The weight of a chocolate bar is 4.4 ounces, but can vary. Let W be a random variable that represents the weight of a chocolate bar. The probability density function of Wis given below. If the shaded portion of the graph of the continuous probability density function below is 0.42739, what is the probability that a chocolate bar is at least 4 ounces, but no more than 7 ounces?

Answers

Answer 1

Answer:

Ans) 42.7%

Step-by-step explanation:

For a continuous probability distribution, a curve known as probability density function contains information about these probabilities.

in the given range -

The probability that a continuous random variable = equal to the area under the probability density function curve

The probability that the value of a random variable is equal to 'something' is 1.

As per the diagram,

Weight of chocolate bar between 4 ounces and 7 ounces is highlighted in the blue part. That area is said to be 0.42739 and the total area under the curve is 1.

Hence required probability

=0.42739/1=0.42739

Ans) 42.7%

Round to nearest tenth of a percent


Related Questions

A car travelling from Ibadan to Lagos at 90 km/hr

takes 1 hour 20 min. How fast must one travel to

cover the distance in one hour?

Answers

Answer:

A velocity of 120km/h is needed to cover the distance in one hour

Step-by-step explanation:

The velocity formula is:

[tex]v = \frac{d}{t}[/tex]

In which v is the velocity, d is the distance and t is the time.

A car travelling from Ibadan to Lagos at 90 km/hr takes 1 hour 20 min.

This means that [tex]v = 90, t = 1 + \frac{20}{60} = 1.3333[/tex]

We use this to find d.

[tex]v = \frac{d}{t}[/tex]

[tex]90 = \frac{d}{1.3333}[/tex]

[tex]d = 90*1.3333[/tex]

[tex]d = 120[/tex]

The distance is 120 km.

How fast must one travel to cover the distance in one hour?

Velocity for a distance of 120 km(d = 120) in 1 hour(t = 1). So

[tex]v = \frac{d}{t}[/tex]

[tex]v = \frac{120}{1}[/tex]

[tex]v = 120[/tex]

A velocity of 120km/h is needed to cover the distance in one hour

The Mathalot Company makes and sells textbooks. They have one linear function that represents the cost of producing textbooks and another linear function that models how much income they get from those textbooks. Describe the key features that would determine if these linear functions ever intercepted. (10 points)

Answers

this is the answer trust me i got it right

State the coordinates of the vertex for each of the following

Answers

Answer:

[a] y=x^2+3,  vertex, V(0,3)

[b] y=2x^2, vertex, V(0,0)

[c] y=-x^2 +  4, vertex, V(0,4)

[d] y= (1/2)x^2 - 5, vertex, V(0,-5)

Step-by-step explanation:

The vertex, V, of a quadratic can be found as follows:

1. find the x-coordinate, x0,  by completing the square

2. find the y-coordinate, y0, by substituting the x-value of the vertex.

[a] y=x^2+3,  vertex, V(0,3)

y=(x-0)^2 + 3

x0=0, y0=0^2+3=3

vertex, V(0,3)

[b] y=2x^2, vertex, V(0,0)

y=2(x-0)^2+0

x0 = 0, y0=0^2 + 0 = 0

vertex, V(0,0)

[c] y=-x^2 +  4, vertex, V(0,4)

y=-(x^2-0)^2 + 4

x0 = 0, y0 = 0^2 + 4 = 4

vertex, V(0,4)

y = (1/2)(x-0)^2 -5

x0 = 0, y0=(1/2)0^2 -5 = -5

vertex, V(0,-5)

Conclusion:

When the linear term (term in x) is absent, the vertex is at (0,k)

where k is the constant term.

The time it takes me to wash the dishes is uniformly distributed between 10 minutes and 15 minutes. What is the probability that washing dishes tonight will take me between 12 and 14 minutes

Answers

Answer:

The probability that washing dishes tonight will take me between 12 and 14 minutes is 0.1333.

Step-by-step explanation:

Let the random variable X represent the time it takes to wash the dishes.

The random variable X is uniformly distributed with parameters a = 10 minutes and b = 15 minutes.

The probability density function of X is as follows:

[tex]f_{X}(x)=\frac{1}{b-a};\ a<X<b,\ a<b[/tex]

Compute the probability that washing dishes will take between 12 and 14 minutes as follows:

[tex]P(12\leq X\leq 14)=\int\limits^{12}_{14} {\frac{1}{15-10} \, dx[/tex]

                           [tex]=\frac{1}{5}\int\limits^{12}_{14} {1} \, dx \\\\=\frac{1}{5}\times [x]^{14}_{12}\\\\=\frac{1}{15}\times [14-12]\\\\=\frac{2}{15}\\\\=0.1333[/tex]

Thus, the probability that washing dishes tonight will take me between 12 and 14 minutes is 0.1333.

Someone help me please​

Answers

The correct answer is 3

Explain

Given that there are 54 colored stickers across all six faces, then we could assume that the total surface area is 54 square units.


Cube formula

S A = 6s ^2


6s^2 =54

S^2=54/6

Divide by 6

S^2 =9

S = √9

S =3

BIG Corporation advertises that its light bulbs have a mean lifetime, μ, of 2800 hours. Suppose that we have reason to doubt this claim and decide to do a statistical test of the claim. We choose a random sample of light bulbs manufactured by BIG and find that the mean lifetime for this sample is 2620 hours and that the sample standard deviation of the lifetimes is 650 hours.

In the context of this test, what is a Type II error?

A type II error is (rejecting/failing to reject) the hypothesis that μ is (less than/less than or equal to/greater than/greater than or equal to/not equal to/equal to) ____ when in fact, μ is (less than/less than or equal to/greater than/greater than or equal to/not equal to/equal to) ______.

Answers

Answer:

A type II error is failing to reject the hypothesis that μ is equal to 2800 when in fact, μ is less than 2800.

Step-by-step explanation:

A Type II error happens when a false null hypothesis is failed to be rejected.

The outcome (the sample) probability is still above the level of significance, so it is consider that the result can be due to chance (given that the null hypothesis is true) and there is no enough evidence to claim that the null hypothesis is false.

In this contest, a Type II error would be not rejecting the hypothesis that the mean lifetime of the light bulbs is 2800 hours, when in fact this is false: the mean lifetime is significantly lower than 2800 hours.

Find f o g and g o f to determine if f and g are inverse functions. If they are not inverses, pick the function that would be the inverse with f(x). f(x) = (-2/x) – 1; g(x) = -2/(x+1) Choices: a. g(x) has to be: (1+x)/2 b. g(x) has to be: x/2 c. g(x) has to be: 2 – (1/x) d. Inverses

Answers

Answer:

(f o g) = x, then, g(x) is the inverse of f(x).

Step-by-step explanation:

You have the following functions:

[tex]f(x)=-\frac{2}{x}-1\\\\g(x)=-\frac{2}{x+1}[/tex]

In order to know if f and g are inverse functions you calculate (f o g) and (g o f):

[tex]f\ o\ g=f(g(x))=-\frac{2}{-\frac{2}{x+1}}-1=x+1-1=x[/tex]

[tex]g\ o\ f=g(f(x))=-\frac{2}{-\frac{2}{x}+1}=-\frac{2}{\frac{-2+x}{x}}=\frac{2x}{2-x}[/tex]

(f o g) = x, then, g(x) is the inverse of f(x).

Make a matrix A whose action is described as follows: The hit by A rotates everything Pi/4 counterclockwise radians, then stretches by a factor of 1.8 along the x-axis and a factor of 0.7 along the y-axis and then rotates the result by Pi/3 clockwise radians.

Answers

Answer:

The required matrix is[tex]A = \left[\begin{array}{ccc}1.07&-0.21\\-0.86&1.35\end{array}\right][/tex]

Step-by-step explanation:

Matrix of rotation:

[tex]P = \left[\begin{array}{ccc}cos\pi/4&-sin\pi/4\\sin\pi/4&cos\pi/4\end{array}\right][/tex]

[tex]P = \left[\begin{array}{ccc}1/\sqrt{2} &-1/\sqrt{2} \\1/\sqrt{2} &1/\sqrt{2}\end{array}\right][/tex]

x' + iy' = (x + iy)(cosθ + isinθ)

x' = x cosθ - ysinθ

y' = x sinθ + ycosθ

In matrix form:

[tex]\left[\begin{array}{ccc}x'\\y'\end{array}\right] = \left[\begin{array}{ccc}cos\theta&-sin\theta\\sin \theta&cos\theta\end{array}\right] \left[\begin{array}{ccc}x\\y\end{array}\right][/tex]

The matrix stretches by 1.8 on the x axis and 0.7 on the y axis

i.e. x' = 1.8x

y' = 0.7y

[tex]\left[\begin{array}{ccc}x'\\y'\end{array}\right] = \left[\begin{array}{ccc}1.8&0\\0&0.7\end{array}\right] \left[\begin{array}{ccc}x\\y\end{array}\right][/tex]

[tex]Q = \left[\begin{array}{ccc}1.8&0\\0&0.7\end{array}\right][/tex]

According to the question, the result is rotated by pi/3 clockwise radians

[tex]R = \left[\begin{array}{ccc}cos(-\pi/3)& -sin(-\pi/3)\\-sin(\pi/3)&cos(\pi/3)\end{array}\right][/tex]

[tex]R = \left[\begin{array}{ccc}1/2&\sqrt{3}/2 \\-\sqrt{3}/2 &1/2\end{array}\right][/tex]

To get the matrix A, we would multiply matrices R, Q and P together.

[tex]A = RQP = \left[\begin{array}{ccc}1/2&\sqrt{3}/2 \\-\sqrt{3}/2 &1/2\end{array}\right] \left[\begin{array}{ccc}1.8&0\\0&0.7\end{array}\right] \left[\begin{array}{ccc}1/\sqrt{2} &-1/\sqrt{2} \\1/\sqrt{2} &1/\sqrt{2}\end{array}\right][/tex]

[tex]A = \left[\begin{array}{ccc}1.07&-0.21\\-0.86&1.35\end{array}\right][/tex]

Amanda is constructing equilateral triangle JKL inscribed in circle M. To construct the inscribed polygon, she is going to use a compass to partition the circle into congruent arcs. To what width should she set the compass when partitioning the circle? A. The width must be equal to the radius of circle M. B. The width must be equal the diameter of circle M. C. The width can be equal to either the radius or the diameter of circle M. D. The width can be any size greater than the radius but less than the diameter of circle M. E. The width must be less than the radius of circle M. help meee please!!!!!!!!!!!!!!!!!

Answers

Given:

An equilateral triangle JKL inscribed in circle M.

Solution:

To draw an equilateral triangle inscribed in circle follow the steps:

1: Draw a circle with any radius.

2. Take any point A, anywhere on the circumference of the circle.

3.  Place the compass on point A, and swing a small arc crossing the circumference of the circle.

Remember the span of the compass should be the same as the radius of the circle.

4. Place the compass at the intersection of the previous arc and the circumference and draw another arc but don't change the span of the compass.

5. Repeat this process until you return to point A.

6. Join the intersecting points on the circle to form the equilateral triangle.

So the correct option is A. The width must be equal to the radius of circle M.

Jennifer has carpet in her square bedroom. She decides to also purchase carpet for her living room which is rectangular in shape and 9 feet longer than her bedroom.
The area of the carpet required in the living room is given by the quadratic expression below, where x represents the side length, in feet, of the carpet in the bedroom.

X^2 + 9X

Match each part of the expression with what is represents.

Answers

Answer/Step-by-step explanation:

Let's highlight the dimensions of the bedroom and living room using the information given in the question:

==>Squared Bedroom dimensions:

Side length = w = x ft

Area = x*x = x²

==>Rectangular living room dimensions:

width = side length of the squared bedroom = x

length = (x + 9) ft

Area = L*W = x*(x+9) = x² + 9x

Now let's match each given expression with what they represent:

==>"the monomial, x, a factor of the expression x² + 9x" represents "the width of the carpet in the living room"

As we have shown in the dimensions of the squared bedroom above.

==>"the binomial, (x + 9), a factor of the expression x² + 9x" represents "the length of the carpet in the living room" as shown above in the dimensions for living room

==>"the second-degree term of the expression x² + 9x" represents "the area of the carpet in the bedroom"

i.e. the 2nd-degree term in the expression is x², which represents the area of the carpet of the given bedroom.

==>"the first-degree term of the expression x2 + 9x" represents "the increase in the area of carpet needed for the living room".

i.e. 1st-degree term in the expression is 9x. And it represents the increase in the area of the carpet for the living room. Area of bedroom is x². Area of carpet needed for living room increased by 9x. Thus, area of carpet needed for living room = x² + 9x

If TU = 6 units, what must be true? SU + UT = RT RT + TU = RS RS + SU = RU TU + US = RS

Answers

Answer:

Since RT = 12, TU = 6 and RS = 24, T and U are the midpoints of RS and TS respectively. This means that SU + UT = RT.

Answer:

su+ut=rt

Step-by-step explanation:

When Vlad moved to his new home a few years ago, there was a young oak tree in his backyard. He measured it once a year and found that it grew by 26 centimeters each year. 4.5 years after he moved into the house, the tree was 292 centimeters tall. How tall was the tree when Vlad moved into the house? centimeters How many years passed from the time Vlad moved in until the tree was 357 centimeters tall? years

Answers

Answer:

The tree was 175 centimeters tall when Vlad moved into the house.

7 years passed from the time Vlad moved in until the tree was 357 centimeters tall.

Step-by-step explanation:

The height of the tree, in centimeters, in t years after Vlad moved into the house is given by an equation in the following format:

[tex]H(t) = H(0) + at[/tex]

In which H(0) is the height of the tree when Vlad moved into the house and a is the yearly increase.

He measured it once a year and found that it grew by 26 centimeters each year.

This means that [tex]a = 26[/tex]

So

[tex]H(t) = H(0) + 26t[/tex]

4.5 years after he moved into the house, the tree was 292 centimeters tall. How tall was the tree when Vlad moved into the house?

This means that when t = 4.5, H(t) = 292. We use this to find H(0).

[tex]H(t) = H(0) + 26t[/tex]

[tex]292 = H(0) + 26*4.5[/tex]

[tex]H(0) = 292 - 26*4.5[/tex]

[tex]H(0) = 175[/tex]

The tree was 175 centimeters tall when Vlad moved into the house.

How many years passed from the time Vlad moved in until the tree was 357 centimeters tall?

This is t for which H(t) = 357. So

[tex]H(t) = H(0) + 26t[/tex]

[tex]H(t) = 175 + 26t[/tex]

[tex]357 = 175 + 26t[/tex]

[tex]26t = 182[/tex]

[tex]t = \frac{182}{26}[/tex]

[tex]t = 7[/tex]

7 years passed from the time Vlad moved in until the tree was 357 centimeters tall.

Marking Brainliest! 3(x-100)=?

Answers

Answer:

3x - 300

Step-by-step explanation:

Expand the brackets or use distribute law.

Answer:

[tex]3x - 300[/tex]

solution,

[tex]3(x - 100) \\ = 3 \times x - 3 \times 100 \\ = 3x - 300[/tex]

hope this helps..

The scientist performs additional analyses and observes that the number of major earthquakes does appear to be decreasing but wonders whether the relationship is statistically significant. Based on the partial regression output below and a 5% significance level, is the year statistically significant in determining the number of earthquakes above magnitude 7.0?Dependent Variable: Earthquakes above Magnitude 7.0 Coefficients Standard t Stat P-value Lower 95% Upper 95% ErrorIntercept 64.67 38.08 4.32 89.22 240.12Year -0.07 0.02 -3.82 -0.11 -0.04

Answers

Answer:

Step-by-step explanation:

Hello!

A regression model was determined in order to predict the number of earthquakes above magnitude 7.0 regarding the year.

^Y= 164.67 - 0.07Xi

Y: earthquake above magnitude 7.0

X: year

The researcher wants to test the claim that the regression is statistically significant, i.e. if the year is a good predictor of the number of earthquakes with magnitude above 7.0 If he is correct, you'd expect the slope to be different from zero: β ≠ 0, if the claim is not correct, then the slope will be equal to zero: β = 0

The hypotheses are:

H₀: β = 0

H₁: β ≠ 0

α: 0.05

The statistic for this test is a student's t: [tex]t= \frac{b - \beta }{Sb} ~~t_{n-2}[/tex]

The calculated value is in the regression output [tex]t_{H_0}= -3.82[/tex]

This test is two-tailed, meaning that the rejection region is divided in two and you'll reject the null hypothesis to small values of t or to high values of t, the p-value for this test will also be divided in two.

The p-value is the probability of obtaining a value as extreme as the one calculated under the null hypothesis:

p-value: [tex]P(t_{n-2}\leq -3.82) + P(t_{n-2}\geq 3.82)[/tex]

As you can see to calculate it you need the information of the sample size to determine the degrees of freedom of the distribution.

If you want to use the rejection region approach, the sample size is also needed to determine the critical values.

But since this test is two tailed at α: 0.05 and there was a confidence interval with confidence level 0.95 (which is complementary to the level of significance) you can use it to decide whether to reject the null hypothesis.

Using the CI, the decision rule is as follows:

If the CI includes the "zero", do not reject the null hypothesis.

If the CI doesn't include the "zero", reject the null hypothesis.

The calculated interval for the slope is: [-0.11; -0.04]

As you can see, both limits of the interval are negative and do not include the zero, so the decision is to reject the null hypothesis.

At a 5% significance level, you can conclude that the relationship between the year and the number of earthquakes above magnitude 7.0 is statistically significant.

I hope this helps!

(full output in attachment)

Simplify -4 • -4 • -4

Answers

Answer: -64

Step-by-step explanation: Since we know that -4 x -4 is a positive, it equals 16, then a positive plus a negative equals a negative, so 16 x -4 equals -64

Answer:

-64

Step-by-step explanation:

-4 • -4 • -4

-4*-4 = 16

16*-4

-64

At a high school, 9th and 10th graders were asked whether they would prefer
robotics or art as an elective. The results are shown in the relative frequency
table.
To the nearest percent, what percentage of 10th graders surveyed preferred robotics?

Answers

Using the percentage concept, it is found that 51% of 10th graders surveyed preferred robotics, hence option B is correct.

What is a percentage?

The percentage of an amount a over a total amount b is given by a multiplied by 100% and divided by b, that is:

[tex]P = \frac{a}{b} \times 100\%[/tex]

In this problem, we have that 33% out of 65% of the students are 7th graders who preferred robotics, hence the percentage is given by:

[tex]P = \frac{33}{65} \times 100\% = 51%[/tex]

Which means that option B is correct.

More can be learned about percentages at https://brainly.com/question/14398287

#SPJ1

Answer:

It's A. 61% The dude above me is wrong.

Step-by-step explanation:

I just took the test

Find the equation for the parabola that has its vertex at the origin and has directrix at x=1/48

Answers

Answer:

The equation for a parabola with vertex at the origin and a directrix at x = 1/48 is [tex]x= \frac{1}{12}\cdot y^{2}[/tex].

Step-by-step explanation:

As directrix is a vertical line, the parabola must "horizontal" and increasing in the -x direction. Then, the standard equation for such geometric construction centered at (h, k) is:

[tex]x - h = 4\cdot p \cdot (y-k)^{2}[/tex]

Where:

[tex]h[/tex], [tex]k[/tex] - Horizontal and vertical components of the location of vertex with respect to origin, dimensionless.

[tex]p[/tex] - Least distance of directrix with respect to vertex, dimensionless.

Since vertex is located at the origin and horizontal coordinate of the directrix, least distance of directrix is positive. That is:

[tex]p = x_{D} - x_{V}[/tex]

[tex]p = \frac{1}{48}-0[/tex]

[tex]p = \frac{1}{48}[/tex]

Now, the equation for a parabola with vertex at the origin and a directrix at x = 1/48 is [tex]x= \frac{1}{12}\cdot y^{2}[/tex].

Still timed. More math needing help with, i'll double points and mark brainliest! 1. (y - 6) (y + 3) 2. (4x - 5) (x - 7) 3.(3x - 2) ( 4x - 1)

Answers

Answer:

1. y² - 3x - 18

2. 4x² - 33x + 35

3. 12x² - 11x + 2

Step-by-step explanation:

All we do with these questions are expanding the factored binomials. Use FOIL:

1. y² + 3y - 6y - 18

y² - 3y - 18

2. 4x² - 28x - 5x + 35

4x² - 33x + 35

3. 12x² - 3x - 8x + 2

12x² - 11x + 2

Answer:

1) (y-6) (y+3)

=> [tex]y^2+3y-6y-18[/tex]

=> [tex]y^2-3y-18[/tex]

2) (4x-5) (x-7)

=> [tex]4x^2-28x-5x+35[/tex]

=> [tex]4x^2-33x+35[/tex]

3) (3x - 2) ( 4x - 1)

=> [tex]12x^2-3x-8x+3[/tex]

=> [tex]12x^2-11x+3[/tex]

The nth term of a geometric sequence is given by an = 27(0.1)n - 1. Write the first five terms of this sequence.

Answers

Answer:

The first first five terms of this sequence are

27 ,2.7 ,0.27 ,0.027 , 0.0027

Step-by-step explanation:

[tex]a(n) = 27(0.1)^{n - 1} [/tex]

where n is the number of term

For the first term

n = 1

[tex]a(1) = 27(0.1)^{1 - 1} = 27(0.1) ^{0} [/tex]

= 27(1)

= 27

Second term

n = 2

[tex]a(2) = 27(0.1)^{2 - 1} = 27(0.1)^{1} [/tex]

= 27(0.1)

= 2.7

Third term

n = 3

[tex]a(3) = 27(0.1)^{3 - 1} = 27(0.1)^{2} [/tex]

= 0.27

Fourth term

n = 4

[tex]a(4) = 27(0.1)^{4 - 1} = 27(0.1)^{3} [/tex]

= 0.027

Fifth term

n = 5

[tex]a(5) = 27(0.1)^{5 - 1} = 27(0.1)^{4} [/tex]

= 0.0027

Hope this helps you

Which of the following represents the set of possible rational roots for the
polynomial shown below?
2^2+ 5^2 – 8x– 10 = 0

Answers

Answer: plus or minus 1, 1/2, 2, 5, 5/2, and 10


Explanation:

To find the possible roots

We first find the factor of the constant term:

10: 1, 2, 5, 10

Then we find the factor of leading coefficient:

2: 1, 2

And the possible rational roots are:

Plus or minus [1/1, 1/2, 2/1, 2/2, 5/1, 5/2, 10/1, 10/2]

Then we get rid of the duplicate:

Plus or minus [1, 1/2, 2, 5, 5/2, 10]

"a. How many study subjects were cases? b. How many study subjects were controls? c. What was the ratio of controls to cases?"

Answers

Answer:

The description is provided following.

Step-by-step explanation:

The given question is incomplete. The complete question will be:

                                     Brain tumors                      No Brain tumors

Cell Phones                          63                                          185

No Cell Phones                    96                                          292                  

The further explanation is given below.

a...

Subjects with these symptoms/diseases are recognized as "cases." Consequently, the majority of the instances would be as follows:

⇒  [tex]63+96[/tex]

⇒  [tex]159[/tex]  

b...

Subjects who might not have the disorder or infection are classified as "controls." Therefore, the amount of controls is as follows:

⇒  [tex]185+292[/tex]

⇒  [tex]477[/tex]

c...

The proportion of control and monitoring of instances:

⇒  [tex]\frac{478}{159}[/tex]

⇒  [tex]3.006[/tex]

Plz. Can anyone explain and tell the answer of this question.I promise I will mark it as brainliest Question.

Answers

Answer:

x = 15

y = 90

Step-by-step explanation:

Step 1: Find x

We use Definition of Supplementary Angles

9x + 3x = 180

12x = 180

x = 15

Step 2: Find y

All angles in a triangle add up to 180°

3(15) + 3(15) + y = 180

45 + 45 + y = 180

90 + y = 180

y = 90°

The polynomial-7.5x^2 + 103 + 2142 models the yearly number of visitors (in thousands) x years after 2007 to a park. Use this polynomial to estimate the number of visitors to the park in 2021.

Answers

Answer:

In that year approximately 2114 thousand people visited the park.

Step-by-step explanation:

Since the expression [tex]y(x) = -7.5*x^2 + 103*x + 2142[/tex] models the number of visitors in the park, where x represents the number of years after 2007 and 2021 is 14 years after that, then we need to find "y" for that as shown below.

[tex]y(14) = -7.5*(14)^2 + 103*14 + 2142\\y(14) = -7.5*196 + 1442 + 2142\\y(14) = -1470 + 3584\\y(14) = 2114[/tex]

In that year approximately 2114 thousand people visited the park.

In a random sample 765 adults in the United States, 322 say they could not cover a $400 unexpected expense without borrowing money or going into debt. (a) What population is under consideration in the data set

Answers

Answer:

The population under consideration in the data set are all the adults in the United States.

Step-by-step explanation:

Sampling

This is a common statistics practice, when we want to study something from a population, we find a sample of this population.

For example:

I want to estimate the proportion of New York state residents who are Buffalo Bills fans. So i ask, lets say, 1000 randomly selected New York state residents wheter they are Buffalo Bills fans, and expand this to the entire population of New York State residents.

The population of interest are all the residents of New York State.

In this question:

Sample of 765 adults in the United states.

So the population under consideration in the data set are all the adults in the United States.

In a random sample of 2,305 college students, 339 reported getting 8 or more hours of sleep per night. Create a 95% confidence interval for the proportion of college students who get 8 or more hours of sleep per night. Use a TI-83, TI-83 plus, or TI-84 calculator, rounding your answers to three decimal places.

Answers

Answer:

The 95% confidence interval for the proportion of college students who get 8 or more hours of sleep per night is (0.133, 0.161).

Step-by-step explanation:

In a sample with a number n of people surveyed with a probability of a success of [tex]\pi[/tex], and a confidence level of [tex]1-\alpha[/tex], we have the following confidence interval of proportions.

[tex]\pi \pm z\sqrt{\frac{\pi(1-\pi)}{n}}[/tex]

In which

z is the zscore that has a pvalue of [tex]1 - \frac{\alpha}{2}[/tex].

For this problem, we have that:

[tex]n = 2305, \pi = \frac{339}{2305} = 0.147[/tex]

95% confidence level

So [tex]\alpha = 0.05[/tex], z is the value of Z that has a pvalue of [tex]1 - \frac{0.05}{2} = 0.975[/tex], so [tex]Z = 1.96[/tex].

The lower limit of this interval is:

[tex]\pi - z\sqrt{\frac{\pi(1-\pi)}{n}} = 0.147 - 1.96\sqrt{\frac{0.147*0.853}{2305}} = 0.133[/tex]

The upper limit of this interval is:

[tex]\pi + z\sqrt{\frac{\pi(1-\pi)}{n}} = 0.147 + 1.96\sqrt{\frac{0.147*0.853}{2305}} = 0.161[/tex]

The 95% confidence interval for the proportion of college students who get 8 or more hours of sleep per night is (0.133, 0.161).

An experiment consists of dealing 7 cards from a standard deck of 52 playing cards. What is the probability of being dealt exactly 4 clubs and 3 spades?

Answers

Answer: 0.00153

Step-by-step explanation:

Given: An experiment consists of dealing 7 cards from a standard deck of 52 playing cards.

Number of ways of dealing 7 cards from 52 cards = [tex]^{52}C_7[/tex]

Since there are 13 clubs and 13 spades.

Number of ways of getting exactly 4 clubs and 3 spades=[tex]^{13}C_4\times\ ^{13}C_3[/tex]

Now, the probability of being dealt exactly 4 clubs and 3 spades

[tex]=\dfrac{^{13}C_4\times\ ^{13}C_3}{^{52}C_7}\\\\\\=\dfrac{{\dfrac{13!}{4!(9!)}\times\dfrac{13!}{3!10!}}}{\dfrac{52!}{7!45!}}\\\\=\dfrac{715\times286}{133784560}\\\\=0.00152850224271\approx0.00153[/tex]

Hence,  the probability of being dealt exactly 4 clubs and 3 spades = 0.00153

6.1.3
What requirements are necessary for a normal probability distribution to be a standard normal probability distribution?

Answers

Answer:

μ = 0σ = 1

Step-by-step explanation:

A standard normal probability distribution is a normal distribution that has a mean of zero and a standard deviation of 1.

Pls help me find the volume of this solid

Answers

Answer:

240cm³

Step-by-step explanation:

First, let's assume the entire shape is full rectangular prism without that has the middle being cut out.

What this means is that, to get the volume of the solid made out of clay, we would calculate the solid as a full rectangular prism, then find the volume of the assumed middle cut-out portion. Then find the difference between both.

Let's solve:

Find the volume of the rectangular prism assuming the solid is full:

Volume of prism = width (w) × height (h) × length (l)

w = 4cm

h = 7cm

l = 3+6+3 = 12cm

Volume of full solid = 4*7*12 = 336cm³

Next, find the volume of the assumed cut-out portion using same formula for volume of rectangular prism:

w = 4cm

h = 7-3 = 4cm

l = 6cm

Volume of assumed cut-out portion = 4*4*6 = 96cm³

Volume of solid made from clay = 336cm³ - 96cm³ = 240cm³

is a parallelogram sometimes always or never a trapezoid

Answers

yes

Step-by-step explanation:

parallelogram are quadrilaterals with two sets of parallel sides. since square must be quadrilaterals with two sets of parallel sides ,then all squares are parallelogram ,a trapezoid is quadrilateral.

What’s the probability of getting each card out of a deck?

Determine the probability of drawing the card(s) at random from a well-shuffled regular deck of 52 playing cards.​

a. a seven​​​​​​​​​​​​ __________

b. a six of clubs​​​​​​​​​​​​. ___________

c. a five or a queen​​​​​​​​​​​ ___________

d. a black card​​​​​​​​​​​​. ___________

e. a red card or a jack​​​​​. ___________

f. a club or an ace​​​​​​​​​​​. ___________

g. a diamond or a spade​​​​​​​​​​​. ___________

Answers

Answer:

a. 1/13

b. 1/52

c. 2/13

d. 1/2

e. 15/26

f. 17/52

g. 1/2

Step-by-step explanation:

a. In a deck of cards, there are 4 suits and each of them has a 7. Therefore, the probability of drawing a 7 is:

P(7) = 4/52 = 1/13

b. There is only one 6 of clubs, therefore, the probability of drawing a 6 of clubs is:

P(6 of clubs) = 1/52

c. There 4 fives (one for each suit) and 4 queens in a deck of cards. Therefore, the probability of drawing a five or a queen​​​​​​​​​​​ is:

P(5 or Q) = P(5) + P(Q)

= 4/52 + 4/52

= 1/13 + 1/13

P(5 or Q) = 2/13

d. There are 2 suits that are black. Each suit has 13 cards. Therefore, there are 26 black cards. The probability of drawing a black card is:

P(B) = 26/52 = 1/2

e. There are 2 suits that are red. Each suit has 13 cards. Therefore, there are 26 red cards. There are 4 jacks. Therefore:

P(R or J) = P(R) + P(J)

= 26/52 + 4/52

= 30/52

P(R or J) = 15/26

f. There are 13 cards in clubs suit and there are 4 aces, therefore:

P(C or A) = P(C) + P(A)

= 13/52 + 4/52

P(C or A) = 17/52

g. There are 13 cards in the diamonds suit and there are 13 in the spades suit, therefore:

P(D or S) = P(D) + P(S)

= 13/52 + 13/52

= 26/52

P(D or S) = 1/2

Other Questions
Mary, now 31, has been trying to get pregnant since she got married 4 years ago. Her doctor suspects that there infertility problem was likely caused by her history of PID from the most commonly reported STI. During her early 20s, Mary had contracted what's 3 - 3 x 6 + 2 Question 1 Multiple Choloo Worth 2 points)(HC)Answer the question after reading the paragraphIl y a une photo de ma famille, La, a cot de ma mre, c'est sa soeur, elle s'appelle Myriam. Elle a cinquante ans Le pre de Myriam s'appelle Lucas. Il asoixante-quinze ans. Il est svre, il n'est pas dideli habite en Normandie avec la mere de ma mre. Elle s'appelle Paula et elle a soixante-quatorzeans. Elle est jolie et agrable J'aime la mre de ma mre. A gauche c'est le fils de Lucas. Il s'appelle Serge Il a cinquante-sept ans. J'aime Serge, ilagrable et riche, il aime jouer avec ses neveux et nices, voila ma famillelComment est mon grand pre?O RicheAgrableJolieSvre III) Letter Writing a) You are the sports secretary of ABC School, Adarsh Nagar, New Delhi. Write a letter to M/s Omega Sports House, Raj Nagar, New Delhi placing an order for sports goods for your school. Sign yourself as Subodh. Select all that are true. Cheryl bought 3.4 pounds of coffee that cost $6.95 per pound . How many did she spend on coffee The area of circle Z is 64ft?.What is the value of r?r= 4 ftr= 8 ftDr = 16 ftArear= 32 ftZ Question 21 (5 points)Which of the following terms describes a collection of hollow cells that implants onthe uterus wall after fertilization, but is not yet differentiated (in other words, all cellsare the same type of cell still)?FetusHaploidMitosisBlastocyst Large samples of women and men are obtained, and the hemoglobin level is measured in each subject. Here is the 95% confidence interval for the difference between the two population means, where the measures from women correspond to population 1 and the measures from men correspond to population 2: negative 1.76 g divided by dL less than mu 1 minus mu 2 less than minus 1.62 g divided by dL. Complete parts (a) through (c) below.a. What does the confidence interval suggest about equality of the mean hemoglobin level in women and the mean hemoglobin level in men? Because the confidence interval does not include includes nothing, it appears that there is is not a significant difference between the mean level of hemoglobin in women and the mean level of hemoglobin in men. (Type an integer or a decimal. Do not round.) b. Write a brief statement that interprets that confidence interval. A. There is 95% confidence that the interval from minus 1.76 g divided by dL to minus 1.62 g divided by dL actually contains the value of the difference between the two population means left parenthesis mu 1 minus mu 2 right parenthesis . B. There is 95% confidence that the difference between the two population means left parenthesis mu 1 minus mu 2 right parenthesis is either minus 1.76 g divided by dL or minus 1.62 g divided by dL . C. There is 95% confidence that the difference between the two population means is not 0. D. There is 95% confidence that the interval from minus 1.76 g divided by dL to minus 1.62 g divided by dL does not contain the value of the difference between the two population means left parenthesis mu 1 minus mu 2 right parenthesis . c. Express the confidence interval with measures from men being population 1. and measures from women being population 2. Choose the correct answer below. A. negative 1.62 g divided by dL less than mu 1 minus mu 2 less than 1.76 g divided by dL B. negative 1.76 g divided by dL less than mu 1 minus mu 2 less than minus 1.62 g divided by dL C. 1.62 g divided by dL less than mu 1 minus mu 2 less than 1.76 g divided by dL D. negative 1.76 g divided by dL less than mu 1 minus mu 2 less than 1.62 g divided by dL. Which instrument uses strings and was used in ancient times? A general limitation on the power of the president isO the possibility of impeachment.O the ability to grant pardons.O the ability to make treaties.O the threat of treason. what is the main idea of this paragraph You want to buy a $200000 home. You plan to pay 10% as a down payment, and take out a 30 year loan for the rest. A. How much is the loan amount going to be? B. What will your monthly payments be if the interest rate 5%? C. What will your monthly payments be if the interest rate is 6%? A stock just paid a dividend of $3. The stock is expected to increase its dividend payment by 30% per year for the next 3 years. After that, dividends will grow at a rate of 8% forever. If the required rate of return is 10%, what is the price of the stock today? In the intrinsic pathway, the reaction begins with clotting factors from the _. ASAP!!!!!!! The graph represents the money collected at the movie theater on Saturday. Find the domain when the maximum number of people allowed in the movie theater is 30 people. graph of y equals 2 times x plus 40 with x axis labeled Number of People and y axis labeled Amount of Money 0 y 30 40 x 100 0 x 30 40 y 100 James Madison address the issue of class in the composition of the House of Representatives in Federalist Paper #57 How do I find the vertex of -3x^2+6x+17 What is the slope of the line? The average number of spectators at a football competition for the first five days was 3,144.The attendance on the sixth day was 3,990.find the total attendance on the first five days