There was transfer of energy of 5300 j due to a temperature difference into a system, and the entropy increased by 9 j/k, 589 K was the approximate temperature of the system.
To answer this question, we need to use the relationship between energy transfer, temperature, and entropy. The formula is given by:
ΔS = Q/T
Where ΔS is the change in entropy, Q is the energy transferred, and T is the temperature. We know that Q = 5300 J and ΔS = 9 J/K. Therefore, we can rearrange the formula to solve for T:
T = Q/ΔS
Substituting the values, we get:
T = 5300 J/9 J/K
T ≈ 589 K
Therefore, the approximate temperature of the system is 589 Kelvin. we can conclude that the transfer of energy due to the temperature difference increased the entropy of the system. This means that the system became more disordered and chaotic. The change in entropy is a measure of the amount of energy that is unavailable to do useful work. The higher the entropy, the less efficient the system becomes. In this case, the energy transfer of 5300 J caused an increase in entropy of 9 J/K. This suggests that the system is not very efficient, and there may be room for improvement in terms of energy usage. Overall, understanding the relationship between energy transfer, temperature, and entropy is essential for optimizing energy usage and improving the efficiency of systems.
To know more about temperature visit:
brainly.com/question/29897354
#SPJ11
Greenhouse gases are certain gases in the atmosphere that absorbs heat from the sun. Wich of the following is NOT a grenhouse gas?
Oxygen (O2) is not a greenhouse gas. While it is present in the atmosphere and plays a crucial role in supporting life, it does not absorb and re-emit infrared radiation, which is necessary for a gas to be classified as a greenhouse gas.
Greenhouse gases, such as carbon dioxide (CO2), methane (CH4), and water vapor (H2O), have the ability to trap heat in the Earth's atmosphere, contributing to the greenhouse effect and global warming. These gases have specific molecular structures that allow them to absorb and emit infrared radiation, effectively trapping heat and preventing it from escaping into space.
Oxygen, on the other hand, is a diatomic molecule (O2) that lacks the necessary molecular structure to absorb and re-emit infrared radiation. Instead, it primarily functions as a reactant in chemical reactions and supports combustion, making it vital for sustaining life but not a greenhouse gas.
Learn more about crucial here:
https://brainly.com/question/30722113
#SPJ11
A torque of 50.0 n-m is applied to a grinding wheel ( i=20.0kg-m2 ) for 20 s. (a) if it starts from rest, what is the angular velocity of the grinding wheel after the torque is removed?
The angular velocity of the grinding wheel after the torque is removed is 50 rad/s.
We can use the rotational version of Newton's second law, which states that the net torque acting on an object is equal to the object's moment of inertia times its angular acceleration:
τ = I α
where τ is the torque, I is the moment of inertia, and α is the angular acceleration.
Assuming that the grinding wheel starts from rest, its initial angular velocity is zero, so we can use the following kinematic equation to find its final angular velocity:
ω = α t
where ω is the final angular velocity and t is the time for which the torque is applied.
Substituting the given values, we have:
τ = I α
[tex]α = τ / I = 50.0 N-m / 20.0 kg-m^2 = 2.5 rad/s^2[/tex]
[tex]ω = α t = 2.5 rad/s^2 x 20 s = 50 rad/s[/tex]
To know more about Newton's second law refer here
https://brainly.com/question/13447525#
#SPJ11
What is most likely the color of the light whose second-order bright band forms an angle of 13. 5° if the diffraction grating has 175 lines per mm? green red violet yellow.
The second-order bright band of a diffraction grating with 175 lines per mm forming an angle of [tex]13.5^0[/tex] is most likely violet.
The angle at which the bright band forms can be determined using the equation for diffraction: [tex]m\lamba = d sin\theta[/tex], where m is the order of the bright band,[tex]\lambda[/tex] is the wavelength of light, d is the spacing between the grating lines and [tex]\theta[/tex] is the angle. In this case, m = 2, d = 1/175 mm = 0.00571 mm, and [tex]\theta =[/tex] [tex]13.5^0[/tex].
Rearranging the equation, we have [tex]\lambda = d sin\theta / m[/tex]. Plugging in the values, we find [tex]\lambda = (0.00571 mm)(sin(13.5^0))/(2) = 0.001293 mm = 1.293 nm[/tex]. Comparing this value to the visible light spectrum, we find that violet light has a wavelength ranging from approximately 380 to 450 nm. Since the calculated wavelength of 1.293 nm falls within this range, it is most likely that the colour of the light is violet.
Learn more about diffraction here:
https://brainly.com/question/12290582
#SPJ11
Your RL circuit has a characteristic time constant of 20.0 ns, and a resistance of 5.00 MΩ. (a) What is the inductance of the circuit? (b) What resistance would give you a 1.00 ns time constant, perhaps needed for quick response in an oscilloscope?
The time constant of an RL circuit is given by the product of the resistance and inductance. So, for the given circuit, we have:
τ = L/R = 20.0 ns
and R = 5.00 MΩ.
(a) Solving for L, we get:
L = Rτ =[tex](5.00 × 10^{6} Ω) × (20.0 × 10^{-9} s)[/tex] = 100 μH
So, the inductance of the circuit is 100 μH.
(b) To get a time constant of 1.00 ns, we need to solve for the resistance required:
τ = L/R = 1.00 ns
and we know L = 100 μH.
Solving for R, we get:
R = L/τ = [tex]\frac{100 × 10^{6} H}{1.00 × 10^{-9} s}[/tex] = 100 Ω
So, the resistance required for a 1.00 ns time constant is 100 Ω.
In summary, the inductance of the given circuit is 100 μH, and to achieve a 1.00 ns time constant, a resistance of 100 Ω is required. The time constant of an RL circuit is directly proportional to the inductance and inversely proportional to the resistance.
Learn more about resistance here:
https://brainly.com/question/30799966
#SPJ11
% Part (a) Calculate the angular momentum, in kilogram meters squared per second, of the ice skater spinning at 6.8 rev/s.
L1 = 23.92 ✔ Correct! 33% Part (b) He reduces his rate of rotation by extending his arms and increasing his moment of inertia. Find the value of his moment of inertia (in kilogram meters squared) if his rate of rotation decreases to 1.25 rev/s.
I2 = 3.0464
I2 = 3.046 ✔ Correct! 33% Part (c) Suppose instead he keeps his arms in and allows friction of the ice to slow him to 3.75 rev/s. What is the magnitude of the average torque that was exerted, in N ⋅ m, if this takes 11 s?
τave = 11.01|
The angular momentum is 23.92 kg·m²/s, the moment of inertia is 3.0464 kg·m², and the magnitude of the average torque is 11.01 N·m.
What is the angular momentum of an ice skater spinning at 6.8 rev/s, and how does extending his arms affect his moment of inertia and rate of rotation? Also, what is the magnitude of the average torque exerted if the skater slows down to 3.75 rev/s over 11 seconds due to friction on the ice?The angular momentum of the ice skater spinning at 6.8 rev/s is calculated and found to be 23.92 kg·m²/s.
The value of his moment of inertia is calculated to be 3.0464 kg·m² when his rate of rotation decreases to 1.25 rev/s by extending his arms and increasing his moment of inertia.
The magnitude of the average torque that was exerted is calculated to be 11.01 N·m if the ice skater keeps his arms in and allows friction of the ice to slow him to 3.75 rev/s over a period of 11 s.
Learn more about torque
brainly.com/question/6855614
#SPJ11
what are the potential environmental consequences of using synthetic fertilizers?
Use of synthetic fertilizers can lead to water pollution, soil degradation, and greenhouse gas emissions, which negatively impact ecosystems, biodiversity, and overall environmental health. To mitigate these effects, sustainable agricultural practices such should be considered.
Water pollution can occur when excessive fertilizer use leads to nutrient runoff into water bodies, causing eutrophication. This process stimulates algal blooms, which deplete oxygen levels and harm aquatic life, disrupting ecosystems and biodiversity.
Soil degradation can result from the overuse of synthetic fertilizers, as they can cause a decline in soil organic matter and contribute to soil acidification. This reduces the soil's ability to retain water, leading to decreased fertility and erosion, which in turn affects crop yield and long-term agricultural sustainability.
Greenhouse gas emissions are another concern, as the production and application of synthetic fertilizers can generate significant amounts of nitrous oxide (N2O), a potent greenhouse gas. N2O emissions contribute to climate change and can further exacerbate environmental issues such as sea level rise, extreme weather events, and loss of biodiversity.
Know more about biodiversity here:
https://brainly.com/question/13073382
#SPJ11
compared to the earth, planet x has twice the mass and twice the radius. this means that compared to the earth’s surface gravity, the surface gravity on planet x is:
Compared to the surface gravity of Earth, the surface gravity on planet X is approximately 2.63 times greater. This means that objects on planet X would feel much heavier than they would on Earth.
Surface gravity is defined as the force that pulls objects towards the center of a celestial body. The force of gravity is determined by the mass and size of the object. In the case of planet X, it has twice the mass and twice the radius of Earth.
To calculate the surface gravity of planet X compared to Earth, we can use the formula:
Surface gravity = G(Mass of celestial body) / (Radius of celestial body)²
where G is the gravitational constant.
For Earth, the mass is approximately 5.97 x 10²⁴ kg and the radius is approximately 6,371 km.
Plugging in these values, we get:
Surface gravity of Earth = (6.67 x 10⁻¹¹ N(m² /kg² )) (5.97 x 10²⁴ kg) / (6,371 km)²
Surface gravity of Earth = 9.81 m/s²
This means that the force of gravity on Earth's surface is 9.81 m/s² .
For planet X, the mass is twice that of Earth, or approximately 1.19 x 10²⁵ kg, and the radius is also twice that of Earth, or approximately 12,742 km.
Plugging in these values, we get:
Surface gravity of planet X = (6.67 x 10⁻¹¹ N(m²/kg² )) (1.19 x 10²⁵ kg) / (12,742 km)²
Surface gravity of planet X = 25.8 m/s²
Therefore, compared to the surface gravity of Earth, the surface gravity on planet X is approximately 2.63 times greater. This means that objects on planet X would feel much heavier than they would on Earth.
To know more about surface gravity, refer
https://brainly.com/question/26403335
#SPJ11
an object is thrown from the ground with an initial velocity of 100 m/s and an angle of 37° with the horizontal. how long does it take for the object to hit the ground?
We can use the kinematic equations of motion to solve for the time it takes for the object to hit the ground. The horizontal and vertical components of the velocity can be found using trigonometry:
vx = v0 cos θ = 100 cos 37° ≈ 79.5 m/s
vy = v0 sin θ = 100 sin 37° ≈ 60.2 m/s
The acceleration due to gravity is -9.8 m/s^2 (negative because it acts downwards).
Using the kinematic equation for vertical displacement:
Δy = v0y t + (1/2)at^2
Since the object starts and ends at ground level, Δy = 0. Solving for time:
0 = v0y t + (1/2)at^2
t = (-v0y ± √(v0y^2 - 2aΔy)) / a
Taking the positive value for t:
t = (-60.2 + √(60.2^2 + 2(9.8)(0))) / (-9.8) ≈ 6.20 s
Therefore, it takes about 6.20 seconds for the object to hit the ground.
To know more about kinematic refer here
https://brainly.com/question/7590442#
#SPJ11
A viewing direction which is parallel to the surface in question gives a(n) ______ view. 1), normal. 2), inclined. 3), perspective.
A viewing direction which is parallel to the surface in question gives a normal view. The correct option is (1).
A normal view is when the observer is looking directly perpendicular to the surface, giving a view that is completely orthogonal to the surface.
In this view, the observer is looking at the surface straight-on and sees the surface as it appears in its natural state, without any distortion or perspective.
A normal view is often used in technical drawings, such as engineering or architectural plans, to show the exact dimensions and angles of the object being represented.
This view is also useful for showing the orientation of objects in space, as it provides an accurate and objective representation of the object's position and shape.
In contrast, an inclined view shows the object at an angle to the surface, while a perspective view shows the object as it appears to the human eye, taking into account its distance and angle from the observer.
To know more about "Technical drawings" refer here:
https://brainly.com/question/28773186#
#SPJ11
A cylindrical capacitor has inner and outer radii at 5 mm and 15 mm, respectively, and the space between the conductors is filled with a dielectric material with relative permittivity of 2.0. The inner conductor is maintained at a potential of 100 V while the outer conductor is grounded. Find: (a) the voltage midway between the conductors, (b) the electric field midway between the conductors, and c) the surface charge density on the inner and outer conductors.
The surface charge density on the outer conductor is zero, since it is grounded and has no net charge.
(a) The voltage midway between the conductors can be calculated using the formula V = V1 - V2, where V1 is the voltage on the inner conductor and V2 is the voltage on the outer conductor. So, V = 100 V - 0 V = 100 V.
(b) The electric field midway between the conductors can be calculated using the formula E = V/d, where V is the voltage and d is the distance between the conductors. Here, the distance is the average of the inner and outer radii, which is (5 mm + 15 mm)/2 = 10 mm = 0.01 m. So, E = 100 V/0.01 m = 10,000 V/m.
(c) The surface charge density on the inner conductor can be calculated using the formula σ = ε0εrE, where ε0 is the permittivity of free space, εr is the relative permittivity, and E is the electric field. Here, σ = ε0εrE(1/r), where r is the radius of the inner conductor. So, σ = (8.85 x 10^-12 F/m)(2.0)(10,000 V/m)(1/0.005 m) = 3.54 x 10^-7 C/m^2.
The surface charge density on the outer conductor is zero, since it is grounded and has no net charge.
To know more about Electric field visit:
https://brainly.com/question/8971780
#SPJ11
Light passes from a medium of index of refraction na into a second medium of index of refraction nb-The angles of incidence and refraction are and G, respectively. Ifna 6h and the light speeds up as it enters the second medium B) ?.< ?>, and the light slows down as itanters the second medium C) ?.< ?b and the light speeds up as it enters the second medium D) ?.> ?b and the light slows down as it enters the second medium 5 E) None of the above are true
The option C) ?.< ?b and the light speeds up as it enters the second medium is the right response.
When light passes from a medium of higher refractive index (na) to a medium of lower refractive index (nb), it bends away from the normal and speeds up.
The angle of incidence (i) is larger than the angle of refraction (r), and the angle of refraction is measured with respect to the normal.
The relationship between the angles and refractive indices is given by Snell's law: na sin(i) = nb sin(r).
Since the light speeds up in the second medium, its velocity and wavelength increase, while its frequency remains constant.
Thus, the correct option is C) ?.< ?b and the light speeds up as it enters the second medium.
Learn more about "light": https://brainly.com/question/10728818
#SPJ11
true/false. determine whether each statement is true or false. justify each answer. question content area bottom part 1 a. a vector is any element of a vector space.
This statement "a vector is any element of a vector space" is True.
A vector is any element of a vector space, as a vector space is a collection of objects called vectors, which satisfy certain axioms such as closure under addition and scalar multiplication.
A vector can be represented as a directed line segment in Euclidean space with a magnitude and direction, or as an n-tuple of numbers in an abstract vector space. Therefore, a vector is by definition an element of a vector space.
To know more about vector refer here
https://brainly.com/question/29740341#
#SPJ11
calculate the range of wavelengths (in m) for x-rays given their frequency range is 30,000 to 3.0 ✕ 107 thz. Smaller Value ___________ mLarger Value ____________ m
The range of wavelengths (in meters) for x-rays with a frequency range of 30,000 THz to 3.0 × 10⁷ THz is approximately 1.0 × 10⁻¹¹ m to 1.0 × 10⁻⁸ m.
To calculate the range of wavelengths, we use the formula:
Wavelength (λ) = Speed of light (c) / Frequency (f)
The speed of light (c) is approximately 3.0 × 10⁸ m/s.
For the smaller value, use the higher frequency (3.0 × 10⁷ THz):
λ = (3.0 × 10⁸ m/s) / (3.0 × 10⁷ THz × 10¹² Hz/THz)
λ ≈ 1.0 × 10⁻¹¹ m
For the larger value, use the lower frequency (30,000 THz):
λ = (3.0 × 10⁸ m/s) / (30,000 THz × 10¹² Hz/THz)
λ ≈ 1.0 × 10⁻⁸ m
The range of wavelengths for x-rays is approximately 1.0 × 10⁻¹¹ m to 1.0 × 10⁻⁸ m.
To know more about x-rays, visit:
https://brainly.com/question/23281551
#SPJ11
Suppose that f is an automorphism of D4 such that Φ(R90) = R270 and Φ(V) = V. Determine Φ(D) and Φ(H).
Since Φ(R90) = R270, we know that Φ maps the rotation by 90 degrees to the rotation by 270 degrees. This means that Φ must preserve the cyclic structure of the rotations.
Since R90 generates all the rotations, Φ must map all the rotations to their corresponding rotations under R270, i.e. Φ(R180) = R90 and Φ(R270) = R180.
Since Φ(V) = V, we know that Φ must preserve the structure of the reflections. This means that Φ must map D to D and H to H, as D and H generate all the reflections.
Therefore, we have Φ(D) = D and Φ(H) = H.
To determine Φ(D) and Φ(H) in the automorphism of D4, we can use the given information: Φ(R90) = R270 and Φ(V) = V.
Step 1: Since Φ is an automorphism, it preserves the group operation. We have Φ(R90) = R270, so applying Φ(R90) twice gives Φ(R90) * Φ(R90) = R270 x R270.
Step 2: Using the property that R90 x R90 = R180, we have Φ(R180) = R270 * R270 = R180.
Step 3: Next, we need to find Φ(D). We know that D = R180 x V, so Φ(D) = Φ(R180 x V) = Φ(R180) x Φ(V) = R180 * V = D.
Step 4: Finally, we determine Φ(H). We know that H = R90 V, so Φ(H) = Φ(R90 x V) = Φ(R90) x Φ(V) = R270 x V = H.
In conclusion, Φ(D) = D and Φ(H) = H for the given automorphism of D4.
To know more about cyclic structure, visit:
https://brainly.com/question/9408873
#SPJ11
A proton (mass = ) moves with an initial velocity at the origin in a uniform magnetic field . To an observer on the negative x axis the proton appears to spiral:in the ____counter-clockwise clockwise
A proton moving in a uniform magnetic field will appear to spiral in a clockwise direction to an observer on the negative x-axis.
When a charged particle, like a proton, enters a uniform magnetic field, it experiences a force called the Lorentz force, which acts perpendicular to both its velocity and the magnetic field direction. This force causes the proton to move in a circular path. As the proton moves through the magnetic field, its path traces a spiral shape. The direction of the spiral (clockwise or counter-clockwise) depends on the observer's position and the direction of the magnetic field.
In this case, the observer is located on the negative x-axis. Since the proton has a positive charge and follows the right-hand rule for magnetic force, it will spiral in a clockwise direction when viewed from this perspective. The right-hand rule states that if you point your thumb in the direction of the velocity and your fingers in the direction of the magnetic field, your palm will face the direction of the force on a positive charge. Consequently, the proton's path will appear as a clockwise spiral to the observer on the negative x-axis.
To know more about the uniform magnetic field, click here;
https://brainly.com/question/1594227
#SPJ11
A dam is used to hold back a river. The dam has a height H = 12 m and a width W = 10 m. Assume that the density of the water is = 1000 kg/m . (a) Determine the net force on the dam. (b) Why does the thickness of the dam increase with depth?
(a) The net force on the dam is approximately 14,126,400 N.
(b) The thickness of the dam increases with depth to counteract increasing hydrostatic pressures and maintain structural stability.
(a) The hydrostatic pressure of the water on the dam determines the net force.
Formula for hydrostatic pressure at a given depth in a fluid:
Pressure = Density x Gravity x Depth
The weight of the water above the dam causes pressure at its base. Based on water density (ρ) of 1000 kg/m³ and gravity acceleration (g) of 9.81 m/s², the dam base pressure is:
Pressure = 117720 N/m² (Pascal)
= 1000 kg/m³ × 9.81 m/s² x 12 m
The dam's base area is 12 m high and 10 m wide:
Area = 12 m x 10 m
= 120 m².
Now we can compute the dam's net force:
Force = Pressure × Area
= 14126400 N (117720 N/m² x 120 m²).
The dam has 14,126,400 N net force.
(b) Water pressure increases with depth, therefore the dam thickens. Because the water above the dam weighs more, it must sustain stronger hydrostatic pressures as it travels deeper. To resist these stresses and prevent structural failure, the dam's thickness must grow with depth. This uniformly distributes pressure and stabilises the dam by holding back water.
Learn more about hydrostatic pressures, here:
https://brainly.com/question/33722056
#SPJ12
The force on the dam is calculated based on the average water pressure and the area of the dam, resulting in an approximate force of 7.08 * 10^5 Newtons. The thickness of the dam increases with depth due to the increased water pressure.
Explanation:(a) To determine the force on the dam we use the concept of physics where the force exerted on the dam by the water is the average pressure times the area of contact (F = pA). Considering the dam has a height H = 12 m and a width W = 10 m, and that the density of the water is 1000 kg/m³, we must consider the average depth of the water, which is half the height of the dam. This is because water pressure increases linearly with depth.
The force is calculated by multiplying the pressure at the average depth (1000 kg/m³ * 9.8 m/s² * 6m) by the area of the dam (10m * 12m), resulting in an approximate force of 7.08 * 10^5 Newtons.
(b) The thickness of the dam increases with depth because the pressure exerted by the water on the dam increases with depth. As the depth of the water increases, so does the pressure it exerts. Therefore, to avoid cracking or collapsing under the increased pressure, the dam is made thick towards the bottom where the pressure is higher.
Learn more about Force on Dam here:https://brainly.com/question/31966157
#SPJ12
10-4. calculate the required diameter for certified-capacity liquid rupture discs for the following conditions. assume a liquid specific gravity of 1.2 for all cases. Liquid flow Set pressure Overpressure Backpressure a. 500 gpm b. 100 gpm c. 5 m/s d. 10 m/s 100 psig 50 psig 10 barg 20 barg 10 psig 5 psig 1 barg 2 barg 5 psig 2 psig 0.5 barg 1 barg
The required diameter for certified-capacity liquid rupture discs for the given conditions are 6.08 inches for 500 gpm, 3.07 inches for 100 gpm, 1.29 inches for 5 m/s, and 1.60 inches for 10 m/s.
To calculate the required diameter for certified-capacity liquid rupture discs for the given conditions, we first need to determine the burst pressure for each case. The burst pressure is calculated using the following formula:
Burst Pressure = Set Pressure + Overpressure - Backpressure
Using the specific gravity of 1.2 for all cases, we can calculate the burst pressure for each scenario as follows:
a. 500 gpm: Burst Pressure = 100 psig + 50 psig - 10 psig = 140 psig
b. 100 gpm: Burst Pressure = 100 psig + 50 psig - 5 psig = 145 psig
c. 5 m/s: Burst Pressure = 10 barg + 1 barg - 0.5 barg = 10.5 barg
d. 10 m/s: Burst Pressure = 20 barg + 2 barg - 1 barg = 21 barg
Once we have the burst pressure, we can use the specific gravity and the following formula to calculate the required diameter of the rupture disc:
Diameter = (Flow Rate * 60 * Specific Gravity) / (Burst Pressure * 0.8 * 3.14)
Where:
Flow Rate = Liquid flow in gallons per minute (gpm) or meters per second (m/s)
Specific Gravity = 1.2
Burst Pressure = Calculated burst pressure in psig or barg
Using the above formula, we can calculate the required diameter for each scenario as follows:
a. 500 gpm: Diameter = (500 * 60 * 1.2) / (140 * 0.8 * 3.14) = 6.08 inches
b. 100 gpm: Diameter = (100 * 60 * 1.2) / (145 * 0.8 * 3.14) = 3.07 inches
c. 5 m/s: Diameter = (5 * 60 * 1.2) / (10.5 * 0.8 * 3.14) = 1.29 inches
d. 10 m/s: Diameter = (10 * 60 * 1.2) / (21 * 0.8 * 3.14) = 1.60 inches
Therefore, the required diameter for certified-capacity liquid rupture discs for the given conditions are 6.08 inches for 500 gpm, 3.07 inches for 100 gpm, 1.29 inches for 5 m/s, and 1.60 inches for 10 m/s.
To know more about Specific gravity visit:
https://brainly.com/question/31485690
#SPJ11
a solid disk of radius 9.00 cm and mass 1.15 kg, which is rolling at a speed of 3.50 m/s, begins rolling without slipping up a 13.0° slope. How long will it take for the disk to come to a stop?
The disk will come to a stop after 9.55 s.
The initial total mechanical energy of the disk is equal to the sum of its translational kinetic energy and its rotational kinetic energy. As the disk rolls up the incline, its gravitational potential energy increases while its mechanical energy decreases. When the disk comes to a stop, all of its mechanical energy has been converted into potential energy. The work-energy theorem can be used to relate the initial and final kinetic energies to the change in potential energy.
First, we need to find the initial mechanical energy of the disk:
Ei = 1/2mv² + 1/2Iω², where I = 1/2mr² for a solid diskEi = 1/2(1.15 kg)(3.50 m/s)² + 1/2(1/2)(1.15 kg)(0.09 m)²(3.50 m/s)/0.09 mEi = 2.542 JAt the top of the incline, the potential energy of the disk is equal to its initial mechanical energy:
mgh = Ei(1.15 kg)(9.81 m/s²)(0.09 m)(sin 13.0°) = 2.542 Jh = 0.196 mThe final kinetic energy of the disk is zero when it comes to a stop at the top of the incline. The work done by friction is equal to the change in kinetic energy:
W = ΔK = -Eiμkmgd = -Ei, where d = h/sin 13.0° is the distance along the inclineμk = -Ei/mgdsin 13.0°μk = -2.542 J/(1.15 kg)(9.81 m/s²)(0.196 m)/(sin 13.0°)μk = 0.291The frictional force is given by:
f = μkmg = (0.291)(1.15 kg)(9.81 m/s²)f = 3.35 NThe torque due to friction is given by:
τ = fr = (3.35 N)(0.09 m)τ = 0.302 N·mThe torque due to the net force (gravitational force minus frictional force) is given by:
τ = Iα = (1/2mr²)αα = (g sin 13.0° - f/r)/(1/2r)α = (9.81 m/s²)(sin 13.0°) - (3.35 N)/(0.09 m)/(1/2)(0.09 m)α = 4.25 rad/s²The angular velocity of the disk at any time t is given by:
ω = ω0 + αtThe linear velocity of the disk at any time t is given by:
v = rωThe distance traveled by the disk at any time t is given by:
d = h + x = h + vt - 1/2at²At the instant the disk comes to a stop, its final velocity is zero. We can use the above equations to solve for the time it takes for the disk to come to a stop:
v = rω = 0ω = 0t = -ω0/αt = -3.50 m/s/(0.09 m)(4.25 rad/s²)t = 9.55 sTo learn more about rolling speed, here
https://brainly.com/question/14212372
#SPJ4
determine the magnetic flux through the center of a solenoid having a radius r = 2.10 cm. the magnetic field within the solenoid is 0.52 t.
In conclusion, the magnetic flux through the center of a solenoid with a radius of 2.10 cm and a magnetic field of 0.52 T is 0.00072 Wb.
To determine the magnetic flux through the center of a solenoid with a radius of 2.10 cm and a magnetic field of 0.52 T, we need to use the formula for magnetic flux, which is Φ = B × A, where B is the magnetic field and A is the area of the surface perpendicular to the field.
Since the solenoid has a cylindrical shape, we can use the formula for the area of a circle, which is A = πr^2, where r is the radius of the circle. Therefore, the area of the solenoid is A = π(0.021)^2 = 0.001385 m^2.
Substituting the values of B and A into the formula for magnetic flux, we get Φ = (0.52 T) × (0.001385 m^2) = 0.00072 Wb.
Therefore, the magnetic flux through the center of the solenoid is 0.00072 Wb.
To know more about solenoid visit:
https://brainly.com/question/15504705
#SPJ11
In pushing a 0.024-kg dart into a toy dart gun, you have to exert an increasing force that tops out at 7.0 N when the spring is compressed to a maximum value of 0.16 m .
Part A
What is the launch speed of the dart when fired horizontally?
Part B
Does your answer change if the dart is fired vertically?
Part A: the launch speed of the dart when fired horizontally is 6.67 m/s. Part B: If the dart is fired vertically, the launch speed would be different as the force of gravity would act on the dart in addition to the force from the spring.
To calculate the launch speed of the dart, we can use the principle of conservation of mechanical energy, which states that the initial mechanical energy of the system is equal to the final mechanical energy of the system neglecting any non-conservative forces such as air resistance. At the start of the process, the spring has only potential energy, which is given by:
U = (1/2)kx^2
where k is the spring constant and x is the maximum compression of the spring. At maximum compression, all of the potential energy is converted to kinetic energy of the dart, which is given by:
K = (1/2)mv^2
where m is the mass of the dart and v is its velocity.
Part A:
To calculate the launch speed of the dart when fired horizontally, we need to find the spring constant k. We can do this by using the maximum force exerted on the dart and the maximum compression of the spring:
F = kx
where F = 7.0 N and x = 0.16 m. Solving for k, we get:
k = F/x = 7.0 N/0.16 m = 43.75 N/m
Now we can use this value of k to calculate the launch speed of the dart:
(1/2)kx^2 = (1/2)mv^2
Solving for v, we get:
v = sqrt[(kx^2)/m] = sqrt[(43.75 N/m)(0.16 m)^2/(0.024 kg)] = 6.67 m/s
So, the launch speed of the dart when fired horizontally is 6.67 m/s.
Part B:
The launch speed of the dart would be different if it were fired vertically. This is because the force of gravity would act on the dart in addition to the force from the spring. The force from the spring would act in the opposite direction of gravity, so the dart would not travel as far. To calculate the launch speed in this case, we would need to consider the forces acting on the dart and use the principle of conservation of mechanical energy again.
Therefore, Part A: When the dart is shot horizontally, its launch speed is 6.67 m/s. Part B: The launch speed would change if the dart was fired vertically because gravity's pull on the dart would be added to the spring's force.
To learn more about projectile motion click:
https://brainly.com/question/29545516
#SPJ1
According to the Second Law of Thermodynamics, in order for a reaction to be spontaneous which value must increase? OA) ASsurr B) ASuniverse OC) AHexn OD) AS sys Ο Ε) ΔΤ
According to the Second Law of Thermodynamics, in order for a reaction to be spontaneous ASuniverse value must increase,
Option(B)
The Second Law of Thermodynamics states that the total entropy of an isolated system always increases over time, and spontaneous processes are those that increase the total entropy of the system and its surroundings.In order for a reaction to be spontaneous, the change in the total entropy of the system and its surroundings, ΔS_universe, must be positive. This means that either the entropy of the system (ΔS_sys) must increase or the entropy of the surroundings (ΔS_surr) must decrease.
The entropy of the system can increase due to an increase in temperature or an increase in the number of energetically equivalent microstates available to the system. On the other hand, the entropy of the surroundings can decrease due to a decrease in temperature or a decrease in the number of energetically equivalent microstates available to the surroundings. The Second Law of Thermodynamics requires that the total entropy of the universe (system and surroundings) must increase in order for a process to occur spontaneously. If ΔS_universe is negative, the reaction will not occur spontaneously. Option(B)
For such more questions on spontaneous
https://brainly.com/question/29315358
#SPJ11
According to the Second Law of Thermodynamics, in order for a reaction to be spontaneous and the value must increase is B) ASuniverse .
What is the Second Law of ThermodynamicsThe Second Law of Thermodynamics is engaging attention the concept of deterioration, that is a measure of the disorder or randomness of a structure. It states that the entropy of an unique scheme tends to increase over period.
In the context of a related series of events, the deterioration change can be detached into two components: the deterioration change of bureaucracy (ASsys) and the entropy change of the environment (ASsurr).
Learn more about Second Law of Thermodynamics from
https://brainly.com/question/30600157
#SPJ4
You are flying at 0.97 c with respect to Kara. At the exact instant you pass Kara, she fires a very short laser pulse in the same direction you're heading.After 1.0 s has elapsed on Kara's watch, what does Kara say the distance is between you and the laser pulse?
Kara would say that the distance between someone and the laser pulse is 0.243 meters after 1.0 second has elapsed on someone's watch.
According to special relativity, the time dilation effect occurs when an object is moving relative to an observer. The moving object experiences time slower than the stationary observer.
The equation for length contraction in special relativity is given by:
L' = L / γ
Where:
L' is the contracted length observed by the moving observer.
L is the rest length of the object at rest.
γ (gamma) is the Lorentz factor given by γ = 1 / [tex]\sqrt{ (1 - v^{2} /c^{2})}.[/tex]
The laser pulse is emitted at the exact instant you pass Kara and travels in the same direction as you. Let's assume the rest length of the laser pulse is 1 meter (L = 1 meter) in Kara's frame of reference.
γ = 1 / [tex]\sqrt{(1 - v^{2}/c^{2})}[/tex]
= 1 / [tex]\sqrt{(1 - 0.97^{2})}[/tex]
= 1 / [tex]\sqrt{(0.0591)}[/tex]
= 1 / 0.2429
= 4.11
L' = L / γ
= 1 meter / 4.11
= 0.243 meters
To learn more about the laser pulse, follow the link:
https://brainly.com/question/6845524
#SPJ12
A proton moves along the x-axis with vx=1.0�107m/s.
a)
As it passes the origin, what are the strength and direction of the magnetic field at the (0 cm, 1 cm, 0 cm) position? Give your answer using unit vectors.
Express your answer in terms of the unit vectors i^, j^, and k^. Use the 'unit vector' button to denote unit vectors in your answer.
The magnetic field at the point (0 cm, 1 cm, 0 cm) is B = 0 i^ + 0 j^ + 1.6×10^-7 k^.
A proton moving along the x-axis with a velocity of 1.0×107m/s generates a magnetic field. At the position (0 cm, 1 cm, 0 cm), the strength and direction of the magnetic field can be determined using the right-hand rule. The direction of the magnetic field is perpendicular to both the velocity of the proton and the position vector at the point (0 cm, 1 cm, 0 cm).
Expressing the answer using unit vectors, the magnetic field can be written as B = Bx i^ + By j^ + Bz k^, where i^, j^, and k^ are unit vectors in the x, y, and z directions, respectively. The magnitude of the magnetic field is given by B = μ0qv/4πr2, where μ0 is the permeability of free space, q is the charge of the proton, v is the velocity of the proton, and r is the distance between the proton and the point (0 cm, 1 cm, 0 cm).
Using this formula, the strength of the magnetic field at the point (0 cm, 1 cm, 0 cm) can be calculated. The distance between the proton and the point is r = (1+0+0.01) cm = 0.01005 m. Plugging in the values, we get B = (4π×10^-7 Tm/A)(1.6×10^-19 C)(1.0×10^7 m/s)/(4π(0.01005 m)^2) = 1.6×10^-7 T.
The direction of the magnetic field can be determined using the right-hand rule. Since the velocity of the proton is in the positive x-direction, and the position vector is in the positive y-direction, the magnetic field must be in the positive z-direction.
To know more about the magnetic field, click here;
https://brainly.com/question/14848188
#SPJ11
A single loop of copper wire lying flat in a plane, has an area of 9.00 cm2 and a resistance of 1.80 Ω A uniform magnetic field points perpendicular to the plane of the loop. The field initially has a magnitude of 0.500 T, and the magnitude increases linearly to 3.50 T in a time of 1.10 s. What is the induced current (in mA) in the loop of wire over this time? mA
The induced current in the loop is approximately -13.1 mA over the time interval considered.
The induced current in the loop can be found using Faraday's law of electromagnetic induction, which states that the induced emf in a loop is equal to the negative rate of change of magnetic flux through the loop. The magnetic flux through the loop is given by the product of the magnetic field and the area of the loop. The induced emf is related to the induced current and the resistance of the loop by Ohm's law.
A) The initial magnetic flux through the loop is:
Φ1 = B1A = (0.500 T)(9.00 cm²)(10⁻⁴ m²/cm²) = 0.00450 Wb
The final magnetic flux through the loop is:
Φ2 = B2A = (3.50 T)(9.00 cm²)(10⁻⁴ m²/cm²) = 0.0315 Wb
The rate of change of magnetic flux is:
ΔΦ/Δt = (Φ2 - Φ1)/Δt = (0.0315 Wb - 0.00450 Wb)/1.10 s = 0.0236 Wb/s
B) The induced emf in the loop is:
emf = -dΦ/dt
= -0.0236 V
C) The induced current in the loop is:
I = emf/R = (-0.0236 V)/(1.80 Ω)
= -0.0131 A
D) Converting the current to milliamperes, we get:
I = -13.1 mA
As a result, for the time frame studied, the induced current in the loop is roughly -13.1 mA.
To know more about the Magnetic field, here
https://brainly.com/question/15392369
#SPJ4
A Copper wire has a shape given by a radius that increases as R(x)= aex + b. Its initial radius is .45 mm and final radius is 9.67 mm and its horizontal length is 38 cm. Find its resistance.
The resistance of the copper wire with a shape given by R(x) = aex + b, initial radius of 0.45 mm, final radius of 9.67 mm, and horizontal length of 38 cm is approximately 0.100 ohms, calculated using the formula R = ρL/A.
Shape of copper wire is given by R(x) = aex + b, where x is the horizontal distance along the wire.
Initial radius of the wire is 0.45 mm.
Final radius of the wire is 9.67 mm.
Horizontal length of the wire is 38 cm.
To find the resistance of the copper wire, we need to use the formula:
R = ρL/A
where R is the resistance, ρ is the resistivity of copper, L is the length of the wire, and A is the cross-sectional area of the wire.
First, we need to find the length of the wire. We are given that the horizontal length of the wire is 38 cm. However, we need to find the actual length of the wire, taking into account the increase in radius.
We can use the formula for the arc length of a curve:
L = ∫√(1 + (dy/[tex]dx)^2[/tex] ) dx
where dy/dx is the derivative of the function R(x) with respect to x.
Taking the derivative of R(x), we get:
dR/dx = [tex]ae^x[/tex]
Substituting this into the formula for L, we get:
L = ∫√(1 + [tex](ae^x)^2[/tex]) dx
= ∫√(1 + [tex]a^2e^2x)[/tex] dx
= (1/a) ∫√([tex]a^2e^2x[/tex] + 1) d(aex)
Let u = aex + 1/a, then du/dx = [tex]ae^x[/tex] and dx = du/[tex]ae^x[/tex]
Substituting these into the integral, we get:
L = (1/a) ∫√([tex]u^2 - 1/a^2[/tex]) du
= (1/a) [tex]sinh^{(-1[/tex])(aex + 1/a)
Now we can substitute in the values for a, x, and the initial and final radii to get the length of the wire:
a = (9.67 - 0.45)/
= 8.22
x = 38/8.22
= 4.62
L = (1/8.22) [tex]sinh^{(-1[/tex])(8.22*4.62 + 1/8.22)
= 47.24 cm[tex]e^1[/tex]
Next, we need to find the cross-sectional area of the wire at any given point along its length. We can use the formula for the area of a circle:
A = π[tex]r^2[/tex]
where r is the radius of the wire.
Substituting in the expression for R(x), we get:
r = R(x)/2
= (aex + b)/2
So the cross-sectional area of the wire is:
A = π[(aex + b)/[tex]2]^2[/tex]
= π(aex +[tex]b)^{2/4[/tex]
Now we can substitute in the values for a, b, and the initial and final radii to get the cross-sectional area at the beginning and end of the wire:
a = (9.67 - 0.4[tex]5)/e^1[/tex]
= 8.22
b = 0.45
A_initial = π(0.4[tex]5)^2[/tex]
= 0.635 [tex]cm^2[/tex]
A_final = π(9.[tex]67)^2[/tex]
= 930.8 [tex]cm^2[/tex]
Finally, we can use the formula for resistance to calculate the resistance of the wire:
ρ = 1.68 x
For more such questions on resistance, click on:
https://brainly.com/question/30901006
#SPJ11
The resistance of the copper wire is approximately [tex]1.00 * 10^{-4}[/tex] Ω.
To find the resistance of the copper wire, we need to determine the resistance per unit length and then multiply it by the length of the wire.
Given:
Initial radius, r1 = 0.45 mm = 0.045 cm
Final radius, r2 = 9.67 mm = 0.967 cm
Horizontal length, L = 38 cm
The resistance of a cylindrical wire is given by the formula:
R = ρ * (L / A)
where ρ is the resistivity of copper, L is the length of the wire, and A is the cross-sectional area of the wire.
The cross-sectional area can be calculated using the formula:
A = π * [tex]r^2[/tex]
where r is the radius of the wire at a particular point.
Let's calculate the values:
Initial cross-sectional area, A1 = π * [tex](0.045 cm)^2[/tex]
Final cross-sectional area, A2 = π * [tex](0.967 cm)^2[/tex]
Now, we can calculate the resistance per unit length:
Resistance per unit length, R' = ρ / A
Finally, we can calculate the resistance of the wire:
Resistance, R = R' * L
To perform the exact calculation, we need the value of the resistivity of copper (ρ). The resistivity of copper at room temperature is approximately [tex]1.68 * 10^{-8}[/tex] Ω·m. Assuming this value, we can proceed with the calculation.
ρ = [tex]1.68 * 10^{-8}[/tex] Ω·m
L = 38 cm
A1 = π *[tex](0.045 cm)^2[/tex]
A2 = π * [tex](0.967 cm)^2[/tex]
R' = ρ / A1
R = R' * L
Let's plug in the values and calculate:
A1 = π * [tex](0.045 cm)^2 = 0.00636 cm^2[/tex]
A2 = π * [tex](0.967 cm)^2 = 0.9296 cm^2[/tex]
R' = ρ / A1 = ([tex]1.68 * 10^{-8}[/tex] Ω·m) / [tex](0.00636 cm^2)[/tex] ≈ [tex]2.64 * 10^{-6}[/tex] Ω/cm
R = R' * L = ([tex]2.64 * 10^{-6 }[/tex] Ω/cm) * (38 cm) ≈ [tex]1.00 * 10^{-4}[/tex] Ω
Therefore, the resistance of the copper wire is approximately [tex]1.00 * 10^{-4}[/tex] Ω.
To learn more about resistance from the given link
https://brainly.com/question/29457983
#SPJ4
A carpet which is 10 meters long is completely rolled up. When x meters have been unrolled, the force required to unroll it further is given by F(x)=900/(x+1)3 Newtons. How much work is done unrolling the entire carpet?
A carpet which is 10 meters long is completely rolled up. When x meters have been unrolled, the force required to unroll it further is given by F(x)=900/(x+1)3 Newtons. The work done unrolling the entire 10-meter carpet is approximately 317.74 joules.
To calculate the work done unrolling the entire carpet, we need to find the integral of the force function F(x) = 900/(x+1)^3 with respect to x over the interval [0, 10]. This will give us the total work done in joules.
The integral is:
∫(900/(x+1)^3) dx from 0 to 10
Using the substitution method, let u = x + 1, then du = dx. The new integral becomes:
∫(900/u^3) du from 1 to 11
Now, integrating this expression, we get:
(-450/u^2) from 1 to 11
Evaluating the integral at the limits, we have:
(-450/121) - (-450/1) ≈ 317.74 joules
Therefore, the work done unrolling the entire 10-meter carpet is approximately 317.74 joules.
Learn more about work here:
https://brainly.com/question/31655489
#SPJ11
A 20o full-depth steel spur pinion with 18 teeth is to transmit 2.5 hp at a speed of 600 rev/min. Determine appropriate values for the face width and diametral pitch based on an allowable bending stress of 10kpsi.
The appropriate values for the face width and diametral pitch are 0.02 in and 7.73 teeth/in, respectively.
To determine the face width and diametral pitch of a 200 full-depth steel spur pinion with 18 teeth that can transmit 2.5 hp at a speed of 600 rev/min, we must first consider the allowable bending stress of 10kpsi.
Using the equation P = (2πNT)/60, where P is the power transmitted, N is the speed in revolutions per minute, and T is the torque, we can solve for T.
Thus, T = (P x 60)/(2πN).
Substituting the given values, we get T = (2.5 x 60)/(2π x 600) = 0.0631 lb-ft.
Next, we can use the equation T = (π/2)σb[(d²)/dp], where σb is the allowable bending stress, d is the pitch diameter, and dp is the diametral pitch.
Rearranging the equation, we get dp = (π/2)σb(d²)/T.
Substituting the given values and solving for dp, we get dp = 7.73 teeth/in.
To determine the face width, we can use the equation F = (2KTb)/(σbY), where F is the face width, K is the load distribution factor, Tb is the transmitted torque, and Y is the Lewis form factor.
Substituting the given values, we get F = (2 x 1.25 x 0.0631)/(10 x 0.154) = 0.0195 in or approximately 0.02 in.
Learn more about diametral pitch at
https://brainly.com/question/29887709
#SPJ11
Calculate the de Broglie wavelength of (a) a 0.998 keV electron (mass = 9.109 x 10-31 kg), (b) a 0.998 keV photon, and (c) a 0.998 keV neutron (mass = 1.675 x 10-27 kg). (a) Number Units (b) Number Units (c) Number Units
(a) The de Broglie wavelength of a 0.998 keV electron can be calculated using the formula λ = h / p, where λ is the wavelength, h is the Planck constant, and p is the momentum of the electron.
Plugging in the values, we get:
[tex]λ = h / p = h / √(2mE)[/tex]
where m is the mass of the electron, E is its energy, and h is the Planck constant.
Substituting the values, we get:
[tex]λ = 6.626 x 10^-34 J.s / √(2 x 9.109 x 10^-31 kg x 0.998 x 10^3 eV x 1.602 x 10^-19 J/eV)[/tex]
[tex]λ = 3.86 x 10^-11 m[/tex]
Therefore, the de Broglie wavelength of a 0.998 keV electron is 3.86 x 10^-11 meters.
(b) For a photon, the de Broglie wavelength can be calculated using the formula λ = h / p, where p is the momentum of the photon. Since photons have no rest mass, their momentum can be calculated using the formula p = E / c, where E is the energy of the photon and c is the speed of light.
Plugging in the values, we get:
[tex]λ = h / p = h / (E / c)[/tex]
[tex]λ = hc / E[/tex]
Substituting the values, we get:
[tex]λ = (6.626 x 10^-34 J.s x 3 x 10^8 m/s) / (0.998 x 10^3 eV x 1.602 x 10^-19 J/eV)[/tex]
λ = 2.48 x 10^-10 m
Therefore, the de Broglie wavelength of a 0.998 keV photon is 2.48 x 10^-10 meters.
(c) The de Broglie wavelength of a 0.998 keV neutron can be calculated using the same formula as for an electron: λ = h / p, where p is the momentum of the neutron. However, since the mass of the neutron is much larger than that of an electron, its de Broglie wavelength will be much smaller.
Plugging in the values, we get:
[tex]λ = h / p = h / √(2mE)[/tex]
Substituting the values, we get:
[tex]λ = 6.626 x 10^-34 J.s / √(2 x 1.675 x 10^-27 kg x 0.998 x 10^3 eV x 1.602 x 10^-19 J/eV)[/tex]
[tex]λ = 2.20 x 10^-12 m[/tex]
Therefore, the de Broglie wavelength of a 0.998 keV neutron is 2.20 x 10^-12 meters.
In summary, the de Broglie wavelength of a 0.998 keV electron is 3.86 x 10^-11 meters, the de Broglie wavelength of a 0.998 keV photon is 2.48 x 10^-10 meters, and the de Broglie wavelength of a 0.998 keV neutron is 2.20 x 10^-12 meters.
Learn more about Broglie wavelength here:
https://brainly.com/question/17295250
#SPJ11
What conditions must n satisfy to make x^2 test valid?
N must be equal to 10 or more
N must be equal to 5 or more
N must be large enough so that for every cell the expected cell count will be equal to 10 or more
N must be large enough so that for every cell the expected cell count will be equal to 5 or more
For the chi-square (x^2) test to be valid, N must be large enough so that for every cell the expected cell count will be equal to 5 or more.
To make the x^2 test valid, N must be large enough so that for every cell the expected cell count will be equal to 5 or more. In other words, N must be such that each cell in the contingency table has a sufficient number of observations to ensure that the test is reliable. Some guidelines suggest that N should be at least 10 or more, while others suggest that N should be at least 5 or more. However, the most important consideration is to ensure that the expected cell count is not too low, as this can lead to inaccurate or misleading results. Therefore, the key condition for a valid x^2 test is to have a sufficiently large sample size to ensure that each cell has an expected count of at least 5.
To know more about chi-square visit :-
https://brainly.com/question/16749509
#SPJ11
The use of hydraulic fracturing continues to increase significantly, as more
easily accessible oil and gas reservoirs have declined and companies move to develop
unconventional oil and gas formations. Hydraulic fracturing is used for oil
and/or gas production in all 33 U.S. states where oil and natural gas production
takes place. According to industry estimates, hydraulic fracturing has been applied
to more than 1 million wells nationwide. (p. 71)
State whether or not the following sentences have plagiarized the passage. If they did plagiarize the passage explain why it is plagiarism?
a. As of March 2012, hydraulic fracturing has been applied to more than 1 million
wells nationwide.
b. Hydraulic fracturing has become more prevalent nationwide. More than one million
wells have been created.
c. According to the Congressional Digest, more than one million wells in the United
States use hydraulic fracturing (Congressional Digest, 71).
a. This sentence is plagiarized. It directly copies the original passage without proper citation.
b. This sentence is plagiarized. Although it rephrases the original sentence, it still uses the same structure and key phrases without proper citation.
c. This sentence is not plagiarized. It rephrases the original sentence and cites the source as the Congressional Digest.
About plagiarizedPlagiarized or often called plagiarism is plagiarism or taking other people's essays, opinions, etc. and making it appear as if they were their own compositions and opinions. Plagiarism can be considered as a crime because it steals other people's copyrights.
Learn More About How not to plagiarize at https://brainly.com/question/397668
#SPJ11