Answer:
c = 20.5x + 5.59
Step-by-step explanation:
c = mx + b
c = mx + 5.59
108.09 = m(5) + 5.59
5m = 102.5
m = 20.5
c = 20.5x + 5.59
While the Pareto distributions are continuous, they tend to be used to model discrete data in humanities and actuarial sciences. Moreover, with its roots in power functions, Pareto distributions may be used in the growing popularity of the studies of networks. The probability density function (PDF) for a Pareto distribution is
Answer:
Step-by-step explanation:
While the pareto distributions are continuous in nature, they are sometimes used to model discrete data in fields such as Social Sciences, Humanities, Geophysics, and Actuarial Sciences.
The Pareto Distribution is a power-law probability distribution used in studies of observable phenomena.
The probability density function (PDF) for a Pareto Distribution is:
Xn = 1
for various Alpha levels
Where Xn is the probability value of X
As Alpha tends to infinity, the pareto distribution tends to ¶ [X-Xn]
Where ¶ is the Dirac Delta function.
Is (0,-2) a solution of 3x - y = 2?
Answer:
yes, (0,-2) is the answer when graphing this equation.
Step-by-step explanation:
Answer:
yes.
Step-by-step explanation:
g The p-value of a test is the probability of obtaining a result as or more extreme as the one obtained in the sample, assuming the null hypothesis is false
Answer:
The p-value is well defined as per the probability, [under the null hypothesis (H₀)], of attaining a result equivalent to or more extreme than what was truly observed.
Step-by-step explanation:
The p-value is well defined as per the probability, [under the null hypothesis (H₀)], of attaining a result equivalent to or more extreme than what was truly observed.
We reject the null hypothesis if the p-value of a statistic is lower than the level of significance α.
And we fail to eject the null hypothesis if the p-value of a statistic is greater than the level of significance α.
A lower p-value indicates that the result is statistically significant.
And a higher p-value indicates that the result is not statistically significant.
if there are about 3.346x10^26 molecules of water in a liter of water and the ocean is about 1.26x10^21 liters in volume, how many water molecules are there in the ocean?
Answer: 4.21596 x 10⁴⁷
Step-by-step explanation:
(3.346 x 10²⁶) (1.26 x 10²¹)
= (3.346 x 1.26) x 10²⁶⁺²¹
= 4.21596 x 10⁴⁷
Simple linear equations
Check Whether the value given in the brackets is the root of the given equation or not (nessessary steps is needed)
a) 4x = -4 [x=-1]
b) 2(x-3) =-12 [x=3]
c) 8x - 4x = 24 [x = 1/2]
d) 9x - 4x = 24 [x=18]
Answer: Evaluate the Function, right?
Hello!
~~~~~~~~~~~~~~~~~~
A) 4x = -4 [x=-1] =
4x = -4 =
x = -1 = x = -1
( The steps : Substitute the given value into the function and evaluate.)
B) 2(x-3) =-12 [x=3] =
2 ( x - 3) = -12 = x = -3
x = 3 = x = 3
( The steps : Substitute the given value into the function and evaluate.)
C) 8x - 4x = 24 [x = 1/2] =
8x - 4x = 24 = x = 6
x = 1/2 = x = 1/2
( The steps : Substitute the given value into the function and evaluate.)
D) 9x - 4x = 24 [x=18] =
9x - 4x = 24 = x = 24/5
x = 18 = x = 18
( The steps : Substitute the given value into the function and evaluate.)
~~~~~~~~~~~~~~~~~~
Step-by-step explanation: All the steps are the same. Substitute the given value into the function and evaluate.
Hope this helped you!
Given that (0,0) is on the graph of f(x), find the
corresponding point for the function
f(x) – 5.
Answer:
(0, -5)
Step-by-step explanation:
You have (x, f(x)) = (0, 0) and you want (x, f(x) -5).
That would be ...
(x, f(x) -5) = (0, 0 -5) = (0, -5)
Please Help! Select the correct answer. Simon used these steps to solve an equation:
Answer:
A.
Step-by-step explanation:
From Step 3 to Step 4, Simon added -42 to both sides.
This is the addition property of equality: as long as you add the same thing to both sides, the equation remains equal.
A.
Solve for y: |6y - 3| + 8 = 35 Select one: a. y = -5 b. y = 5 or y = -4 c. =5=−203 y = 5 o r y = − 20 3 d. y = 5
Answer:
y=5 or y=-4
Step-by-step explanation:
6y - 3| + 8 = 35
|6y-3|=35-8
|6y-3|=27
either 6y-3=-27 then 6y=27+3
y=30/6=5
or 6y-3=-27
6y=-27+3
y=-24/6
y=-4
Beginning three months from now, you want to be able to withdraw $2,300 each quarter from your back account to cover college expenses over the next four years. If the account pays .45 percent interest per quarter, how much do you need to have in your bank account today to meet your expense needs over the next four years?
Answer:
$36,450.46
Step-by-step explanation:
The amortization formula can be used to figure this. For quarterly payment A, the principal invested must be P for interest rate r and compounding n times per year for t years.
A = P(r/n)/(1 -(1 +r/n)^(-nt))
2300 = P(0.0045/4)/(1 -(1 +0.0045/4)^(-4·4))
2300 = P·0.06309934
P = 2300/0.06309934 = 36450.46
You need $36,450.46 in your account today so that you can withdraw $2300 quarterly for 4 years.
What is coefficient of the term of degree of degree 5 in the polynomial below 3x^6+5-x^2+4x^5-9 which one is the right answer A. 3 B. 4 C. 6 D. 5
Answer:
B. 4
Step-by-step explanation:
We are looking for the coefficient of the term x⁵. When we see it in the polynomial as 4x⁵, our coefficient and answer would then be 4.
If (a+1) and (a-1)= 35 what is a?? Helpppppppppp
Answer:
There is no real number that can satisfy this equation
Step-by-step explanation:
a+1=35 and a-1=35 ⇒ a+1=a-1⇒ a-a = -1-1⇒ 0= -2 That's absurd so a has no real solutionhelp with this I don't know how to solve
Answer:
86.53
Step-by-step explanation:
Area of Triangle Formula: A = 1/2bh
Pythagorean Theorem: a² + b² = c²
Step 1: Draw altitude and label numbers
If we draw a line down the middle, we can see that we get a perpendicular bisector and that we get 2 right triangles with a hypotenuse of 29 and a leg of 3. We need to find h using Pythagorean Theorem in order to use area formula:
3² + b² = 29²
b² = 29² - 3²
b = √832 = h
Step 2: Plug in known variables into area formula:
A = 1/2(√832)(6)
A = 3√832
A = 86.5332
The mean monthly car payment for 123 residents of the local apartment complex is $624. What is the best point estimate for the mean monthly car payment for all residents of the local apartment complex?
Answer:
The best point estimate for the mean monthly car payment for all residents of the local apartment complex is $624.
Step-by-step explanation:
The Central Limit Theorem estabilishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].
In this question:
We apply the inverse Central Limit Theorem.
The mean monthy car payment for 123 residents of the local apartment complex is $624.
So, for all residents of the local apartment complex, the best point estimate for the mean monthly car payment is $624.
Complete the square to rewrite y = x2 - 6x + 16 in vertex form. Then state
whether the vertex is a maximum or minimum and give its coordinates.
Answer:
y = x² + 6x + 16
= (x² + 6x + 9) - 9 + 16
= (x + 3)² + 7 ← vertex form
Therefore, vertex is (-3, 7) and since the coefficient of (x + 3)² is positive the vertex is a minimum.
Answer:
minimum (3,7)
Step-by-step explanation:
The mean weight of an adult is 6767 kilograms with a variance of 121121. If 164164 adults are randomly selected, what is the probability that the sample mean would be greater than 64.864.8 kilograms
Answer:
99.48% probability that the sample mean would be greater than 64.8 kilograms.
Step-by-step explanation:
To solve this question, we need to understand the normal probability distribution and the central limit theorem.
Normal probability distribution
When the distribution is normal, we use the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation(which is the square root of the variance) [tex]\sigma[/tex], the zscore of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
Central Limit Theorem
The Central Limit Theorem estabilishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].
For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.
In this question:
[tex]\mu = 67, \sigma = \sqrt{121} = 11, n = 164, s = \frac{11}{\sqrt{164}} = 0.86[/tex]
What is the probability that the sample mean would be greater than 64.8 kilograms?
This is 1 subtracted by the pvalue of Z when X = 64.8.
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
By the Central Limit Theorem
[tex]Z = \frac{X - \mu}{s}[/tex]
[tex]Z = \frac{64.8 - 67}{0.86}[/tex]
[tex]Z = -2.56[/tex]
[tex]Z = -2.56[/tex] has a pvalue of 0.0052
1 - 0.0052 = 0.9948
99.48% probability that the sample mean would be greater than 64.8 kilograms.
Find the values of x and y in these equations. (x + yi) + (4 + 6i) = 7 − 2i (equation A) (x + yi) − (-8 + 11i) = 5 + 9i (equation B)
Answer:
Step-by-step explanation:
(x+yi)+4+6i=7-2i
x+yi=7-2i-4-6i
x+yi=3-8i
equating real and imaginary parts
x=3,y=-8
B.
x+yi=5+9i+(-8+11i)
x+yi=5+9i-8-11i
x+yi=-3-2i
equating real ,and imaginary parts
x=-3
y=-2
The value of x and y for equation A is
[tex]x=3, y=-8[/tex]
The value of x and y for equation B is
[tex]x=-3 , y=20[/tex]
Given :
[tex](x + yi) + (4 + 6i) = 7 - 2i[/tex]
find the value of x and y in the given equation
Lets open the parenthesis and combine like terms
Equate the real and imaginary part to solve for x and y
[tex]\left(x+4\right)+\left(y+6\right)i=7-2i\\x+4=7\\x=3\\\\y+6=-2\\y=-2-6\\y=-8[/tex]
The value of x=3 and y=-8
Now we do the same with second equation
[tex](x + yi) - (-8 + 11i) = 5 + 9i\\\\x+8+yi-11i=5+9i\\\left(x+8\right)+\left(y-11\right)i=5+9i\\x+8=5\\x=-3\\\\y-11=9\\y=9+11\\y=20[/tex]
The value of x and y is x=-3 and y=20
Learn more : brainly.com/question/18552411
You just purchased two coins at a price of $1,030 each. Because one of the coins is more collectible, you believe that its value will increase at a rate of 7.7 percent per year, while you believe the second coin will only increase at 7.1 percent per year. If you are correct, how much more will the first coin be worth in 20 years
Answer:4541(Rounded) 4541.99779(Unrounded)
Step-by-step explanation:
A= P(1 + r)^T
A= answer
P=principle(amount of money)
r=Rate(percent / 100)
T=Time(Annually)
1030(1 + .077)^20
Brainliest would be appericiated!
Use ¬, →, ∧ and ∨ to express the following declarative sentences in propositional logic; in each case state what your respective propositional atoms p, q, etc. a) If interest rates go up, share prices go down. b) If Smith has installed central heating, then he has sold his car or he has not paid his mortgage. c) Today it will rain or shine, but not both. d) If Sam met Jane yesterday, they had a cup of coffee together, or they took a walk in the park. e) My sister wants a black and white cat.
Answer:
a) If interest rates go up, share prices go down : this will be assigned p→q
b) If Smith has installed central heating, then he has sold his car or he has not paid his mortgage. P → (q∨¬r)
c) Today it will rain or shine, but not both:(p∨q) ∨ ¬(p∧q)
d) If Sam met Jane yesterday, they had a cup of coffee together, or they took a walk in the park. P → (q∨r)
e) My sister wants a black and white cat. p∧q
Step-by-step explanation:
A statement is said to be propositionally logical if the statement that can be assigned either true or false.
∧and
∨or
¬not
→implies
a) If interest rates go up, share prices go down : this will be assigned p→q implies because the occurrence of event (share prices go down) depends on the possibility of the other event happening.
b) If Smith has installed central heating, then he has sold his car or he has not paid his mortgage. P → (q∨¬r) : either of the two of the other events (i.e. he has sold his car or he has not paid his mortgage ) can only occur if the first event occur
c) Today it will rain or shine, but not both:(p∨q) ∨ ¬(p∧q) : either of the events can occur but not both i.e. they are mutually exclusive
d) If Sam met Jane yesterday, they had a cup of coffee together, or they took a walk in the park. P → (q∨r) either of the two of the other events (i.e. they had a cup of coffee together or they took a walk in the park ) can only occur if the first event (Sam met Jane yesterday) occur
e) My sister wants a black and white cat. p∧q : both events can only occur together
whats 1/2 + 2/4 - 5/8?
Answer:
3/8
Step-by-step explanation:
Step 1: Find common denominators
1/2 = 4/8
2/4 = 4/8
Step 2: Evaluate
4/8 + 4/8 - 5/8
8/8 - 5/8
3/8
Alternatively, you can just plug this into a calc to evaluate and get your answer.
Answer:
3/8
Step-by-step explanation:
Look at the denominator:
2, 4, 8. The LCM (Lowest Common Multiple) is 8.
So this equation becomes
4/8+4/8-5/8=3/8
www.g A bag contains 3 white counters, 10 black counters, and 4 green counters. What is the probability of drawing (a) a white counter or a green counter
Answer:
41.18% probability of drawing a white counter or a green counter
Step-by-step explanation:
A probability is the number of desired outcomes divided by the number of total outcomes.
In this question:
There are 3+10+4 = 17 counters.
Of those, 3+4 = 7 are white or green
7/17 = 0.4118
41.18% probability of drawing a white counter or a green counter
Please help! Need Geometry help!!!!!
Answer:
938 feet
Step-by-step explanation:
b/c every angle of a rectangle is 90° u can u Pythagorean theroem to solve the question
a*a+ b*b=c*c
900*900+264*264=c*c
c=√879,696
c=938feet
Answer:
938 feet
Step-by-step explanation:
Well to solve this we need to use the Pythagorean Theorem,
[tex]a^2 + b^2 = c^2[/tex].
So we have a and b which are 900 and 264,
and we need to find c or the walking distance.
So we plug in 900 and 264 for a and b.
[tex](900)^2 + (264)^2 = c^2[/tex]
So, 900*900 = 810,000
264 * 264 = 69696
810000 + 69696 = 879696
So now we have,
879696 = c^2
To get the c by itself we do,
[tex]\sqrt{879696} = \sqrt{c}[/tex]
= c = 937.921105424
c = 938 rounded to the nearest foot
Thus,
the solution is 938.
Hope this helps :)
An airplane descends during the last hour of it's flight to prepare for landing. It's altitude changes at an average of -0.15 km per minute for those 60 minutes. Write an expression to represent the total change in the airplane's elevation. ( plz answer, will give brainliest )
Answer:
-.15 km/ minute * 60 minutes
-9 km
Step-by-step explanation:
The rate is -.15 km per minute
We have 60 minutes
distance = rate times time
change in elevation is the same as the distance change
change in elevation = -.15 km/ minute * 60
change in elevation =-9 km
Answer:
(0.15 km/min) * (60 min)
Step-by-step explanation:
We see that the plane descends 0.15 kilometres every minute over the span of 60 minutes.
Use the distance-rate-time formula: d = rt, where d is the distance, r is the rate, and t is the time.
Here, our rate is r = 0.15 km/min and our time is t = 60 minutes. Then the total change in elevation is:
d = rt
d = 0.15 * 60 = 9 km
Note that we disregard the negative sign from -0.15 km/min because the question is asking for the change in elevation. Change is never a negative value.
Hence, the expression will be: 0.15 * 60, which simplifies to 9 km.
~ an aesthetics lover
You wish to accumulate $14,580 in 6 years. Payments are made at the end of every six-month period into an account earning 7.2% compounded semi-annually. Find the required payment amount to accomplish your goal.
Peter is buying office supplies. He is able to buy 3 packages of paper and 4 staplers for $40, or he is able to buy 5 packages of paper and 6 staplers for $62. How much does a package of paper cost? How much does a stapler cost?
Answer:
paper = $4 and stapler = $7
Step-by-step explanation:
let p represent paper and s represent stapler, then
3p + 4s = 40 → (1)
5p + 6s = 62 → (2)
Multiplying (1) by 5 and (2) by - 3 and adding will eliminate p
15p + 20s = 200 → (3)
- 15p - 18s = - 186 → (4)
Add (3) and (4) term by term to eliminate p
2s = 14 ( divide both sides by 2 )
s = 7
Substitute s = 7 into either of the 2 equations and evaluate for p
Substituting into (1)
3p + 4(7) = 40
3p + 28 = 40 ( subtract 28 from both sides )
3p = 12 ( divide both sides by 3 )
p = 4
Thus package of paper costs $4 and stapler costs $7
Construct a confidence interval of the population proportion at the given level of confidence.
x equals =860
n equals =1200
94% confidence
The lower bound of the confidence interval is __?
Answer:
The lower bound of the confidence interval is 0.6922.
Step-by-step explanation:
We have to calculate a 94% confidence interval for the proportion.
The sample proportion is p=0.7167.
[tex]p=X/n=860/1200=0.7167[/tex]
The standard error of the proportion is:
[tex]\sigma_p=\sqrt{\dfrac{p(1-p)}{n}}=\sqrt{\dfrac{0.7167*0.2833}{1200}}\\\\\\ \sigma_p=\sqrt{0.000169}=0.013[/tex]
The critical z-value for a 94% confidence interval is z=1.8808.
The margin of error (MOE) can be calculated as:
[tex]MOE=z\cdot \sigma_p=1.8808 \cdot 0.013=0.0245[/tex]
Then, the lower and upper bounds of the confidence interval are:
[tex]LL=p-z \cdot \sigma_p = 0.7167-0.0245=0.6922\\\\UL=p+z \cdot \sigma_p = 0.7167+0.0245=0.7412[/tex]
The 94% confidence interval for the population proportion is (0.6922, 0.7412).
Which equation, when solved, gives 8 for the value of x?
A: 5/2x+7/2x=3/4x+14
B: 5/4x-9=3/2x-12
C: 5/4x-2=3/2x-4
D: 5/2x-7=3/4x+14
Answer:
Step-by-step explanation:
C. 5x/4-2=3x/2-4
5x/4 -2=6x/4-4
+4 +4
5x/4+2=6x/4
-5x/4
2=x/4
*4
x=8
Answer:
your answer is C
Step-by-step explanation:
Box A contains 5green and 7 red balls. Box B contains 3green, 3 red and 6 yellow balls. A box is sleeted at random and a ball is drawn at random from it. What is the probability that the drawn ball is green?
Answer:
5/48Step-by-step explanation:
Given
the sample space for box A
green balls = 5
red balls= 7
sample size= 5+7= 12
the sample space for box B
green balls = 3
red balls= 3
yellow balls= 6
sample size= 3+3+6= 12
The probability of drawing a green ball from box A= 5/12
The probability of drawing a green ball from box B= 3/12= 1/4
Therefore the probability of picking a green ball from either of the boxes at random is =[tex]=\frac{5}{12} *\frac{1}{4}[/tex][tex]=\frac{5}{48}[/tex]
At 95% confidence, how large a sample should be taken to obtain a margin of error of 0.05 for the estimation of a population proportion
Answer:
A sample of 385 is needed.
Step-by-step explanation:
In a sample with a number n of people surveyed with a probability of a success of [tex]\pi[/tex], and a confidence level of [tex]1-\alpha[/tex], we have the following confidence interval of proportions.
[tex]\pi \pm z\sqrt{\frac{\pi(1-\pi)}{n}}[/tex]
In which
z is the zscore that has a pvalue of [tex]1 - \frac{\alpha}{2}[/tex].
The margin of error is:
[tex]M = z\sqrt{\frac{\pi(1-\pi)}{n}}[/tex]
95% confidence level
So [tex]\alpha = 0.05[/tex], z is the value of Z that has a pvalue of [tex]1 - \frac{0.05}{2} = 0.975[/tex], so [tex]Z = 1.96[/tex].
How large a sample:
We need a sample of n.
n is found when M = 0.05.
We dont know the true proportion, so we work with the worst case scenario, which is [tex]\pi = 0.5[/tex]
[tex]M = z\sqrt{\frac{\pi(1-\pi)}{n}}[/tex]
[tex]0.05 = 1.96\sqrt{\frac{0.5*0.5}{n}}[/tex]
[tex]0.05\sqrt{n} = 1.96*0.5[/tex]
[tex]\sqrt{n} = \frac{1.96*0.5}{0.05}[/tex]
[tex](\sqrt{n})^{2} = (\frac{1.96*0.5}{0.05})^{2}[/tex]
[tex]n = 384.16[/tex]
Rounding up
A sample of 385 is needed.
Arrange in ascending order. 8/13, 2/9,28/29
Step-by-step explanation:
he operation of sorting fractions in ascending order: 18/46, 28/41, 29/38, 29/44, 32/30 ... terms equivalents: 18/46=(2×3^2)/(2×23)=((2×3^2)÷2)/((2×23)÷2)=9/23; 28/41 already reduced to ... by the largest exponents: LCM (9, 28, 29)=2^2×3^2× 7×29=7308 Calculate LCM, the least ... /10 </13 </19
Suppose a random variable X is best described by a uniform probability distribution with range 1 to 5. Find the value of that makes the following probability statements true.
a) P(X <-a)= 0.95
b) P(X
c) P(X
d) P(X ->a)= 0.89
e) P(X >a)= 0.31
Answer:
a) 4.8
b) 2.96
c) 4.4
d) 1.44
e) 3.76
Step-by-step explanation:
What we will do is solve point by point, knowing the following:
Fx (x) = P (X <= x) = (x - 1) / 4
a) P (X <-a) = 0.95
Fx (a) = 0.95
(a -1) / 4 = 0.95
a = 1 + 0.95 * 4
a = 4.8
b) P (X <a) = 0.49
Fx (a) = 0.49
(a -1) / 4 = 0.49
a = 1 + 0.49 * 4
a = 2.96
c) P (X <a) = 0.85
Fx (a) = 0.85
(a -1) / 4 = 0.55
a = 1 + 0.85 * 4
a = 4.4
d) P (X> a) = 0.89
P (X <a) = 1 - 0.89 = 0.11
Fx (a) = 0.11
(a -1) / 4 = 0.11
a = 1 + 0.11 * 4
a = 1.44
e) P (X> a) = 0.31
P (X <a) = 1 - 0.31 = 0.69
Fx (a) = 0.69
(a -1) / 4 = 0.69
a = 1 + 0.69 * 4
a = 3.76