true or false: part a anions are larger than their corresponding neutral atoms.

Answers

Answer 1
True: anions are larger than neutral atoms

hope this helps <3
Answer 2

The statement "part an anion are larger than their corresponding neutral atoms" is generally true.

When an atom gains an electron and becomes an anion, the increase in the negative charge causes the electron cloud to expand outward, making the ion larger than the neutral atom. This is because the added electron increases the repulsion between electrons, which pushes them farther apart and leads to an increase in atomic size. However, it's important to note that this may not always be the case.

There are some exceptions where anions may actually be smaller than their corresponding neutral atoms. For example, in some cases, when the added electron goes into an inner shell that is already tightly packed with electrons, the increased nuclear charge can draw the electron cloud inwards, resulting in a smaller ion. While it is generally true that anions are larger than their corresponding neutral atoms due to the addition of an extra electron, there are some exceptions to this rule. Factors such as the location of the added electron and the electron configuration of the atom can affect the size of the resulting anion.

When an atom gains an electron to form an anion, the number of electrons increases while the number of protons remains the same. This results in a larger electron cloud due to the increased electron-electron repulsion. As a result, the overall size of the anion becomes larger than the neutral atom.

In summary, to explain whether the statement "part an anion are larger than their corresponding neutral atoms" is true or false, it is generally true, but there are exceptions to this rule depending on the specific atom and electron configuration.

Learn more about neutral atoms

https://brainly.com/question/5308494

#SPJ11


Related Questions

What is happening in the first step of the mechanism of the reaction between Oxone, NaCl and borneol? a. Oxidation of chloride b. Oxidation of Oxone c. Oxidation of bisulfite d. none of the above

Answers

In the first step of the reaction mechanism between Oxone (potassium peroxymonosulfate), NaCl (sodium chloride), and borneol, the answer is Oxidation of chloride.

So, the correct answer is A..

During this step, Oxone acts as the oxidizing agent and reacts with NaCl, leading to the generation of a reactive chlorine species.

This active chlorine species then reacts with borneol, facilitating the conversion of borneol to its corresponding camphor product.

Overall, the oxidation of chloride is a crucial step in initiating the reaction and driving the transformation of borneol.

Hence the answer of the question is C.

Learn more about oxidation at

https://brainly.com/question/31232503

#SPJ11

Why do chlorine atoms like to form -1 charged anions?
a.because chlorine has a very large atomic radius
b.because chlorine’s electron configuration is one electron short of a filled principal quantum number shell.
c.because chlorine is a relatively heavy atom
d.because chlorine has a very high ionization potential
e.because chlorine is a metallic substance

Answers

Option b is the correct answer. The other options are not related to the formation of anions by chlorine.

The reason why chlorine atoms like to form -1 charged anions is because of its electron configuration. Chlorine has one electron short of a filled principal quantum number shell, which means it can gain an electron to achieve a stable octet configuration.

                                      This process results in the formation of a negatively charged ion, or an anion, with a charge of -1. The reason why chlorine atoms like to form -1 charged anions is because chlorine's electron configuration is one electron short of a filled principal quantum number shell (option b).

                             When a chlorine atom gains one electron, it achieves a stable electron configuration similar to that of a noble gas, which is energetically favorable. This process results in the formation of a negatively charged anion, Cl-.

Therefore, option b is the correct answer. The other options are not related to the formation of anions by chlorine.

Learn more about electron configuration

brainly.com/question/31812229

#SPJ11

fill in the blank. a piece of pie rated at 400 calories is equivalent to _________ calories of thermal energy or __________ joules of mechanical energy.

Answers

A piece of pie rated at 400 calories is equivalent to 1674.4 calories of thermal energy or 7009.6 joules of mechanical energy.

The calorie is a unit of energy commonly used to measure the energy content of food. One calorie is defined as the amount of energy needed to raise the temperature of one gram of water by one degree Celsius. However, in physics, the unit for energy is the joule. One calorie is equal to 4.184 joules.

When we consume food, the body metabolizes it to release energy in the form of ATP, which is used by the body for various physiological processes. The amount of energy released by the food is equivalent to the amount of calories it contains.

In physics, energy can take many forms, including thermal energy and mechanical energy. Thermal energy refers to the energy associated with the temperature of an object, while mechanical energy refers to the energy associated with the motion or position of an object.

To convert the 400 calories of energy in the pie to thermal energy, we simply multiply it by the conversion factor of 4.184. This gives us 1674.4 calories of thermal energy.

To convert the 400 calories of energy in the pie to mechanical energy, we need to consider the efficiency of the body in converting food energy to mechanical energy. The human body is not very efficient in this regard, with only about 20-25% of the energy in food being converted to mechanical energy.

Therefore, to convert the 400 calories of energy in the pie to mechanical energy, we need to multiply it by the efficiency factor of 0.25. This gives us 100 calories of mechanical energy, which is equivalent to 7009.6 joules.

In summary, the 400 calories of energy in a piece of pie can be converted to 1674.4 calories of thermal energy or 7009.6 joules of mechanical energy. This demonstrates the importance of understanding the unit of energy being used in a particular context, and the conversion factors required to convert between different units of energy.

To learn more about calories refer here:

https://brainly.com/question/22374134

#SPJ11

The compound Ni(NO2)2 is an ionic compound. What are the ions of which it is composed? Cation formula Anion formula

Answers

The compound Ni(NO2)2 is composed of two different ions, a cation and an anion.

The cation in this compound is nickel (Ni) and the anion is nitrite (NO2). The nickel cation has a charge of +2, which is balanced by the two nitrite anions, each with a charge of -1. The overall charge of the compound must be neutral, so the two charges of the nitrite anions cancel out the charge of the nickel cation. Therefore, the cation formula for Ni(NO2)2 is Ni2+ and the anion formula is NO2-. The nitrite anion is a polyatomic ion consisting of one nitrogen atom and two oxygen atoms.

It is important to note that although Ni(NO2)2 is considered an ionic compound, the nitrite anion is a covalent compound due to the sharing of electrons between the nitrogen and oxygen atoms. However, when combined with the positively charged nickel cation, it forms an ionic compound.

To know more about  anion visit

https://brainly.com/question/29753623

#SPJ11

calculate the simplest or empirical formula of a substance with 0.62400 grams of chromium (cr) and 1.42128 grams of selenium (se)(2 points) (2 points) use cr = 52.00 g/mole and se = 78.96 g/mole

Answers

The empirical formula of the substance with 0.62400 grams of chromium and 1.42128 grams of selenium is Cr2Se3.

To calculate the empirical formula, we need to determine the mole ratio of the elements in the substance. To do this, we first convert the given masses of chromium and selenium to moles using their respective molar masses.
Moles of chromium = 0.62400 g / 52.00 g/mole = 0.012 mols
Moles of selenium = 1.42128 g / 78.96 g/mole = 0.018 mols
Next, we divide the mole quantities by the smallest of the two values. In this case, chromium has the smallest value of 0.012 moles. So, we divide both values by 0.012.
Moles of chromium (Cr) = 0.012 / 0.012 = 1
Moles of selenium (Se) = 0.018 / 0.012 = 1.5
Now we have the mole ratio of the elements, and we need to convert them to whole numbers by multiplying by a common factor. In this case, the common factor is 2.
Moles of Cr = 1 x 2 = 2
Moles of Se = 1.5 x 2 = 3
Finally, we write the empirical formula using the whole number mole ratios as subscripts. The empirical formula is Cr2Se3.
In conclusion, the empirical formula of the substance with 0.62400 grams of chromium and 1.42128 grams of selenium is Cr2Se3. This formula represents the smallest whole-number ratio of atoms in the substance, based on the given masses and molar masses of the elements. The calculation involves converting the masses to moles, finding the mole ratio, and multiplying by a common factor to obtain the empirical formula.

To know more about Empirical formula visit:

https://brainly.com/question/14044066

#SPJ11

An athlete had 14% body fat by mass. What is the weight of fat, in pounds, of a 82-kg athlete? Express your answer to two significant figures & include the appropriate units

Answers

The weight of fat, in pounds, of an 82-kg athlete with 14% body fat by mass is 25.31 lb.

Given,

The percentage of body fat by mass = 14%

Weight of the athlete = 82 kg

Now we need to calculate the weight of fat in pounds of the athlete.

Let's use the following conversion factors,1 kg = 2.205 lb1% = 0.01

Thus,

The weight of fat = Percentage of body fat by mass × Weight of the athlete

= 14% × 82 kg

= 0.14 × 82 kg

= 11.48 kg

Now we need to convert kg to pounds,

11.48 kg = 11.48 kg × 2.205 lb/kg = 25.31 lb

To learn more about body fat by mass, refer:-

https://brainly.com/question/18987770

#SPJ11

Explain what protein primary, secondary, tertiary, and quaternary structures are and the important interactions that stabilize them. Which of these changes when a protein is denatured? Which are pertinent to ovalbumin?

Answers

Protein structures consist of four levels: primary, secondary, tertiary, and quaternary.

The primary structure is the linear sequence of amino acids, connected by peptide bonds. The secondary structure arises from hydrogen bonding between the backbone atoms, forming motifs like alpha-helices and beta-sheets. The tertiary structure is the overall 3D conformation of a single polypeptide chain, stabilized by interactions such as hydrogen bonding, hydrophobic interactions, van der Waals forces, and disulfide bridges. The quaternary structure refers to the arrangement of multiple polypeptide chains (subunits) in a protein complex, held together by similar interactions as in the tertiary structure.

Denaturation refers to the loss of tertiary and/or quaternary structures, often caused by factors like heat, pH change, or chemical agents, leading to loss of protein function. Primary and secondary structures usually remain unchanged during denaturation.

Ovalbumin, a protein found in egg whites, is primarily involved in its tertiary structure, which is crucial for its function.

The secondary structure elements are also present in ovalbumin but do                     not have unique features. The protein does not form quaternary structures, as it functions as a single polypeptide chain.

Know more about Structure of protein here:

brainly.com/question/14652022

#SPJ11

0.100 l solution of 0.270 m agno3 is combined with a 0.100 l solution of 1.00 m na3po4. calculate the concentration of ag and po3−4 at equilibrium after the precipitation of ag3po4 (sp=8.89×10−17).

Answers

The equilibrium concentration of Ag⁺ and PO₃⁻⁴ are 2.35 x 10⁻⁶ M and 7.05 x 10⁻⁶ M, respectively.

First, we need to write the balanced chemical equation for the precipitation of Ag₃PO₄;

3AgNO₃ + Na₃PO₄ → Ag₃PO₄ + 3NaNO₃

According to the stoichiometry of the equation, 3 moles of AgNO₃ are required to react with 1 mole of Na₃PO₄ to form 1 mole of Ag₃PO₄. So, we need to find out which reactant is limiting.

The number of moles of AgNO₃ present in 0.100 L of 0.270 M solution is:

0.100 L x 0.270 mol/L = 0.027 mol AgNO₃

The number of moles of Na₃PO₄ present in 0.100 L of 1.00 M solution is:

0.100 L x 1.00 mol/L = 0.100 mol Na₃PO₄

According to the stoichiometry of the equation, 0.100 mol Na₃PO₄ would require 0.300 mol AgNO₃ (3 times as many moles). However, we only have 0.027 mol AgNO₃, which is the limiting reactant.

Therefore, all 0.027 mol of AgNO will react to form Ag₃PO₄. The amount of Ag₃PO₄ that will precipitate can be calculated using its solubility product constant (Ksp);

Ksp = [Ag⁺]³ [PO₃⁻⁴]

Ksp = (x)(3x)³ = 8.89 x 10⁻¹⁷

Solving for x gives;

x = [Ag⁺] = 2.35 x 10⁻⁶ M

[PO₃⁻⁴] = 3x = 7.05 x 10⁻⁶ M

Therefore, the concentrations of Ag⁺ is 2.35 x 10⁻⁶ M and the concentration of PO3-4 is 7.05 x 10⁻⁶ M, respectively.

To know more about concentration here

https://brainly.com/question/10725862

#SPJ4

A sample of a diatomic ideal gas occupies 33.6 L under standard conditions. How many mol of gas are in the sample?a) 3b) .75c) 3.25d) 1.5

Answers

the answer is (d) 1.5 mol.

Under standard conditions, which are defined as 1 atmosphere (101.325 kPa) and 0°C (273.15 K), the molar volume of an ideal gas is 22.4 L.

Therefore, if a diatomic ideal gas occupies 33.6 L under standard conditions, the number of moles of gas in the sample can be calculated as follows:

n = V / Vm

where n is the number of moles, V is the volume of the gas, and Vm is the molar volume of the gas at standard conditions.

Substituting the given values, we get:

n = 33.6 L / 22.4 L/mol = 1.5 mol

To know more about conditions refer here

https://brainly.com/question/29418564#

#SPJ11

The reaction of magnesium with nitrogen produces magnesium nitride, as follows.
3 Mg(s) + N2(g) → Mg3N2(s)
If the reaction is started with 2.05 mol Mg and 0.891 mol N2, find the following.
(a) the limiting reactant (b) the excess reactant (c) the number of moles of magnesium nitride produced

Answers

(a) The limiting reactant is Mg.
(b) The excess reactant is N₂
(c) The number of moles of magnesium nitride produced is 0.683 moles.

(a) To find the limiting reactant, we first need to determine the mole ratio of Mg to N₂ in the balanced equation, which is 3:1. Next, divide the given moles of each reactant by their respective stoichiometric coefficients:

Mg: 2.05 mol / 3 = 0.683
N₂: 0.891 mol / 1 = 0.891

Since 0.683 is smaller than 0.891, Mg is the limiting reactant.

(b) The excess reactant is the other reactant, which is N₂ in this case.

(c) To find the number of moles of magnesium nitride (Mg₃N₂) produced, we use the mole ratio between Mg and Mg₃N₂, which is 3:1. Since Mg is the limiting reactant, we have:

Moles of Mg₃N₂ = (1 mol Mg₃N₂ / 3 mol Mg) × 2.05 mol Mg = 0.683 mol Mg₃N₂

So, 0.683 moles of magnesium nitride are produced in the reaction.

Learn more about limiting reactant here: https://brainly.com/question/26905271

#SPJ11

Rank the following from weakest intermolecular forces to strongest. justify your answers. h2se h2s h2po h2te

Answers

The ranking of the given molecules from weakest to strongest intermolecular forces is:  H2S < H2Se < H2Te < H2PO

This ranking is based on the size, dipole moments, and polarity of each molecule, which are factors that contribute to the strength of their intermolecular forces. Also ranking is based on the trend of increasing atomic size down the group. As we move down the group, the atomic size increases which results in larger electron clouds and hence stronger intermolecular forces. 1. H2S: Weakest intermolecular forces due to its small size and relatively low dipole moment. 2. H2Se: Slightly stronger intermolecular forces than H2S because it has a larger size and a higher dipole moment. 3. H2Te: Stronger intermolecular forces due to its larger size and higher dipole moment compared to H2Se and H2S. 4. H2PO: Strongest intermolecular forces because it has a significant dipole moment, making its overall polarity higher than the other molecules listed.

To know more about molecules visit :-

https://brainly.com/question/21263612

#SPJ11

a sample of a noble gas has a mass of 980 mg. its volume is 0.270 l at a temperature of 88 °c and a pressure of 975 mmhg. identify the gas by answering with the symbol.

Answers

A noble gas is helium, weighs 980 mg and occupies a volume of 0.270 L at a temperature of 88 °C and a pressure of 975 mmHg.

To determine the identity of the gas, we can use the ideal gas law, which relates the pressure (P), volume (V), temperature (T), and number of moles of gas (n) using the gas constant (R): PV = nRT

We can rearrange this equation to solve for the number of moles: n = PV/RT

Substituting the given values and converting units to SI units: P = 975 mmHg = 129,982.8 Pa

V = 0.270 L = 0.270 x 10^-3 m^3

T = 88 °C = 361.15 K

R = 8.314 J/mol•K

We can calculate the number of moles of gas: n = (129,982.8 Pa x 0.270 x 10^-3 m^3) / (8.314 J/mol•K x 361.15 K) = 0.011 mol

Next, we can calculate the molar mass of the gas: M = mass / n = 980 mg / 0.011 mol = 89 g/mol

The molar mass of helium is 4 g/mol, which is much smaller than the calculated molar mass. Therefore, we can conclude that the gas is helium (He), which is a noble gas and has a molar mass of 4 g/mol.

The ideal gas law is a fundamental equation in thermodynamics that relates the physical properties of a gas to each other. It is an equation of state for a gas, which means that it describes the relationship between the state variables of the gas, such as pressure, volume, and temperature.

The ideal gas law assumes that the gas is composed of particles that are in constant random motion, and that the volume of the particles is negligible compared to the volume of the container. The law also assumes that there are no intermolecular forces between the particles of the gas.

learn more about noble gas here:

https://brainly.com/question/13715159

#SPJ11

The pH of a 0.059 M solution of acid HA is found to be 2.36. What is the K of the acld? The equation described by the K value is HA(aq) + H2O(l) ≠ A^-(aq) +H2O^+(aq) Report your answer with two significant figures. Provide your answer below:Ka- ____

Answers

The first step to finding the Ka of the acid HA is to write the equation for its ionization: The Ka of the acid HA is 2.8 × 10^-4

HA(aq) + H2O(l) ↔ A^-(aq) + H3O^+(aq)

The equilibrium expression for this reaction is:

Ka = [A^-][H3O^+] / [HA]

We know that the initial concentration of HA is 0.059 M, and the pH of the solution is 2.36. From the pH, we can find the concentration of H3O^+ using the equation:

pH = -log[H3O^+]

2.36 = -log[H3O^+]

[H3O^+] = 10^-2.36 = 4.06 × 10^-3 M

Since the acid HA is a weak acid, we can assume that the concentration of A^- is negligible compared to the concentration of HA. Therefore, we can assume that the concentration of HA is equal to its initial concentration of 0.059 M.

We can plug these values into the equilibrium expression for Ka:

Ka = [A^-][H3O^+] / [HA]

Ka = (0)(4.06 × 10^-3) / 0.059

Ka = 2.75 × 10^-4

Click the below link, to learn more about Ka of acid:

https://brainly.com/question/14620228

#SPJ11

The rate constant for this first order reaction is 0.580 s^-1 at 400 C.
A ----> products
How long (in seconds) would it take for the concentration of A to decrease from 0.670 M to 0.320 M?

Answers

It would take approximately 1.415 seconds for the concentration of A to decrease from 0.670 M to 0.320 M at 400°C.

To calculate the time it takes for the concentration of A to decrease from 0.670 M to 0.320 M in a first-order reaction, we can use the first-order rate equation:

ln([A]_final / [A]_initial) = -k × t

Where:
- [A]_final is the final concentration (0.320 M)
- [A]_initial is the initial concentration (0.670 M)
- k is the rate constant (0.580 s^-1)
- t is the time in seconds

Plugging in the values, we get:

ln(0.320 / 0.670) = -0.580 × t

Now, solve for t:

t = ln(0.320 / 0.670) / (-0.580)

 ≈ 1.415 seconds

To know more about the first-order reaction, click below.

https://brainly.com/question/12446045

#SPJ11

calculate the solubility of naphthalene at 25 egree c in any solvent in which it forms an ideal solution. The melting point of naphthalene is 80'C, and the enthalphy of fusion is 19.29 kJ/mol. The measured solubility of napthalene in benzene is x1=0.296

Answers

The solubility of naphthalene at 25°C in an ideal solution can be calculated using Raoult's law:

S = x1 * Psat

where S is the solubility of naphthalene, x1 is the mole fraction of naphthalene in the solution, and Psat is the vapor pressure of pure naphthalene at 25°C.

Since naphthalene is a solid at 25°C, its vapor pressure is negligible, and we can assume Psat = 0. Therefore, the solubility of naphthalene in an ideal solution at 25°C is zero.

However, if we consider the melting point and enthalpy of fusion of naphthalene, we can estimate its solubility in a solvent such as benzene, in which it forms an ideal solution. The enthalpy of fusion indicates the energy required to melt one mole of naphthalene, and the melting point is the temperature at which this occurs.

If we assume that the solubility of naphthalene in benzene is also governed by Raoult's law, we can write:

ΔHfus / R * (1/Tm - 1/T) = ln(x1 / (1-x1))

where ΔHfus is the enthalpy of fusion, R is the gas constant, Tm is the melting point of naphthalene (353 K), T is the temperature at which we want to calculate the solubility, and x1 is the experimentally measured mole fraction of naphthalene in benzene (0.296).

Solving for x1 at 25°C (298 K), we get:

x1 = exp(-ΔHfus / R * (1/Tm - 1/T))

x1 = exp(-19.29 * 10^3 / (8.314 * 353) * (1/353 - 1/298))

x1 = 0.023

Therefore, the estimated solubility of naphthalene in benzene at 25°C is 0.023, assuming that naphthalene forms an ideal solution in benzene and that its solubility is governed by Raoult's law.

Learn more about Raoult's here:

https://brainly.com/question/28304759

#SPJ11

Solve 0. 0853 + 0. 05477 + 0002 report the answer to correct number of significant figures

Answers

The sum of 0.0853, 0.05477, and 0.0002, reported to be the correct number of significant figures, is 0.14.

When performing addition or subtraction with numbers, it is important to consider the significant figures in the given values and report the final answer with the appropriate number of significant figures. In this case, the number 0.0853 has four significant figures, 0.05477 has five significant figures, and 0.0002 has only one significant figure.

To determine the correct number of significant figures in the sum, we need to consider the least precise value, which is 0.0002 with one significant figure. Therefore, the final answer should also have one significant figure. Adding up the given values, we get 0.14 as the sum, which is reported to be one significant figure.

Learn more about significant figures here:

https://brainly.com/question/29153641

#SPJ11

for a given atom, identify the species that has the largest radius. group of answer choices. anion radical neutral cation They are all the same size.

Answers

The species with the largest radius is the A) anion.

This is because when an atom gains an electron to become an anion, the increased electron-electron repulsion causes the electron cloud to expand, increasing the atomic radius.

In contrast, when an atom loses an electron to become a cation, the decreased electron-electron repulsion causes the remaining electrons to be drawn closer to the positively charged nucleus, resulting in a smaller atomic radius. Neutral atoms and radicals also have similar radii to their corresponding ions due to the same number of electrons.

To calculate the atomic radius, one can use X-ray crystallography, electron diffraction, or measure the distance between two bonded atoms and divide by two. So A is correct option.

For more questions like Electron click the link below:

https://brainly.com/question/1255220

#SPJ11

3. write the balanced chemical reaction between sodium oxalate, na2c2o4 , reacts with potassium permanganate in acidic solution.

Answers

The balanced chemical equation for the reaction between sodium oxalate (Na2C2O4) and potassium permanganate (KMnO4) in acidic solution is:

5Na2C2O4 + 2KMnO4 + 8H2SO4 → 2MnSO4 + 10CO2 + 5Na2SO4 + K2SO4 + 8H2O

In this reaction, sodium oxalate reacts with potassium permanganate in acidic solution. The acid used in this reaction is sulfuric acid (H2SO4). The reaction results in the formation of manganese sulfate (MnSO4), carbon dioxide (CO2), sodium sulfate (Na2SO4), potassium sulfate (K2SO4), and water (H2O).

To balance the equation, we need to ensure that the number of atoms of each element is equal on both sides of the equation. In the balanced equation, we can see that there are 5 moles of Na2C2O4, 2 moles of KMnO4, and 8 moles of H2SO4 on the left-hand side, and 2 moles of MnSO4, 10 moles of CO2, 5 moles of Na2SO4, 1 mole of K2SO4, and 8 moles of H2O on the right-hand side. This ensures that the law of conservation of mass is followed, and no atoms are lost or gained during the reaction.
To know more about sodium oxalate visit

https://brainly.com/question/31800322

#SPJ11

the reaction of 4-pentanoylbiphenyl and hydrazine without potassium hydroxide is a net? a. substitution b. addition c. rearrangement d. elimination

Answers

The reaction of 4-pentanoylbiphenyl and hydrazine without potassium hydroxide is a net addition reaction. The correct option is b.

When 4-pentanoylbiphenyl reacts with hydrazine in the absence of potassium hydroxide, the carbonyl group of the 4-pentanoylbiphenyl undergoes addition reaction with hydrazine to form a hydrazone product. This is an example of a net addition reaction, where two molecules combine to form a single product.

The reaction does not involve the substitution of any functional groups, rearrangement of atoms or elimination of any functional group. The absence of potassium hydroxide in the reaction mixture does not influence the mechanism of the reaction but rather affects the rate of reaction. Potassium hydroxide is often used as a catalyst in the reaction to increase the rate of the reaction. Therefore, the correct option is b.

To know more about catalyst refer here:

https://brainly.com/question/31630881#

#SPJ11

A crystal of copper sulphate was placed in a beaker of water. The beaker was left standing for two days wihout shaking. State and explain the observation that were made

Answers

When the beaker is left standing without shaking for two days, the water slowly evaporates, causing the concentration of the CuSO4 solution to increase

When a crystal of copper sulphate (CuSO4) is placed in water, it dissolves and forms a blue solution due to the formation of hydrated copper(II) ions. The hydration process occurs as water molecules attach themselves to the copper ions, forming a coordination compound known as a hydrated copper ion. In this case, the blue color of the solution is due to the presence of [Cu(H2O)6]2+ ions. Eventually, the solution becomes supersaturated, meaning it contains more solute (CuSO4) than it can normally dissolve at that temperature. The excess CuSO4 that cannot dissolve in the supersaturated solution begins to precipitate out of the solution, forming solid CuSO4 crystals on the surface of the original crystal and at the bottom of the beaker. This process is known as crystallization. The newly formed crystals may appear as blue, needle-like structures on the surface of the original crystal or as blue crystals at the bottom of the beaker. In summary, the observation made when a crystal of copper sulphate is placed in water and left standing for two days without shaking is the formation of a blue solution due to the hydration of copper ions, followed by the precipitation of excess CuSO4 as solid blue crystals through the process of crystallization.

For more such questions on concentration

https://brainly.com/question/12587587

#SPJ11

Write a balanced chemical reaction, complete ionic equation and net ionic equation for the following equations

Answers

I apologize, but you haven't provided any specific chemical equations for me to generate the balanced chemical reaction, complete ionic equation, and net ionic equation. Please provide the specific chemical equation you would like me to work with.

#SPJ11

Complete question

Water is a polar solvent and hexane is a non-polar solvent. Determine which solvent each of the following is most likely to be soluble in. Potassium chloride, KCL Octane, C8H18, a compound in gasoline Sodium bicarbonate, NaHCO3

Answers

The solubility of each compound in water (polar solvent) and hexane (non-polar solvent). Potassium chloride (KCl) is soluble in water. Octane (C8H18) is soluble in hexane. Sodium bicarbonate (NaHCO3) is soluble in water.

1. Potassium chloride (KCl):
KCl is an ionic compound, and it tends to dissolve well in polar solvents due to the electrostatic interaction between the polar solvent molecules and the charged ions. Therefore, KCl is most likely to be soluble in water, the polar solvent.

2. Octane (C8H18):
Octane is a non-polar compound, as it is comprised of only carbon and hydrogen atoms with non-polar covalent bonds. Non-polar compounds usually dissolve well in non-polar solvents due to the similar dispersion forces between the molecules. Thus, octane is most likely to be soluble in hexane, the non-polar solvent.

3. Sodium bicarbonate (NaHCO3):
Sodium bicarbonate is an ionic compound with polar covalent bonds in the bicarbonate ion. It will likely dissolve in polar solvents because of the electrostatic interactions between the polar solvent molecules and the ions in the compound. Consequently, sodium bicarbonate is most likely to be soluble in water, the polar solvent.

In summary:
- Potassium chloride (KCl) is soluble in water.
- Octane (C8H18) is soluble in hexane.
- Sodium bicarbonate (NaHCO3) is soluble in water.

Know more about solubility

https://brainly.com/question/23946616

#SPJ11

Potassium chloride (KCl) is most likely to be soluble in water, a polar solvent. Octane (C₈H₁₈), is most likely to be soluble in hexane, a non-polar solvent. Sodium bicarbonate (NaHCO₃) is soluble in water, a polar solvent.

Water is a polar solvent, meaning it has a partial positive charge on the hydrogen atom and a partial negative charge on the oxygen atom. Potassium chloride (KCl) is an ionic compound composed of positively charged potassium ions (K⁺) and negatively charged chloride ions (Cl⁻). The positive and negative charges of the ions are attracted to the opposite charges of water molecules, allowing KCl to dissolve in water.

Hexane is a non-polar solvent composed of carbon and hydrogen atoms. Octane (C₈H₁₈) is a hydrocarbon with only carbon and hydrogen atoms, making it non-polar as well. Non-polar substances tend to dissolve better in non-polar solvents, so octane is most likely to be soluble in hexane.

Sodium bicarbonate (NaHCO₃) is an ionic compound composed of positively charged sodium ions (Na⁺), negatively charged bicarbonate ions (HCO₃⁻), and a hydrogen ion (H⁺). The ionic nature of sodium bicarbonate allows it to dissociate into ions in water, making it soluble in water.

Overall, the solubility of these compounds depends on the polarity of the solvents and the nature of the compounds themselves.

learn more about Polarity here:

https://brainly.com/question/20515334

#SPJ11

Detemine the residual molar entropies for molecular crystals of 35 CI37 Cl Express your answer in joules per mole kelvin.
S35CL37CL = ___ J.mol^-1.K

Answers

Once you have these values, you can use the equation mentioned above to calculate the residual molar entropy (S35Cl37Cl) in J.mol^-1.K.

To determine the residual molar entropies for molecular crystals of 35 CI37 Cl, we need to use the equation:
S_res = S_m - R ln(Z_rot) - R ln(Z_vib)
where S_res is the residual molar entropy, S_m is the molar entropy, R is the gas constant (8.314 J/mol*K), Z_rot is the rotational partition function, and Z_vib is the vibrational partition function.
The molar entropy for molecular crystals can be estimated using the equation:
S_m = S_trans + S_rot + S_vib
where S_trans is the translational entropy, S_rot is the rotational entropy, and S_vib is the vibrational entropy.
For molecular crystals, the translational entropy can be approximated as:
S_trans = R ln(V / Nλ^3)

where V is the volume of the crystal, N is the number of molecules in the crystal, and λ is the thermal de Broglie wavelength.
The rotational entropy can be approximated as:
S_rot = R ln(T / θ_rot)

Using these values, we can calculate the various entropies:

- S_trans = 15.18 J/mol*K
- S_rot = 3.70 J/mol*K
- S_vib = 47.26 J/mol*K
- S_m = 66.14 J/mol*K

To know more about entropy visit :-

https://brainly.com/question/13999732

#SPJ11

A mixture of nitrogen and oxygen in a 1:3 ratio has a volume of 4. 00 L.


What is the volume of the nitrogen trioxide when the nitrogen and oxygen


react according to the equation:


N2 (g) + 3 02 (g) → 2 NO, (g)


while keeping pressure and temperature constant?


lol

Answers

The volume of nitrogen trioxide produced from a mixture of nitrogen and oxygen in a 1:3 ratio, reacting according to the equation N2 (g) + 3 O2 (g) → 2 NO, (g) while keeping pressure and temperature constant, is 2.67 L.

To determine the volume of nitrogen trioxide produced, we first need to find the limiting reactant. Since the ratio of nitrogen to oxygen is 1:3, we can say that for every 1 unit of nitrogen, we have 3 units of oxygen.

Therefore, the amount of oxygen present in the mixture is 3/4 * 4 L = 3 L, and the amount of nitrogen present is 1/4 * 4 L = 1 L.

Since we need 1 unit of nitrogen for every 3 units of oxygen for the reaction to occur, we can see that nitrogen is the limiting reactant.

Thus, all 1 L of nitrogen will react to form 2 L of nitrogen trioxide (using the stoichiometric coefficients in the balanced equation).

Finally, we apply the ideal gas law to find the volume of nitrogen trioxide at the same pressure and temperature: V2 = n2 * RT / P = (2 mol * 0.082 L*atm / (mol*K) * 298 K) / 1 atm = 2.67 L.

Learn more about nitrogen trioxide here.

https://brainly.com/questions/21479339

#SPJ11

what are the formal charges on the central atoms in each of the reducing agents?
a. +1
b. -2
c. -1
d. 0

Answers

Finally, the reducing agent in this case has a central atom with a 0 formal charge. This means that the central atom has the same number of electrons as it would in a neutral state.

First, let's define what a reducing agent is. A reducing agent is a substance that donates electrons to another substance in a chemical reaction. In other words, it is a substance that is oxidized (loses electrons) in order to reduce (gain electrons) another substance.

Now, onto the formal charges of the central atoms in each of the reducing agents:
a. +1
The formal charge of an atom is the difference between the number of valence electrons in an isolated atom and the number of electrons assigned to that atom in a Lewis structure. In this case, the reducing agent has a central atom with a +1 formal charge. This means that the central atom has one fewer electron than it would in a neutral state.
b. -2
Similarly, the reducing agent in this case has a central atom with a -2 formal charge. This means that the central atom has two more electrons than it would in a neutral state.
c. -1
The reducing agent in this case has a central atom with a -1 formal charge. This means that the central atom has one more electron than it would in a neutral state.
d. 0
Finally, the reducing agent in this case has a central atom with a 0 formal charge. This means that the central atom has the same number of electrons as it would in a neutral state.

To know more about reducing agent visit:-

https://brainly.com/question/2890416

#SPJ11

calculate the vapor pressure in a sealed flask containing 15.0 g of glycerol, c3h8o3 , dissolved in 105 g of water at 25.0°c.

Answers

The vapor pressure in a sealed flask containing 15.0 g of glycerol, C₃H₈O₃, dissolved in 105 g of water at 25.0°c is approximately 23.10 mmHg.

To calculate the vapor pressure in the sealed flask, we need to use the Raoult's Law formula: P_solution = X_water * P_water, where X_water is the mole fraction of water in the solution, and P_water is the vapor pressure of pure water at 25.0°C.

First, calculate the moles of glycerol and water:
- Glycerol (C₃H₈O₃) has a molar mass of 92.09 g/mol: moles of glycerol = 15.0 g / 92.09 g/mol = 0.163 moles
- Water (H₂O) has a molar mass of 18.01 g/mol: moles of water = 105 g / 18.01 g/mol = 5.83 moles

Next, calculate the mole fraction of water (X_water):
X_water = moles of water / (moles of water + moles of glycerol) = 5.83 / (5.83 + 0.163) = 0.973

Now, use the vapor pressure of pure water at 25.0°C, which is approximately 23.76 mmHg:
P_solution = X_water * P_water = 0.973 * 23.76 mmHg = 23.10 mmHg

Thus, the vapor pressure in the sealed flask containing 15.0 g of glycerol is approximately 23.10 mmHg.

Learn more about Raoult's Law here: https://brainly.com/question/28304759

#SPJ11

(b) Using the standard reduction potentials shown in (a), show that one can prepare an ammine complex from CoCl2 and hydrogen peroxide in the presence of ammonia but not in its absence. You will need to write two redox reactions, calculate standard potentials for the reactions, and make conclusions. That is, set up an equation to calculate E°(V) using one cobalt complex half-cell with the peroxide half-cell, then calculate E°(V) again using the other cobalt complex and peroxide. Compare the two Eº values.

Answers

The E°(overall) value is higher in the presence of ammonia, we can conclude that ammonia is necessary for the formation of the ammine complex.

The two half-reactions involved in this process are:

Co2+ + 2 e- → Co E° = -0.28 V (from the table given in part (a))

H2O2 + 2 H+ + 2 e- → 2 H2O E° = 1.78 V (from the table given in part (a))

To make an ammine complex, we need to add ammonia to the reaction mixture. Ammonia can act as a ligand and coordinate with cobalt. The overall reaction can be written as follows:

CoCl2 + NH3 + H2O2 → [Co(NH3)5(H2O)]3+ + Cl- + H2O

To determine whether ammonia is necessary for the formation of the complex, we can compare the standard reduction potentials for the reaction with and without ammonia.

Without ammonia:

E°(overall) = E°(Co2+/Co) + E°(H2O2/H2O)

E°(overall) = (-0.28 V) + (1.78 V)

E°(overall) = 1.50 V

With ammonia:

E°(overall) = E°(Co3+/Co) + E°(NH3/Co3+) + E°(H2O2/H2O)

E°(overall) = (-0.49 V) + (0.76 V) + (1.78 V)

E°(overall) = 2.05 V

For such more question on ammonia:

https://brainly.com/question/14854495

#SPJ11

The E°(overall) value is higher in the presence of ammonia, we can conclude that ammonia is necessary for the formation of the ammine complex.The two half-reactions involved in this process are:Co2+ + 2 e- → Co E° = -0.28 V (from the table given in part (a))H2O2 + 2 H+ + 2 e- → 2 H2O E° = 1.78 V (from the table given in part (a))To make an ammine complex, we need to add ammonia to the reaction mixture. Ammonia can act as a ligand and coordinate with cobalt. The overall reaction can be written as follows:CoCl2 + NH3 + H2O2 → [Co(NH3)5(H2O)]3+ + Cl- + H2OTo determine whether ammonia is necessary for the formation of the complex, we can compare the standard reduction potentials for the reaction with and without ammonia.Without ammonia:E°(overall) = E°(Co2+/Co) + E°(H2O2/H2O)E°(overall) = (-0.28 V) + (1.78 V)E°(overall) = 1.50 VWith ammonia:E°(overall) = E°(Co3+/Co) + E°(NH3/Co3+) + E°(H2O2/H2O)E°(overall) = (-0.49 V) + (0.76 V) + (1.78 V)E°(overall) = 2.05 V

Learn more about determine here:

brainly.com/question/14854495

#SPJ11

If it takes 15.0 mL of 0.40 M NaOH to neutralize 5.0 mL of HCI, what is the molar concentration of the HCI solution?

Answers

Answer:

The molar concentration of the HCl solution = 1.2 M

Explanation:

I hope this helps.

Have a good rest of your day.

what is the ph of a buffer solution made by adding 0.010 mole of solid naf to 50. ml of0.40 m hf? assume no change in volume. ka (hf) = 6.9xl0-4

Answers

The pH of the buffer solution made by adding 0.010 mole of solid naf to 50. ml of0.40 m hf is 3.16.

The Henderson-Hasselbalch equation, which links the pH of a buffer solution to the dissociation constant (Ka) of the weak acid and the ratio of its conjugate base to acid, must be used to calculate the pH of the buffer solution created by adding 0.010 mole of solid NaF to 50 ml of 0.40 M HF.Calculating the concentration of HF and NaF in the solution following the addition of solid NaF is the first step. The new concentration of HF may be determined using the initial concentration and the quantity of HF present before and after the addition of NaF because the volume of the solution remains constant: Amount of HF in moles prior to addition = 0.40 M x 0.050  = 0.02 moles After addition, the amount of HF is equal to 0.02 moles minus 0.01 moles.

New HF concentration is equal to 0.01 moles per 0.050 litres, or 0.20 M.

The amount of NaF added divided by the total volume of the solution gives the solution's concentration in NaF.NaF concentration: 0.010 moles per 0.050 litres, or 0.20 M. The Henderson-Hasselbalch equation is now applicable: pH equals pKa plus log([A-]/[HA]). where [A-] is the concentration of the conjugate base (NaF), [HA] is the concentration of the weak acid (HF), and [pKa] is the negative logarithm of the dissociation constant of HF (pKa = -log(Ka) = -log(6.9x10-4) = 3.16).

For more such questions on solid

https://brainly.com/question/23864332

#SPJ11

Can a hydrocarbon molecule (i.e., a molecule with only C and H atoms) ever have a trigonal bipyramidal geometry? a. Yes, there are lots of examples. b. No, hydrocarbons are too electronegative c. Yes, but only if the hydrocarbon contains at least one double or triple bond d. No, hydrocarbons only have single bonds, but the trigonal bipyramidal geometry requires double or triple bonds e. No, one needs an expanded valence shell to get the trigonal bipyramidal geometry, and that requires a period three or lower (on the periodic table) element.

Answers

E. No, one needs an expanded valence shell to get the trigonal bipyramidal geometry, and that requires a period three or lower (on the periodic table) element.

A hydrocarbon molecule consists only of carbon and hydrogen atoms, which have a valence of 4 and 1, respectively. Thus, hydrocarbons only have single bonds between carbon atoms, and the maximum number of atoms that can be bonded to a carbon atom is four.

Trigonal bipyramidal geometry is a shape in which five atoms or groups are arranged around a central atom, with three in one plane and two in another plane perpendicular to the first. This shape requires an expanded valence shell, which means that the central atom has more than eight valence electrons. Elements in period three or lower of the periodic table, such as phosphorus, sulfur, and chlorine, can have an expanded valence shell and form trigonal bipyramidal molecules.

Since hydrocarbons only have carbon and hydrogen atoms, which cannot form an expanded valence shell, they cannot have a trigonal bipyramidal geometry. Therefore, option e) is the correct answer.

To know more about bipyramidal geometry:

https://brainly.com/question/30185738

#SPJ11

Other Questions
what are the portfolio weights for a portfolio that has 125 shares of stock a that sell for $82 per share and 100 shares of stock b that sell for $74 per share? A Monte Carlo simulation model uses: A. random variables as inputs.B. a point estimate.C. the cost of capital.D. portfolio risk Point m represents the opposite of -1/2 and point n represents the opposite of 5/2 which number line correctly shows m and n the table shows the speed of light in various media. what would be the index of refraction, n, for the following substances? round your answer to three decimal places. 5a. Define Horizontal Gene transfer. 5b. Describe how competence for transformation is regulated in Gram-positive bacteria using each of the following words correctly: CF, cell density, and translocosome. 5c. Is homologous recombination required for this form of HGT? Explain why or why not. 5d. Efficient whole genome sequencing of bacterial genomes has allowed scientists to identify individual genes as well as larger genomic islands that were most likely acquired through Horizontal Gene Transfer. How does the %GC content of a genome allow bioinformatic methods to identify HGT genes within genomes? evaluate the following indefinite integral. do not include +C in your answer. (4x^6+2x^53x^3+3)dx B) Implement an algorithm that will implement the k way merge by calling twoWayMerge repeatedly as follows: 1. Call twoWayMerge on consecutive pairs of lists twoWayMerge(lists[0], lists[1]), ..., twoWayMerge(lists[k-2), lists[k-1]) (assume k is even). 2. Thus, we create a new list of lists of size k/2. 3. Repeat steps 1, 2 until we have a single list left. [ ]: def twoWayMerge(lsti, lst2): # Implement the two way merge algorithm on # two ascending order sorted lists # return a fresh ascending order sorted list that# merges lsti and lst2 # your code here What change contributed to the emergence of "the underclass" in the late 20th century?a. Influx of Black middle-class to the ghettob. Job shifts to manufacturing industryc. Gentrificationd. Deindustrialization Is this negative and odd or even and positive or negative and even and positive and odd? If the government ran a major budget deficit, and there was no noticeable effect on the level of GDP, this could be taken as evidence of hyperinflation structural deficit crowding-out monetary policy ineffectiveness Beri owns and operates City Delivery Service as a sole proprietorship. When she dies, the business will automaticallyGroup of answer choicesA. reform with its employees as the ownersB. transfer to its creditorsC. transfer to Beri's heirsD. dissolve Imagine you get to order your teacher around. Give this person 5 respectful Spanish commands using the correct usted command form. Be sure to use five different verbs in your commands. These can be positive or negative commands. Example: Sintese usted en la silla. Toque usted la guitarra. No nos d tanta tarea, Seor. You will be graded on (a) pronunciation, (b) correct verb usage, and (c) the overall quality of your response how many permutations can be formed from n objects of type 1 and n^2 objects of type 2 if disposable income is $400 billion, autonomous consumption is $60 billion, and mpc is 0.8, what is the level of saving? a. $210 billion. b. $380 billion. c. $20 billion. d. $590 billion. Consider the algorithm for sequential search, from below. In each part of this question we make an assumption about the probability distribution of the presence and location of x in the array. For each part, compute the expected number of times the comparison "if A[i] = x. . . " is executed if the given assumptions hold.Algorithm Search(A,n)Input: An array A[n], where n 1; an item xOutput: Index where x occurs in A, or -1for i 0 to n 1 doif A[i] = x then return(i);return(-1);(a) The item x is in the array. It is equally likely to be in any of the n locations in the array.(b) The probability that x is in the array is 0.5. If it is in the array, it is equally likely to be in any of the n locations in the array. Question 13 (4 points) How did Ina Tile Company solve the problem of high variability in the dimensions of the tiles? by changing the height of the kiln by changing the length of the kiln by changing the source of energy from electrical to natural gas O by changing the lime content of the clay Bank A is considering a loan to be fully funded by deposits, with the following parameters:Loan amount: $3 billionAverage annual interest rate paid on deposits: 1.5%Annual interest rate on loan: 4.0%Expected loss: 1.0% of face value of loanAnnual operating costs: 1.0% of face value of loanEconomic capital: 8.0% of the loan amountAverage return on economic capital: 3.0%What is the risk-adjusted return on capital (RAROC) for this loan? Find the vector PO X PR if P = (2,1,0), Q = (1,5,2), R = (-1,13,6) (Give your answer using component form or standard basis vectors. Express numbers in exact form. Use symbolic notation and fractions where needed.) The mass spectrum of 2-bromopentane shows many fragments. (a) One fragment appears at M-79. Would you expect a signal at M-77 that is equal in height to the M-79 peak? Explain. (b) A fragment appears at M-15. Would you expect a signal at M-13 that is equal in height to the M-15 peak? Explain. (c) One fragment appears at M-29. Would you expect a signal at M-27 that is equal in height to the M-29 peak? Explain. Babies bring joy to the family is it general statement or spacific staement