as[/tex]

where v is the final velocity (0 m/s), u is the initial velocity (7 m/s), a is the acceleration, and s is the displacement (5 meters).

Rearranging the equation, we have [tex]a=\frac{v^{2}-u^{2} }{2s}[/tex].

Plugging in the given values, we get [tex]a=\frac{0-(7^2)}{2\times 5} =-2.45 m/s^2[/tex].

Since the force of friction opposes the player's motion, we can assume it has the same magnitude as the force that brought the player to a stop. This force is given by the equation

[tex]F_{friction} = ma[/tex], where m is the mass of the player.

The normal force acting on the player is equal to the player's weight, N = mg, where g is the acceleration due to gravity.

Now, we can substitute the values into the equation [tex]F_{friction} = \mu_kN[/tex]and solve for the coefficient of kinetic friction:

[tex]ma = \mu_k mg[/tex].

The mass of the player cancels out, leaving us with [tex]a = \mu_k g[/tex].

Substituting the calculated acceleration and the acceleration due to gravity, we have [tex]-2.45 m/s^2 = \mu_k 9.8 m/s^2[/tex].

Solving for [tex]\mu_k[/tex], we find [tex]\mu_k = \frac{(-2.45)}{(9.8)} \approx -0.25[/tex].

Thus, the approximate coefficient of friction is approximately -0.25.

Learn more about friction here: brainly.com/question/24338873

#SPJ11

What is the magnitude of the potential difference between two points that are \( 1.46 \mathrm{~cm} \) and \( 2.628 \mathrm{~cm} \) from a proton?

Answers

The magnitude of the potential difference between the two points is approximately 0.778 volts (or 0.778 V).

To determine the potential difference between two points, we use the equation:

ΔV = V2 - V1

where ΔV is the potential difference, V2 is the potential at the second point, and V1 is the potential at the first point.

Let's calculate the potential at each of the given points using the equation:

V1 = (9 × 10⁹ N·m²/C²) × (1.6 × 10⁻¹⁹ C / 0.0146 m)

V2 = (9 × 10⁹ N·m²/C²) × (1.6 × 10⁻¹⁹ C / 0.02628 m)

Now, let's substitute the values and calculate:

V1 ≈ 0.824 V

V2 ≈ 0.046 V

Finally, we can calculate the potential difference:

ΔV = V2 - V1 ≈ 0.046 V - 0.824 V ≈ -0.778 V

The negative sign indicates that the potential at the second point is lower than the potential at the first point. However, when we consider the magnitude of the potential difference, we ignore the negative sign.

Therefore, the magnitude of the potential difference between the two points is approximately 0.778 volts (or 0.778 V).

Learn more about magnitude at: https://brainly.com/question/30337362

#SPJ11

Question 2 (MCQ QUESTION: answer in ULWAZI) Consider the normalised eigenstates for a particle in a 1 dimensional box as shown: Eigenstates v The probability of finding a particle in any of the three energy states is: Possible answers (order may change in ULWAZI Greatest on the left of the box Greatest on the right of the box Greatest in the centre of the box The same everywhere inside the box Zero nowhere in the box [3 Marks] [3].

Answers

The probability of finding a particle in any of the three energy states is the same everywhere inside the box.

The probability of finding a particle in any of the three energy states is the same everywhere inside the box. Consider the normalised eigenstates for a particle in a 1-dimensional box as shown: Eigenstates. The normalised eigenstates for a particle in a 1-dimensional box are as follows:Here, A is the normalization constant.\

To find the probability of finding a particle in any of the three energy states, we need to find the probability density function (PDF), ψ²(x).Probability density function (PDF), ψ²(x) is given as follows:Here, ψ(x) is the wave function, which is the normalised eigenstate for a particle in a 1-dimensional box.

To know more about probability:

https://brainly.com/question/31828911


#SPJ11

Find the magnitude of the electric field where the vertical
distance measured from the filament length is 34 cm when there is a
long straight filament with a charge of -62 μC/m per unit
length.
E=___

Answers

The magnitude of the electric field where the vertical distance measured from the filament length is 34 cm when there is a long straight filament with a charge of -62 μC/m per unit length is 2.22x10^5 N/C. Therefore, E= 2.22 x 10^5 N/C. A charged particle placed in an electric field experiences an electric force.

The magnitude of the electric field where the vertical distance measured from the filament length is 34 cm when there is a long straight filament with a charge of -62 μC/m per unit length is 2.22x10^5 N/C. Therefore, E= 2.22 x 10^5 N/C. A charged particle placed in an electric field experiences an electric force. The magnitude of the electric field is defined as the force per unit charge that acts on a positive test charge placed in that field. The electric field is represented by E.

The electric field is a vector quantity, and the direction of the electric field is the direction of the electric force acting on the test charge. The electric field is a function of distance from the charged object and the amount of charge present on the object. The electric field can be represented using field lines. The electric field lines start from the positive charge and end at the negative charge. The electric field due to a long straight filament with a charge of -62 μC/m per unit length is given by, E = (kλ)/r

where, k is Coulomb's constant = 9 x 109 N m2/C2λ is the charge per unit length

r is the distance from the filament

E = (9 x 109 N m2/C2) (-62 x 10-6 C/m) / 0.34 m = 2.22 x 105 N/C

To know more about electric field visit:

https://brainly.com/question/30544719

#SPJ11

A piece of gold wire has a resistivity of 4.14x108 oom. If the wire has a length of 6.57 m and a radius of 0.080 m, what is the total resistance for this plece of wire

Answers

The total resistance of a gold wire can be calculated using its resistivity, length, and radius. In this case, with a resistivity of 4.14x10^8 Ωm, a length of 6.57 m, and a radius of 0.080 m, we can determine the total resistance.

The resistance of a wire can be calculated using the formula R = (ρ * L) / A, where R is the resistance, ρ is the resistivity, L is the length of the wire, and A is the cross-sectional area of the wire. To find the cross-sectional area, we can use the formula A = π * r^2, where r is the radius of the wire.

Plugging in the given values, we have A = π * (0.080 m)^2 = 0.0201 m^2. Now, we can calculate the resistance using the formula R = (4.14x10^8 Ωm * 6.57 m) / 0.0201 m^2.

Simplifying this expression, we get R ≈ 1.34 Ω. Therefore, the total resistance for the given gold wire is approximately 1.34 ohms.

Note: It's worth mentioning that the resistivity value provided (4.14x10^8 Ωm) seems unusually high for gold. The resistivity of gold is typically around 2.44x10^-8 Ωm. However, if we assume the given value is correct, the calculation would proceed as described above.

Learn more about resistivity here:

https://brainly.com/question/29427458

#SPJ11

Other Questions
characterization of the cytokine storm reflects hyperinflammatory endothelial dysfunction in covid-19. Exercise 1 Write who or whom in the blank to make each sentence correct.This Roosevelt, ________________ was Eleanors uncle, was Theodore. What is implicit bias? (2.5 points) Describe the setup and logic of the most common test of implicit bias,the Implicit Association Test (2.5 points). We discussed several ways of reducing (implicit) bias-pick one and explain what it is and why it reduces bias .If you were to design an experiment to test whether this is an effective bias-reduction strategy, what would you do? Who will be your participants, and why? What will happen in the experimental condition , and what will happen in the control condition ? What will you measure , and what do you predict ?this is really important to me. Please answer it seriously What were womens experiences during the period of American expansion westwards and overseas in the late nineteenth and early twentieth centuries?how did women participated in/experienced the activities of the United States at this time? Research Question: Is there a significant negative between time spent playing video games and stress?Hypothesis: There will be a significant ,negative relationship between time spent playing video games and stress.Question:1.When drawing a statistical conclusion, what would a potential Type I and/or Type II error?2.Why is it important for researchers to understand these errors? You are working in a hotel and you are appointed to organise a wedding party at the hotel for a foreign couple who will stay in Cyprus for their honeymoon after the wedding.Prepare in point form the plan for their wedding party describing the major issues of concern, assuming that you have the budget to use also outside suppliers so that you can organise better the event and offer better quality services.You may refer to requirements on internal staff, technological equipment, entertainment, lighting, transportation/parking, health and safety issues, set up and layout of facilities (not necessarily needed to provide drawings). by giving if possible specific examples applicable to the wedding party. Consider Ethical Egoism in metaethical terms (as an instance of Moral Realism or Moral Anti-realism).Which side do you think it should be categorized as? Explain your reasoning.What is the difference between a descriptive theory and a normative one?Consider the responses you gave to the Week 1: Moral Machine activity. Looking back, would you say that you were thinking like a "consequentialist" as you responded? And did you encounter any of the "difficulties" identified by Shafer-Landau related to consequentalist thinking?Explain your answer.What is Shafer-Landau's criticism of Ayn Rand's argument for ethical egoism? please help ASAPUsing our core concept of homeostasis, explain how the kidneys are involved in controlling fluid osmolarity. Answer the question with a cross in the box you think is correct. If you change your mind about an answer, put a line through the box and then mark your new answer with a cross When a guitar string is plucked, a sound of constant frequency is heard. The wave produced on the vibrating guitar string is A.longitudinal and progressive. B.longitudinal and stationary C.transverse and progressive. D.transverse and stationary As you have become well-acquainted with the role tone plays in effective communication, through the reading and our discussion, I would like you to share an experience you have had when an inappropriate tone was a barrier to effective communication. Please keep your responses to between 250-300 words. The height above the ground of a child on a swing varies from 50 cm at the lowest point to 200 cm at the highest point. a. Draw the simple, clear and neat figure using drawing instruments. b. Establish the equation of the energy conservation of the system. c. Determine the maximum velocity of the child in cm/s? Mrs. Smith is being bathed and will return to bed after her bath.What type of bed should you make? A rock band playing an outdoor concert produces sound at 80 dB, 45 m away from their single working loudspeaker. What is the power of this speaker? 1.5 W 2.5 W 15 W 25 W 150 W 250 W none of the above a) Given d8 day +3 dn Find the values of ai 6) Using values of value problem dy a dn e-nz homogenous linear constant + d dy +9, dy +9y = 0 dn Ina where a; In (9) below. is the fundamental fcs, Scanned with tamsoje 2 y coeffrerents i=03. solve the initra/ + do day to dy + day = > cite-x) dn dn 9" (0)=2 This table shows Waynes weight on four different planets.Planet Waynes weight(pounds)Mars 53Neptune 159Venus 128Jupiter 333Arrange the planets in decreasing order of their strength of gravity. Which of the following statements is NOT CORRECT or INCORRECT about hypogammaglobulinemia a. "Bronchiectasis is common in patients with this condition." b. "Decreased levels of immunoglobulin M (IgM) are the strongest indicator of the disease." c. "The diagnosis is usually made when a child is 1 year old." d. "Decreased immunoglobulin G (IgG) levels are observed in patients with the disorder." A consumer has an income of 400 euros (I = 400 euros), which he spends exclusively on the purchase of goods X and Y. When he spends all his income on the purchase of good X, that consumer can acquire 100 units of it, whereas when he spends all his income on the purchase of good Y, he can obtain 200 units of it. If the marginal rate of substitution of good Y for good X is MUX/MUY= Y/X, how many units of X and how many of Y must this consumer consume to be in equilibrium? (1 unit) Weighing patients with a faulty scale will result in patient data that is low in "validity". a.True b.False A cylinder with a movable piston contains 6 kg of air with initial temperature of 25 C. The atmospheric pressure is 1 atm. This cylinder is then allowed to heat up and the temperature of the air is raised to 500 C. The piston is free to move during the heating process. (a) What type of process below is used to describe the above process? (i) Isothermal process (ii) Isobaric process (iii) Isochoric process (b) What is the initial volume (before heating) and final volume of the air (after heating)? (c) Calculate the heat energy required to increase the air temperature from 25 C to 500 C. Given that the C vis 0.718 kJ/kgk and the specific heat ratio =1.4. (d) Calculate the work done by the system. (e) Assume no heat loss to the surrounding, what is the change of specific internal energy of the air? (f) Alternative to (e) above. In reality, the actual change in internal energy of air is 1,200 kJ only. This give evidence to prove the concept of which law of thermodynamic is correct? SociologyThe Protestant Work Ethic in the Information Age:Weber believed that differences in capitalism could be attributed to the emphasis on community in Catholicism versus the emphasis on individual achievement in Protestantism. Would that statement accurately apply today? Why or why not?