The question is incomplete! Complete question along with answer and step by step explanation is provided below.
Question:
There is a 0.9986 probability that a randomly selected 27-year-old male lives through the year. A life insurance company charges $174 for insuring that the male will live through the year. If the male does not survive the year, the policy pays out $90 comma 000 as a death benefit. Complete parts (a) through (c) below.
a. From the perspective of the 27-year-old male, what are the monetary values corresponding to the two events of surviving the year and not surviving?
b. If the 27 -year-old male purchases the policy, what is his expected value?
c. Can the insurance company expect to make a profit from many such policies? Why? From the point of view of the insurance company, the expected value of the policy is
Answer:
a. The life insurance company charges $174 for insuring if the male survives
Value(survive) = -$174
The life insurance company pays $90,000 for insuring if the male does not survive.
Value(not survive) = $89,826
b. The expected value for a 27-year-old male is
E(x) = -$48
c. The expected value for the insurance company is
E(x) = $48
Step-by-step explanation:
The probability that a randomly selected 27-year-old male survives is given by
P(survive) = 0.99864
The probability that a randomly selected 27-year-old male does not survive is given by
P(not survive) = 1 - P(survive)
P(not survive) = 1 - 0.99864
P(not survive) = 0.0014
a. From the perspective of the 27-year-old male, what are the monetary values corresponding to the two events of surviving the year and not surviving?
If 27-year-old male survives:
The life insurance company charges $174 for insuring if the male survives
Value(survive) = -$174
If 27-year-old male does not survive:
The life insurance company pays $90,000 for insuring if the male does not survive.
Value(not survive) = $90,000 - 174
Value(not survive) = $89,826
b. If the 27-year-old male purchases the policy, what is his expected value?
The expected value for a 27-year-old male is given by
E(x) = P(survive)×Value(survive) + P(not survive)×Value(not survive)
E(x) = 0.9986×-174 + 0.0014×89,826
E(x) = -$48
The negative sign indicates that it is a loss from the perspective of the 27-year-old male.
c. Can the insurance company expect to make a profit from many such policies? Why? From the point of view of the insurance company, the expected value of the policy is
The expected value for the insurance company is given by
E(x) = 0.9986×174 + 0.0014×-89,826
E(x) = $48
The positive sign indicates that it is a profit from the perspective of the insurance company.
Solving by factoring
Answer:
3
Step-by-step explanation:
Hurrryy!!!
What is the value of x in the solution to the system of linear equations?
y=3x+2
y=x-4
O-7
O-3
0 1
O 5
Answer:
-3
Step-by-step explanation:
I'm not sure what the 0s are all about, but I can help with the equation;
To do this, we can do substitution. By equaling x-4 to 3x+2, we get
x-4=3x+2
By isolating the x, we get
-2x=6
x=-3
Hope this helped!
ab = cde
In order to solve the equation above for c, you must multiply both sides of the equation by the same expression
ab x _? = cde x _?
The resulting equation is
C= _?
Answer:
1) We have to multiply both sides by 1/(de)
2) c=ab/(cd)
Step-by-step explanation:
We have to achieve the right side expression be c only. To do that we have to multiply cde by 1/(de) . However we have to multiply the left side by
1/(de) as well.
So the resulting left side expression is:
ab *1/(de)=ab/(de)
So c= ab/(de)
Given equation in the question is,
ab = cde
To solve the given equation for the value of c, follow the algebraic rules,
1). Multiply both the sides of the equation with [tex]\frac{1}{de}[/tex],
[tex]ab\times \frac{1}{de} = \frac{cde}{de}[/tex]
[tex]\frac{ab}{de}= \frac{cde}{de}[/tex]
[tex]\frac{ab}{de}=c[/tex]
Therefore, resulting equation for c will be,
[tex]c=\frac{ab}{de}[/tex]
Learn more,
https://brainly.com/question/11496615
Suppose that early in an election campaign, a telephone poll of 800 registered voters shows that 460 favor a particular candidate. Just before Election Day, a second poll shows that 520 of 1,000 registered voters now favor that candidate. At the 0.05 significance level, is there sufficient evidence that the candidate's popularity has changed?
Answer:
Yes. At the 0.05 significance level, there is enough evidence to support the claim that the proportion that support the candidate has significantly changed.
Step-by-step explanation:
This is a hypothesis test for the difference between proportions.
The claim is that the proportion that support the candidate has significantly changed.
Then, the null and alternative hypothesis are:
[tex]H_0: \pi_1-\pi_2=0\\\\H_a:\pi_1-\pi_2\neq 0[/tex]
The significance level is 0.05.
The sample 1, of size n1=800 has a proportion of p1=0.58.
[tex]p_1=X_1/n_1=460/800=0.58[/tex]
The sample 2, of size n2=1000 has a proportion of p2=0.52.
[tex]p_2=X_2/n_2=520/1000=0.52[/tex]
The difference between proportions is (p1-p2)=0.05.
[tex]p_d=p_1-p_2=0.58-0.52=0.05[/tex]
The pooled proportion, needed to calculate the standard error, is:
[tex]p=\dfrac{X_1+X_2}{n_1+n_2}=\dfrac{464+520}{800+1000}=\dfrac{980}{1800}=0.54[/tex]
The estimated standard error of the difference between means is computed using the formula:
[tex]s_{p1-p2}=\sqrt{\dfrac{p(1-p)}{n_1}+\dfrac{p(1-p)}{n_2}}=\sqrt{\dfrac{0.54*0.46}{800}+\dfrac{0.54*0.46}{1000}}\\\\\\s_{p1-p2}=\sqrt{0.00031+0.000248}=\sqrt{0.000558}=0.02[/tex]
Then, we can calculate the z-statistic as:
[tex]z=\dfrac{p_d-(\pi_1-\pi_2)}{s_{p1-p2}}=\dfrac{0.05-0}{0.02}=\dfrac{0.05}{0.02}=2.33[/tex]
This test is a two-tailed test, so the P-value for this test is calculated as (using a z-table):
[tex]\text{P-value}=2\cdot P(z>2.33)=0.02[/tex]
As the P-value (0.02) is smaller than the significance level (0.05), the effect is significant.
The null hypothesis is rejected.
There is enough evidence to support the claim that the proportion that support the candidate has significantly changed.
According to an airline, flights on a certain route are on time 80% of the time. Suppose 17 flights are randomly selected and the number of on-time flights is recorded.
Required:
a. Explain why this is a binomial experiment.
b. Find and interpret the probability that exactly 11 flights are on time.
c. Find and interpret the probability that fewer than 11 flights are on time
d. Find and interpret the probability that at least 11 flights are on time.
e. Find and interpret the probability that between 9 and 11 flights, inclusive, are on time.
Answer:
a) Check Explanation
b) Probability that 11 out of the 17 randomly selected flights are on time = P(X = 11) = 0.0680
c) Probability that fewer than 11 out of the 17 randomly selected flights are on time
= P(X < 11) = 0.0377
d) Probability that at least 11 out of the 17 randomly selected flights are on time
= P(X ≥ 11) = 0.9623
e) Probability that between 9 and 11 flights, inclusive, out of the randomly selected 17 are on time = P(9 ≤ X ≤ 11) = 0.1031
Step-by-step explanation:
a) How to know a binomial experiment
1) A binomial experiment is one in which the probability of success doesn't change with every run or number of trials. (Probability of each flight being on time is 80%)
2) It usually consists of a number of runs/trials with only two possible outcomes, a success or a failure. (It's either the flights are on time or not).
3) The outcome of each trial/run of a binomial experiment is independent of one another.
All true for this experiment.
b) Probability that exactly 11 flights are on time.
Let X be the random variable that represents the number of flights that are on time out of the randomly selected 17.
Binomial distribution function is represented by
P(X = x) = ⁿCₓ pˣ qⁿ⁻ˣ
n = total number of sample spaces = 17 randomly selected flights
x = Number of successes required = number of flights required to be on time
p = probability of success = Probability of a flight being on time = 80% = 0.80
q = probability of failure = Probability of a flight NOT being on time = 1 - p = 1 - 0.80 = 0.20
P(X = 11) = ¹⁷C₁₁ (0.80)¹¹ (0.20)¹⁷⁻¹¹ = 0.06803777953 = 0.0680
c) Probability that fewer than 11 flights are on time
This is also computed using binomial formula
It is the probability that the number of flights on time are less than 11
P(X < 11) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) + P(X = 4) + P(X = 5) + P(X = 6) + P(X = 7) + P(X = 8) + P(X = 9) + P(X = 10) = 0.0376634429 = 0.0377
d) Probability that at least 11 out of the 17 randomly selected flights are on time
This is the probability of the number of flights on time being 11 or more.
P(X ≥ 11) = P(X = 11) + P(X = 12) + P(X = 13) + P(X = 14) + P(X = 15) + P(X = 16) + P(X = 17)
= 1 - P(X < 11)
= 1 - 0.0376634429
= 0.9623365571 = 0.9623
e) Probability that between 9 and 11 flights, inclusive, are on time = P(9 ≤ X ≤ 11)
This is the probability that exactly 9, 10 or 11 flights are on time.
P(9 ≤ X ≤ 11) = P(X = 9) + P(X = 10) + P(X = 11)
= 0.0083528524 + 0.02672912767 + 0.06803777953
= 0.1031197592 = 0.1031
Hope this Helps!!!
The public radio show "A Prairie Home Companion," features news from the fictional town of Lake Wobegon, MN, home to many Norwegian bachelor farmers, and where "all the women are strong, all the men are good looking, and all the children are above average." Suppose average means average for the town. Such a town could not possibly exist, because (select all that apply)
a. not all women are strong
b. not all the children can be above average
c. not all Norwegian bachelor farmers are good looking
d. half the children must be below average
Answer:
b. not all the children can be above average
d. half the children must be below average
Step-by-step explanation:
In theory, all women could be strong and all men could be good looking, however, since the average is calculated based on the town children, it is not possible for all children to be above average.
Assuming a normal distribution, half the children must be at or below average, while the other half must be at or above the average.
Therefore, the correct answers are:
b. not all the children can be above average
d. half the children must be below average
Answer:
Second and last options are correct choices.
Step-by-step explanation:
If all the children are above average, then the average should not include the average of the children. Because it is impossible for a data set to be have values greater than it's average.
Best Regards!
Please answer this correctly
Answer:
100%
Step-by-step explanation:
First, let's determine the probability for each of the conditions.
For P(greater than 2), we will have the cards 3, 4, 5, 6, 7, and 8.
For P(less than 3), we will have the cars 2.
In other words, every single card fits the conditions.
Thus, P(greater than 2 or less than 3)=7/7=100%
100%
Answer:
100%
Step-by-step explanation:
Greater than 2 is 3, 4, 5, 6, 7, 8
And less than 3 is 2 so that’s all the numbers which is 100%
A six sided fair number cube is 100 times as part of an experiment The frequency of the role of the Number three is 20 which statement about rolling a three is correct
Answer:
8
Step-by-step explanation:
don't cheat sike i cheat
Answer: the real answer is c you can go to both places I gave you the answer in both
Step-by-step explanation:
Because I got it right please have a good day or night
How would I Evaluate 8×5÷10?
Answer:
4
Step-by-step explanation:
8×5÷10
PEMDAS says multiply and divide from left to right
40÷10
4
Answer:
4
Step-by-step explanation:
Follow the PEMDAS order of operations
8*5=40
40÷10=4
=4
OR
8x5÷10
8x0.5=4
=4
Have a good day and stay safe!
What is the solution to the equation below? Round your answer to two decimal places. 4+4•log2 x=4
Answer:
Option (C)
Step-by-step explanation:
Given expression is,
[tex]4+4\times \text{log}_2(x)=14[/tex]
By subtracting 4 from both the sides of the equation.
[tex]4\times \text{log}_2(x)=14-4[/tex]
Now divide the equation by 4
[tex]\text{log}_2(x)=\frac{10}{4}[/tex]
[tex]\text{log}_2(x)=2.5[/tex]
[If [tex]\text{log}_ab=x[/tex] , then [tex]b=a^{x}[/tex]]
[tex]x=(2)^{2.5}[/tex]
[tex]x = 5.657[/tex]
x ≈ 5.66
Therefore, Option C will be the correct option.
4+4•log2 x=14
x= 5.66
A survey of enrollment at 35 community colleges across the United States yielded the following figures:
6414; 1550; 2109; 9350; 21828; 4300; 5944; 5722; 2825; 2044; 5481; 5200; 5853; 2750; 10012; 6357; 27000; 9414; 7681; 3200; 17500; 9200; 7380; 18314; 6557; 13713; 17768; 7493; 2771; 2861; 1263; 7285; 28165; 5080; 11622
a. Organize the data into a chart with five intervals of equal width. Label the two columns "Enrollment" and "Frequency."
b. Construct a histogram of the data.
c. If you were to build a new community college, which piece of information would be more valuable: the mode or the mean?
d. Calculate the sample mean.
e. Calculate the sample standard deviation.
f. A school with an enrollment of 8000 would be how many standard deviations away from the mean?
Answer: (a) The chart is in the first attachment named table frequency.
(b) The histogram is in the second attachment named frequency vs. enrollment
(c) Mode
(d) x = 9071.4
(e) s = 6677.64
(f) It is -0.16 standard deviation away
Step-by-step explanation:
(c) Mode is the number in the data set which appears more often. When thinking about builiding a new community college, if you choose mode will have which college enrollment will appear more often, i.e., which courses have more students wanting to enroll.
(d) To calculate sample mean of a frequency data:
1) Find the midpoint for each interval;
2) Multiply each midpoint for its correspondent frequency;
3) Sum up each multiplication obtained in the previous step;
4) Sum up all the frequencies;
5) Divide the sum in step 3 by the sum in step 4;
For this chart:
x = [tex]\frac{3000.10+7500.16+12500.3+17500.3+22500.1+27500.2}{35}[/tex]
x = 9071.4
(e) To find the standard deviation:
1) With each midpoint, calculate its square;
2) Multiply the midppoint square by its correspondent frequency;
3) Use the following formula to determine the sample standard:
s = √∑f.M² - n(μ)² / n-1
For this chart:
s = [tex]\sqrt{\frac{4396250000 - 35*(9071.4)^{2}}{34} }[/tex]
s = 6677.64
(f) To find how many standard deviations away is the enrollment:
z = [tex]\frac{8000-9071.4}{6677.64}[/tex]
z = - 0.16
8000 enrollments are -0.16 standard deviations away from the mean.
For data sets having a distribution that is approximately bell-shaped, _______ states that about 68% of all data values fall within one standard deviation from the mean.
Answer:
The Empirical Rule
Step-by-step explanation:
The Empirical Rule states that, for a normally distributed(bell-shaped) random variable:
68% of the measures are within 1 standard deviation of the mean.
95% of the measures are within 2 standard deviation of the mean.
99.7% of the measures are within 3 standard deviations of the mean.
So the answer to this question is the Empirical Rule
What is the equation of the line which passes through (-0.5,-5) and (2,5)
Answer:
[tex]y = 4x-3[/tex]
Step-by-step explanation:
The coordinates are (-0.5,-5) and (2,5)
Finding the slope, m:
=> Slope = [tex]\frac{rise}{run}[/tex]
=> Slope = [tex]\frac{5+5}{2+0.5}[/tex]
=> Slope = [tex]\frac{10}{2.5}[/tex]
=> Slope = 4
Now, y-intercept, b:
Taking any of the two coordinate and putting it in the slope intercept equation:
=> Point = (x,y) = (2,5)
So, x = 2, y = 5
=> [tex]y = mx+b[/tex]
=> 5 = (4)(2) + b
=> 5 = 8 + b
=> b = 5-8
=> b = -3
Now, Putting in slope intercept equation:
=> [tex]y = mx+b[/tex]
=> [tex]y = 4x-3[/tex]
Gradient (m) = x2-x1
y2-y1
considering
y1 = -5 y2 = 5
x1 = -0.5. x2 = 2
m = 2-(-0.5)
5-(-5)
m = 5.5
10
m = 11. = 0.55
20
equation of a line is given by
y-y1 = m+(x-x1)
y-(-5) =0.55 + {x-(-0.5)}
y+5 = 0.55 + x+0.5
making y the subject
y = 0.55 +0.5 -5 + x
y = -3.95 + x
there are 11 people in an office with 6 different phone lines. if all the lines begin to ring at once, how many groups of 6 people can answer these lines?
T_11
Expect_6 phones
This is a permutation problem
Therefore 11p6= 11!/(11-6)! = (5!*6*7*8*9*10*11)/5! = 6*7*8*9*10*11 (ANSWER)
Answer:
one group
Step-by-step explanation:
there is only one group of six people in the office since the office only has 11 people.
Karen, Pete, Rose, and David are comparing their solutions to a homework problem below.
(+ + 8
(-2)
1
Select the student who correctly subtracted the rational expressions,
Karen:
Pete:
+ 8 - 7
2
2)
5
(1 + 8)(x + 5) - 7
(1 - 2)(+ 5)
12 + 135 + 40 - 77 + 14
2 + 3x - 10
1? +61 + 54
12 + 91 - 10
Rose:
David:
(1 + 5
(1 + 8)
(r
+3+*5
(+216-6= x2 + 35 – 10
1 + 1
x2 + 3x - 10
7: + 8) + (x - 2)(= + 5)
7(: - 2)
II
75 + 8 + 12 + 91 - 10
78 14
2 + 101 - 2
70 - 14
Answer:pete
Step-by-step explanation:
divide
a) 21564÷2
b)40565÷5
c)6365÷8
d)1436÷7
answer please fast
Answer:
21564 ÷ 2 = 10782
40565 ÷ 5 = 8113
6365 ÷ 8 = 795.625
1436 ÷ 7 = 205.142857143
The radius of a sphere is 3 inches. Which represents the volume of the sphere?
12 cubic inches
362 cubic inches
647 cubic inches
817 cubic inches
Answer:
Volume of the sphere= 113.112 cubic inch(Inch ³)
Step-by-step explanation:
First of all the formula for the volume of a sphere Is given as 4πr³
Already the radius r is already given as 3 inches
While π = 3.142
Volume of the sphere = 4/3πr³
Volume of the sphere = 4/3(3.142)(3)³
Volume of the sphere= 4/3(3.142)(27)
Volume of the sphere= 4/3(84.834)
Volume of the sphere= 339.336/3
Volume of the sphere= 113.112 Inch ³
Volume of the sphere= 113.112 cubic inch
Solve for X. (nearest WHOLE degree)
Answer:
x = 32°Step-by-step explanation:
To solve for x we use sine
sin ∅ = opposite / hypotenuse
From the question
38 is the hypotenuse
20 is the opposite
So we have
sin x = 20/38
sin x = 10/19
x = sin-¹ 10/19
x = 31.75
x = 32° to the nearest degreeHope this helps you
Q1. 12.5g of medicine cost 1,075 naira. What is the cost of 1g of medicine. Q2. What is the total pay for someone who works 42 hours and gets 645 naira per hour
Step-by-step explanation:
Q1. 1,075÷12.5 =8
So Therefore 1g of medicine cost 8 naira
Q2.645÷42=15.3
so therefore 1 hour cost 15.3 naira
The cost of 1g of medicine is 86 naira and the total pay for someone who works 42 hours is 27090 naira.
What is Division?A division is a process of splitting a specific amount into equal parts.
Given that 12.5g of medicine cost 1,075 naira.
We have to find the cost of 1g of medicine.
12.5g=1075 naira
1g=1075/12.5
1g=86 naira.
the total pay for someone who works 42 hours and gets 645 naira per hour
The cost for 42 hours
42×645
27090 naira
Hence, the cost of 1g of medicine is 86 naira and the total pay for someone who works 42 hours is 27090 naira.
To learn more on Division click:
https://brainly.com/question/21416852
#SPJ2
A taxi charges a flat rate of $3.00 plus $1.50 per mile. If Xander has $45.00, which inequality represents m, the distances in miles he can travel in the taxi? m less-than-or-equal-to 10 m greater-than-or-equal-to 10 m less-than-or-equal-to 28 m greater-than-or-equal-to 28
Answer:
m less-than-or-equal-to 28
Step-by-step explanation:
Xander's charge for m miles will be (3 +1.50m). He wants this to be no more than $45, so ...
3 +1.50m ≤ 45
1.50m ≤ 42 . . . . . . subtract 3
m ≤ 28 . . . . . . . . . .divide by 1.5
Answer: M is less than or equal to 28 or C
Step-by-step explanation:
GOT RIGHT ON E D G
Sandy can fold 6 towels in 3 minutes. If she continues at this rate, how many minutes will it take her to fold 36 towels?
Hey there! :)
Answer:
x = 18 minutes.
Step-by-step explanation:
To solve this equation, set up a ratio.
# of towels over time taken:
[tex]\frac{6}{3} = \frac{36}{x}[/tex]
Cross multiply:
6x = 108
Divide both sides by 6:
6x/6 = 108/6
x = 18 minutes.
Answer:
In eighteen minutes she will have folded all 36
Please answer this correctly without making mistakes
Answer:
<
Step-by-step explanation:
750,000,000 times 10^5 can be expressed as 7.5 times [tex]10^{11}[/tex]
7.55 times 10^13 is greater than 7.5 times 10^11.
Answer:
The appropriate sign that makes the statement true is <
Hope this helps you
A local animal rescue organization receives an average of 0.55 rescue calls per hour. Use the Poisson distribution to find the probability that during a randomly selected hour, the organization will receive fewer than two calls.A) 0.087
B) 0.894
C) 0.317
D) 0.106
Answer:
B) 0.894
Step-by-step explanation:
In a Poisson distribution, the probability that X represents the number of successes of a random variable is given by the following formula:
[tex]P(X = x) = \frac{e^{-\mu}*\mu^{x}}{(x)!}[/tex]
In which
x is the number of sucesses
e = 2.71828 is the Euler number
[tex]\mu[/tex] is the mean in the given interval.
A local animal rescue organization receives an average of 0.55 rescue calls per hour.
This means that [tex]\mu = 0.55[/tex]
Probability that during a randomly selected hour, the organization will receive fewer than two calls.
[tex]P(X < 2) = P(X = 0) + P(X = 1)[/tex]
In which
[tex]P(X = x) = \frac{e^{-\mu}*\mu^{x}}{(x)!}[/tex]
[tex]P(X = 0) = \frac{e^{-0.55}*(0.55)^{0}}{(0)!} = 0.577[/tex]
[tex]P(X = 1) = \frac{e^{-0.55}*(0.55)^{1}}{(1)!} = 0.317[/tex]
[tex]P(X < 2) = P(X = 0) + P(X = 1) = 0.577 + 0.317 = 0.894[/tex]
What is the slope of the line between (−4, 4) and (−1, −2)?
Answer:
-2
Step-by-step explanation:
The slope of a line is
m = (y2-y1)/(x2-x1)
= (-2 -4)/(-1 - -4)
= -6/ ( -1 +4)
= -6 /3
=-2
Answer:
[tex]= - 2 \\ [/tex]
Step-by-step explanation:
[tex]( - 4 \: \: \: \: \: \: \: \: \: \: \: 4) = > (x1 \: \: \: \: \: \: y1) \\ ( - 1 \: \: \: \: - 2) = > (x2 \: \: \: \: \: \: y2)[/tex]
Now let's find the slope
[tex]slope = \frac{y1 - y2}{x1 - x2} \\ = \frac{4 - ( - 2)}{ - 4 - ( - 1)} \\ = \frac{4 + 2}{ - 4 + 1} \\ = \frac{6}{ - 3} \\ = - 2[/tex]
hope this helps you.
brainliest appreciated
good luck! have a nice day!
Beverly drove from the Atlantic City to New York she drove 284 miles at a constant speed of 58 mph how long did it take Beverly to complete the trip
Answer:
4.9 hours = 4 hours 54 minutes
Step-by-step explanation:
speed = distance/time
time * speed = distance
time = distance/speed
time = (284 miles)/(58 mph) = 4.9 hours
4.9 hours - 4 hours = 0.9 hours
0.9 hours * (60 minutes)/(1 hour) = 54 minutes
4.9 hours = 4 hours 54 minutes
Please answer this correctly
Answer:
75%
Step-by-step explanation:
There are 3 numbers that fit this rule, 3, 5, and 6. There is a 3/4 chance spinning one or a 75% chance.
Answer:
75%
Step-by-step explanation:
The numbers 6 or odd are 3, 5, and 6.
3 numbers out of a total of 4 numbers.
3/4 = 0.75
Convert to percentage.
0.75 × 100 = 75
P(6 or odd) = 75%
You and 3 of your friends decide to sell lemonade around town, and then split the money you make evenly. You decide to sell each cup of lemonade for 50 cents. In total, you all sell 120 cups of lemonade. How much money will each of you earn? Write an expression for the problem too.
Expression:
Answer:
$15
Step-by-step explanation:
Each cup is 50 cents which is basically $0.50
Multiply $0.50 by 120= $60
Because you and your three friends equal 4 total people,
divide 60 by 4 to get your own profit:
60/4=15
Type the correct answer in each box. Use numerals instead of words. If necessary, use / for the fraction bar(s).
Consider the given function.
Answer:
to determine the inverse of the given function, change f(x) to y, switch [tex]\boxed{x}[/tex] and y and solve for [tex]\boxed{y}[/tex]
The resulting function can be written as
[tex]f^{-1}(x)=x^2+\boxed{4}[/tex] where [tex]x\geq\boxed{0}[/tex]
Step-by-step explanation:
Hello,
f is defined for [tex]x\geq 4[/tex] as x-4 must be greater or equal to 0
and [tex]f(x)\geq 0[/tex]
so [tex]f^{-1}[/tex] is defined for [tex]x\geq 0[/tex]
and then we can write
[tex]x=(fof^{-1})(x)=f(f^{-1}(x))=\sqrt{f^{-1}(x)-4} \ so\\f^{-1}(x)-4=x^2 <=> f^{-1}(x)=x^2+4[/tex]
hope this helps
Find the value of x that makes A||B
Answer:
For lines A and B to be parallel, the Same Side Interior angles must be supplementary which means:
2x + 10 + 4x + 80 = 180
6x + 90 = 180
6x = 90
x = 15°
Please answer this correctly
Answer:
0
Step-by-step explanation:
3 cards
P( odd) = 1 odd/ 3 cards = 1/3
No replacement
2 cards 6,8
No odds
P( odd) = 0/2
P( odd, no replacement, odd) = 1/2 * 0 = 0