Answer:
A. Part a is the attachment
B. total work = 10.4kj
Explanation:
[tex]workdone=nRT1ln\frac{Vb}{Va}[/tex]
T1 = constant temperature
nRT1 = PaVa = PbVb
We write equation as
[tex]workdone =(PaVa)ln\frac{Vb}{Va}[/tex]
5ma = Pa, 5L = Va, Vb = 10L(temperature is doubled)
[tex]w1 = workdone =(5mpa*5L)ln\frac{10L}{5L}[/tex]
W1 = 25 ln2
W1 = 25 x 0.693
= 17.327kj
The isochoric expansion has no change in volume. So,
W2 = 0
Isothermal compression
[tex]w3=nRT3ln\frac{Vd}{Vc}[/tex]
T3 = constant temperature
nRT3 = PcVc = PdVd
[tex]workdone=(PcVc)ln\frac{Vd}{Vc}[/tex]
Pc = 1mpa Vc = 10L Vd = 5L
[tex]w3=(1)(10)ln\frac{5L}{10L}[/tex]
= 10x-0.693
= -6.93kj
Isochoric compression has no change in volume. Workdone w4 = 0
Total workdone = w1 + w2 + w3 + w4
= 17.33 + 0 + (-6.93) + 0
= 10.4kj
Which statement best compares coal and ores?
Both are burned for energy.
Both take millions of years to form.
Both require oxygen to form.
Both are used to make coins.
Answer:
Option 2 both take millions of years to form
Explanation:
Both coal and ores take millions of years to form.
What are ores?Ore is a naturally occurring rock or silt that has precious minerals in it that may be extracted, processed, and sold for a profit. These minerals are usually metals. Mining is the process of removing ore from the soil. The valuable metals or minerals are then removed by treating or refining the ore, frequently through smelting.
The concentration of the desired ingredient in an ore is referred to as its grade. To decide if a rock has a high enough grade to be worth mining and is therefore regarded as an ore, the value of the metals or minerals it contains must be evaluated against the expense of extraction.
Typically, oxides, sulphides, silicates, or native metals like copper or gold are the minerals of interest. To separate the valuable components from the waste rock, ore must be treated. Numerous geological processes collectively known as ore genesis are responsible for the formation of ore deposits.
Learn more about ore here:
https://brainly.com/question/4712893
#SPJ2
How far can a bus carrying small children, travel at a rate of 60 km per hour travel in 2 1/2 hours?
Explanation:
speed = 60km/hr.time = 2¹/2 hr = 5/2 hrdistance = speed × time = 60 ×5/2 = 150kmMARK ME AS BRAINLISTThe low-frequency speaker of a stereo set has a surface area of and produces 1W of acoustical power. What is the intensity at the speaker
Answer:
I = [tex]\frac{1}{4\pi \ r^2}[/tex]
we see the intensity decreases with the inverse of the distance squared
Explanation:
Intensity is defined as power per unit area,
I = P / A
in this case we have that the sound is emitted in a spherical form therefore the area is
A = 4 pi r2
therefore the intensity is
I = [tex]\frac{1}{4\pi \ r^2}[/tex]
as we see the intensity decreases with the inverse of the distance squared
The force of gravity on a person or object on the surface of a planet is called
A. gravity
ОВ.
B. free fall
OC
c. terminal velocity
D. weight
Answer:
D. Weight
Explanation:
Hope that helps:)
Matter is made of small particles to small to be seen. Which of these best describe evidence of this statement? 1. Tara’s crayons melted when she left them under the sun. 2. Kerris glass of water overflowed when she added ice. 3. Sams basketball expands as he pumps air into it. 4. Stephanie dropped a vase and it broke into pieces.
Answer:
Explanation:
I think the answer is statement no 3.
Hope it helps.
Answer:
1 Tara's crayons melted when she left them under the sun
In a physics lab experiment for the determination of moment of inertia, a team weighs an object and finds a mass of 2.15 kg. They then hang the object on a pivot located 0.163 m from the object's center of mass and set it swinging at a small amplitude. As two of the team members carefully count 113 cycles of oscillation, the third member measures a duration of 241 s. What is the moment of inertia of the object with respect to its center of mass about an axis parallel to the pivot axis
Answer:
0.339 kgm²
Explanation:
We know the period of this pendulum, T = 2π√(I/mgh) where I = moment of inertia of the object about the pivot axis, m = mass of object = 2.15 kg, g = acceleration due to gravity = 9.8 m/s² and h = distance of center of mass of object from pivot point = 0.163 m.
Since T = 2π√(I/mgh), making I subject of the formula, we have
I = mghT²/4π²
Now since it takes 241 s to complete 113 cycles, then it takes 241 s/113 cycles to complete one cycle.
So, T = 241 s/113 = 2.133 s
So, Substituting the values of the variables into I, we have
I = mghT²/4π²
I = 2.15 kg × 9.8 m/s² × 0.163 m × (2.133 s)²/4π²
I = 15.63/4π² kgm²
I = 0.396 kgm²
Now from the parallel axis theorem, I = I' + mh² where I' = moment of inertia of object with respect to its center of mass about an axis parallel to the pivot axis
I' = I - mh²
I' = 0.396 kgm² - 2.15 kg × (0.163 m)²
I' = 0.396 kgm² - 0.057 kgm²
I' = 0.339 kgm²
Four electrons and one proton are at rest, all at an approximate infiitne distance away from each other. This original arrangment of the four particles is defined as having zero electrical potential energy No work is required to bring one electron from infitinty to a location defined as the origin, while the other three particles remain at infiniuty. This is because no voltage exists near the origin until the first electron arrives. (a) Now, with the first electron remaining fixed at the origin, how much work is required to bring one of the remaining electrons from infinity to the coordinate (0 m, 2.00 m)? The other three particles remain at infinity. If this second electron was subsequently released, how fast would it be traveling once it returned to infinity? (b) Nļw, considering the two electrons fixed 2.00 m apart, how much work is required to bring the third electron from infinity to the coordinate (3.00 m, 0 m)? The other two particles remain at infinity. If this third electron was subsequently released, how fast would it be traveling once it returned to infinity? (c) Now considering the three fixed electrons at the coordinates described above. How much work is required to bring the last electron from infinity to the coordinate (3.00 m, 4.00 m)? If this forth electron was subsequently released, how fast would it be traveling once it returned to infinity? (d) Now considering the three fixed electrons at the coordinates described above. Finally, how much work is required to bring the proton from infinity to a coordinate of (1.00 m, 1.00 m)? If the proton is subsequently released and we assume that minimum separation distance between a proton and an electron is 1.00 pm, then how fast will the proton be traveling once it crashes into an electron?
Answer:
a) W = 1.63 10⁻²⁸ J, b) W = 1.407 10⁻²⁷ J, c) W = 1.68 10⁻²⁸ J,
d) W = - 4.93 10⁻²⁸ J
Explanation:
a) In this problem we have an electron at the origin, work is requested to carry another electron from infinity to the point x₂ = 0, y₂ = 2.00m
If we use the law of conservation of energy, work is the change in energy of the system
W = ΔU = U_∞ -U
the potential energy for point charges is
U =k [tex]\sum \frac{q_i q_j}{r_{ij} }[/tex]
in this case we only have two particles
U = k [tex]\frac{q_1q_2}{r_{12} }[/tex]
the distance is
r₁₂ = [tex]\sqrt{(x_2-x_1)^2 + ( y_2-y_1)^2 }[/tex]
r₁₂ =[tex]\sqrt{ 0 + ( 2-0)^2}[/tex]Ra 0 + (2-0)
r₁₂ = √2= 1.4142 m
we substitute
W = k \sum \frac{q_i q_j}{r_{ij} }
let's calculate
W = [tex]\frac{ 9 \ 10^9 (1.6 \ 10^{-19})^2 }{1.4142}[/tex] 9 109 1.6 10-19 1.6 10-19 / 1.4142
W = 1.63 10⁻²⁸ J
b) the two electrons are fixed, what is the work to bring another electron to x₃ = 3.00 m y₃ = 0
in this case we have two fixed electrons
U = k [tex]( \frac{q_1q_3}{r_{13} } + \frac{q_2q_3}{r_{23} } )[/tex]
in this case all charges are electrons
q₁ = q₂ = q₃ = q
W = U = k q² [tex]( \frac{1}{r_{13} } + \frac{1}{r_{23} } )[/tex]
the distances are
r₁₃ = [tex]\sqrt{(3-0)^2 + 0}[/tex]RA (3.00 -0) 2 + 0
r₁₃ = 3
r₂₃ = [tex]\sqrt{ 3^2 + 2^2}[/tex]Ra (3 0) 2 + (2 0) 2
r₂₃ = √13
r₂₃ = 3.606 m
let's look for the job
W = U
let's calculate
W =[tex]{9 \ 10^3 ( 1.6 10^{-19})^2 }({\frac{1}{3} + \frac{1}{3.606} } )[/tex]
W = 1.407 10⁻²⁷ J
c) the three electrons are fixed, we bring the four electron to x₄ = 3.00m,
y₄ = 4.00 m
W = U = k [tex]( \frac{q_1q_4}{r_{14 }} + \frac{q_2q_4}{r_{24} } + \frac{q_3q_4}{r_{34} } )[/tex]
all charges are equal q₁ = q₂ = q₃ = q₄ = q
W = k q² [tex](\frac{1}{r_{14} } + \frac{1}{r_{24} } + \frac{1}{r_{34} } )[/tex]
let's look for the distances
r₁₄ = [tex]\sqrt{3^2 +4^2}[/tex]
r₁₄ = 5 m
r₂₄ = [tex]\sqrt{3^2 + ( 4-2)^2}[/tex]
r₂₄ = √13 = 3.606 m
r₃₄ = [tex]\sqrt{(3-3)^2 + (4-0)^2}[/tex]
r₃₄ = 4 m
we calculate
W = 9 10⁹ (1.6 10⁻¹⁹)² [tex]( \frac{1}{5} + \frac{1}{3.606} + \frac{1}{4} )[/tex]
W = 1.68 10⁻²⁸ J
d) we take the proton to the location x5 = 1m y5 = 1m
W = U = k [tex]( \frac{q_1q_5}{r_{15} } + \frac{q_2q_5}{r_{25} } + \frac{q_3q_5}{r_{35} } + \frac{q_4q_5}{r_{45} } )[/tex]
in this case the charges have the same values but charge 5 is positive and the others negative, so the products of the charges give a negative value
W = - k q² [tex]( \frac{1}{r_{15} } + \frac{1}{r_{25} } + \frac{1}{r_{35} } + \frac{1}{r_{45} } )[/tex]
we look for distances
r₁₅ = [tex]\sqrt{ 1^2 +1^2}[/tex]Ra (1-0) 2 + (1-0) 2
r₁₅ = √ 2 = 1.4142 m
r₂₅ = [tex]\sqrt{ (2-1)^2 +1^2}[/tex]
r₂₅ = √2 = 1.4142 m
r₃₅ = [tex]\sqrt{ ( 3-1)^2 +1^2}[/tex]
r₃₅ = √5 = 2.236 m
r₄₅ = [tex]\sqrt{ (3-1)^2 + (4-1)^2}[/tex]
r₄₅ = √13 = 3.606 m
we calculate
W = - 9 10⁹ (1.6 10⁻¹⁹)² [tex]( \frac{1}{1.4142} +\frac{1}{1.4142} + \frac{1}{2.236} + \frac{1}{3.606} )[/tex]
W = - 4.93 10⁻²⁸ J
a 6.25-gram bullet traveling at 365 ms strikes and enters a 4.50-kg crate. The crate slides 0.15 m along a wood floor until it comes to rest. What is the change in kinetic energy of the system after the collision
Answer:
the change in kinetic energy of the system is 0.577 J
Explanation:
Given;
mass of the bullet, m₁ = 6.25 g = 0.00625 kg
initial velocity of the bullet, u₁ = 365 m/s
mass of the crate, m₂ = 4.5 kg
initial velocity of the crate, u₂ = 0
distance moved by the system after collision, d = 0.15 m
Determine the final velocity of the system after collision;
m₁u₁ + m₂u₂ = v (m₁ + m₂)
0.00625 x 365 + 4.5 x 0 = v(0.00625 + 4.5)
2.2813 + 0 = v(4.5063)
2.2813 = v(4.5063)
v = 2.2813 / 4.5063
v = 0.506 m/s
The change in kinetic energy of the system after collision is calculated as;
ΔK.E = ¹/₂ (m₁ + m₂)v²
ΔK.E = ¹/₂ (4.506) x 0.506²
ΔK.E = 0.577 J
Therefore, the change in kinetic energy of the system is 0.577 J
difine precision and accuracy
Canon launch is a 4.0 kg bowling ball with 50 J of kinetic energy what is the bowling ball speed
Answer:
5 m/s
Explanation:
50=1/2*4v^2
4*1/2=2
25*2=50
so...
square rood of 25 is 5
answer 5 m/s
sorry if that didn't make since
Animals conduct_______.
A. cellular respiration
B. photosynthesis
C. both cellular respiration and photosynthesis
A mole of a monatomic ideal gas at point 1 (101 kPa, 5 L) is expanded adiabatically until the volume is doubled at point 2. Then it is cooled isochorically until the pressure is 20 kPa at point 3. The gas is now compressed isothermally until its volume is back to 5 L (point 4). Finally, the gas is heated isochorically to return to point 1.
a. Draw the four processes and label the points in the pV plane.
b. Calculate the work done going from 1 to 2.
c. Calculate the pressure and temperature at point 2.
d. Calculate the temperature at point 3.
e. Calculate the temperature and pressure and point 4.
f. Calculate the work done going from from 3 to 4.
g. Calculate the heat flow into the gas going from 3 to 4. g
Answer:
(a). Check attachment.
(b). 280.305 J.
(c). 31.81 kpa; 38.26K.
(d). 24.05K.
(e). 24.05k; 40kpa.
(f). -138.6J.
Explanation:
(a). Kindly check the attached picture for the diagram showing the four process.
1 - 2 = adiabatic expansion process.
2 - 3 = Isochoric process.
3 - 4 = isothermal process.
4 - 1 = isochoric process.
(b). Recall that the process from 1 to is an adiabatic expansion process.
NB: b = 5/3 for a monoatomic gas.
Then, the workdone = (1/ 1 - 1.66) [ (p1 × v1^b)/ v2^b × v2 - (p1 × v1)].
= ( 1/ 1 - 5/3) [ (101 × 5^5/3) × 10^1 -5/3] - 101 × 5.
Thus, the workdone = 280.305 J.
(c). P2 = P1 × V1^b/ V2^b = 101 × 5^5/3/ 10^5/3 = 31.81 kpa.
T2 = P2 × V2/ R × 1 = 31.81 × 10/ 8.324 = 38.36k.
(d). The process 2 - 3 is an Isochoric process, then;
T3 = T2/P2 × P3 = 38.26/ 31.82 × 20 = 24.05K.
(e). The process 3 - 4 Is an isothermal process. Then, the temperature at 4 will be the same temperature at 3. Tus, we have the temperature; point 3 = point 4 = 24.05k.
The pressure can be determine as below;
P4 = P3 × V3/ V4 = 20 × 10/ 5 = 200/ 5 = 40 kpa.
(f) workdone = xRT ln( v4/v3) = 1 × 8.314 × 24.05 × ln (5/10) = - 138.6 J
If a wave has a speed of 1000 m/s and frequency of 500 Hz, what is the wavelength?
• 1500 Hz
• 2 m
• 0.05 m
Answer:
2 m
Explanation:
speed=frequency×wavelength
wavelength=speed/frequency
wavelength=1000/500
=2 m
If a total 50 J of work are done on an object, it's energy...
Answer:
0.0119502868 kilocalorie
Explanation:
Answer:
increases by 50
Explanation:
Which example is correctly matched with its type of friction?
A. Pushing a car that isn't moving is an example of slkiding friction.
B. A plane flying through the air is an example of static friction.
OC.
A skateboard wheels on cement is an example of rolling friction.
OD.
A sled sliding down a grassy hill is an example of fluid friction.
Answer:
A. pushing a car that isn't moving
How can you tell whether an object is neutral
or charged? What would you have to do to test
that object?
Answer:
The number of electrons that surround the nucleus will determine whether or not it is electrically charged or electrically neutral
Explanation:
a surfer talks about riding a 20-foot wave. Which measurement of waves is the surfer describing?
frequency
amplitude
wavelength
speed
60 POINTS!!
Answer:
C. Amplitude
Explanation: Amplitude is the maximum displacement from the equilibrium of a wave. Basically the height.
Magnus has reached the finals of a strength competition. In the first round, he has to pull a city bus as far as he can. One end of a rope is attached to the bus and the other is tied around Magnus's waist. If a force gauge placed halfway down the rope reads out a constant 2100 Newtons while Magnus pulls the bus a distance of 1.30 meters, how much work does the tension force do on Magnus
Answer:
Workdone = -2730 J
Explanation:
Formula for workdone is;
W = Force × Displacement
Now, according to Newton's 3rd law of motion, to every action, there is an equal and opposite reaction.
In the question given, we are told that a force gauge placed halfway down the rope reads out a constant 2100 Newtons while Magnus pulls the bus. This means that the force exerted by the rope on Magnus acts in an opposite direction to that which Magnus does to the rope.
Therefore, the force will be in the negative direction.
So;
Workdone = -2100 N × 1.3 m
Workdone = -2730 J
what is the mystery Greene discussion and why does he say it is something we should all care about
Answer:
The mystery that Greene discusses is that dark energy is causing the expansion of the universe to accelerate. However, this cannot be explained by the laws of Physics.
Explanation:
I majored in Physics
two small identical conducting spheres have charges of 2.0x10-9C and - 0.5x109 C respectively when they are placed 4cm apart, what is the force between them? If they are brought into contact and then separated by 4cm, what is the force between them?
Answer:
6
Explanation:
nothingnsbejejjdbsbzbawkje
Any change in the cross section of the vocal tract shifts the individual formant frequencies, the direction of the shift depending on just where the change in area falls along the standing wave. Constriction of the vocal tract at a place where the standing wave of a formant exhibits minimum-amplitude pressure oscillations generally causes the formant to drop in frequency; expansion of the tract at those same places raises the frequency. Three other major tools for changing the shape of the tract in such a way that the frequency of a particular formant is shifted in a particular direction are the jaw, the body of the tongue and the tip of the tongue. Moving the various articulatory organs in different ways changes the frequencies of the two lowest formants over a considerable range [18].
One way to increase formant frequency is to ________ the vocal tract at a place where the standing wave of a formant frequency exhibits minimum-amplitude pressure oscillations.
a. Stretch
b. Vibrate
c. Contract
d. Expand
Answer:
The correct answer is option D.
Explanation:
It is stated in the question that constriction of the vocal tract at a place where the standing wave of a formant exhibits minimum-amplitude pressure oscillations generally causes the formant to drop in frequency so to increase formant frequency, the vocal should expand where the standing wave of a formant exhibits minimum-amplitude pressure oscillations. The answer is D.
I hope this helps.
HURRY Which change is an example of transforming potential energy to kinetic energy
A: changing thermal energy to electrical energy
B: changing mechanical energy to radient energy
C: changing nuclear energy to radiant energy
D: changing radient energy to electrical energy
Answer:
C. changing nuclear energy to radiant energy
Explanation:
Nuclear energy takes atoms in their potential state, split them (fission) or fuse them (fusion) creating chain reactions of radiant energy. Most nuclear electrical power plants use fission, radiant energy heats water making steam to spin turbines.
Or think of the atom bomb. Definitely potential energy until the fuse starts detonation and chain reactions. The radiant kinetic energy and shock waves were horrendous.
Answer:
The answer would be C, changing nuclear energy to radiant energy
Explanation:
Welcome have a good day.
A shuttle bus slows down with an average acceleration of -2.4 m/s2. How long does it
take the bus to slow from 9.0 m/s to rest?
Answer:
[tex]\boxed {\boxed {\sf 3.75 \ seconds }}[/tex]
Explanation:
Average acceleration is found by dividing the change in acceleration by the time.
[tex]a=\frac{ v_f-v_i}{t}[/tex]
The shuttle bus has an acceleration of -2.4 meters per square second. It slows from 9.0 meters per second to rest, or 0 meters per second. Therefore:
[tex]a= -2.4 \ m/s^2 \\v_f= 0 \ m/s \\v_i= 9 \ m/s[/tex]
Substitute the values into the formula.
[tex]-2.4 \ m/s^2=\frac{0 \ m/s - 9 \ m/s}{t }[/tex]
Solve the numerator.
[tex]-2.4 \ m/s^2 = \frac{-9 \ m/s}{t}[/tex]
We want to solve for t, the time. We have to isolate the variable. Let's cross multiply.
[tex]\frac{-2.4 \ m/s^2}{1} = \frac{-9 \ m/s}{t}[/tex]
[tex]-9 \ m/s *1= -2.4 \ m/s^2 *t[/tex]
[tex]-9 \ m/s=-2.4 m/s^2*t[/tex]
t is being multiplied by -2.4. The inverse of multiplication is division, so divide both sides by -2.4
[tex]\frac{-9 \ m/s }{-2.4 \ m/s^2} =\frac{ -2.4 \ m/s^2*t}{-2.4 \ m/s^2}[/tex]
[tex]\frac{-9 \ m/s }{-2.4 \ m/s^2} =t[/tex]
[tex]3.75 \ s=t[/tex]
It takes 3.75 seconds.
Help with both questions I’ll mark brainliest
Answer:
gas, liquid, solid
sound cannot travel in space
Answer:
1. gas , liquid , gas
2.sound cannot travel in space
A vertical wire carries a current straight up in a region of the magnetic field directed north. What is the direction of the magnetic force on the current due to the magnetic field
Answer:
The direction of the force on the vertical wire is towards the East or right.
Explanation:
Using Fleming's right hand rule, the current is the middle finger pointing straight up, the magnetic field is the fore-finger pointing Northwards and then the thumb is the direction of the force on the vertical wire.
Following these conventions, the thumb points towards the East. So, the direction of the force on the vertical wire is towards the East or right.
PLZZZZ HELPPPPPPPPPppppp
Tyler and Jim race each other up a mountain on their bicycles. Tyler rides a road bike on the switchbacks of the twisting and turning mountain road. Jim rides a mountain bike and follows a direct, but steeper, straight-line path up the mountain. They start at the same time and place at the bottom of the mountain and finish at the same time and place at the top of the mountain. From start to finish a. whose distance traveled was longer? b. whose displacement was longer? c. which rider had the faster average speed? d. which rider had the faster average velocity? e. who won the race?
Answer:
Explanation:
Displacement is minimum distance between initial and final point .
Distance is total length of path covered in a journey .
a )
Tyler covered a longer distance in the journey because total length of path covered by him is longer due to curved path .
b )
Both have same displacement , because minimum distance between initial and final point in both the case is same .
c )
average speed = distance / time
as time is same for both the case ,
average speed ∝ distance
As distance covered by Tyler is more , his average speed is more .
d )
average velocity = displacement / time
As both displacement and time are same in both the case , average velocity in both the case is same .
e )
They start at the same time and place at the bottom of the mountain and finish at the same time , both have tie and nobody won the race , in spite of speed of Tyler being greater .
Galileo
o did not believe friction existed
o believed that friction stopped objects in motion
o believed that friction kept objects in motion
О
assumed that in a frictionless environment objects would never move
Answer:
object would move but it could be difficult to slow down or stop.
The dielectric constant of the interior of a protein is considerably smaller than that of water. How would this difference in dielectric constants affect the strength of an electrostatic interaction between two opposite charges with the same distance between them if the charged groups were located in the interior of the protein rather than on its surface
Answer:
the interaction in the protein is greater than the surface with water
\frac{F_i}{F_s} = \frac{\epsilon_s}{ \epsilon_i} \ > 1
Explanation:
The electric force for a charge is
F = [tex]\frac{1}{4\pi \epsilon} \ \frac{q^2}{r^2}[/tex]
In the exercise indicate that the charge is q and the distance r is maintained, the test charge is another
therefore if we use the index i for the dielectric constant ([tex]\epsilon_i[/tex]) in the protein
[tex]F_{i} = \frac{1}{4\pi \epsilon_i} \frac{q^2}{r^2}[/tex]
the electric force in water with dielectric constant ([tex]\epsilon_s[/tex])
[tex]F_s = \frac{1}{4\pi \epsilon_s} \frac{q^2}{r^2}[/tex]
[tex]\epsilon_i < \epsilon_s[/tex]
if we look for the relationship between these forces
[tex]\frac{F_i}{F_s} = \frac{\epsilon_s}{ \epsilon_i} \ > 1[/tex]
therefore the interaction in the protein is greater than the surface with water
Calculate the radiative and collisional energy losses (in keV/micron) for a 1.9 MeV electron in lead and determine the rad./coll. ratio. (b) Plexiglas is often used to shield high-energy beta emitters rather than lead, even though lead is a better shield against the bremsstrahlung photons. Both shields will stop the high-energy beta, so why is Plexiglas used instead of lead?
Answer:
Explanation:
During an energy transfer, the collision loss for an electron can be determined by using the formula:
[tex]Q = \dfrac{4mME }{(m+M)^2}[/tex]
However; from the total stopping power & power loss of the electron;
[tex]\dfrac{radiational \ energy \ loss}{colisional \ energy \ loss } = \dfrac{ZE}{800}[/tex]
where;
Z = atomic no. for lead = 82
E = 1.9 MeV
∴
radiational energy loss = collisional energy loss [tex]=\dfrac{82 \times 1.9}{800}[/tex]
= 0.19475
b)
Normally, the traditional lead shielding in its pure shape contains high brittleness. However, the functionality of this carbon group chemical element is useful for protection because it has an excessive density.
Initially, the conventional lead protection however reduces the mild clarity at the same moment as plexiglass is useful for light transmittance and readability.
Moreover, the traditional lead with its high density and thickness reduces observation features, in the meantime, the plexiglass is a whole lot higher than the stated.
Finally, plexiglass contains a high dimensional balance with an excessive dielectric constant.