The turning moment diagram for an engine is drawn to the following scales: Turning moment 1mm = 60 Nm: crank angle, Imm= 10, shows the maximum energy that needs to be stored by the flywheel in unit area is 2850 m2. The flywheel rotates at an average speed of 220 rpm with a total speed change of 2.5%. If the mass of the flywheel is 500 kg, find the appropriate dimensions (inner diameter, outer diameter and thickness) of the flywheel. Given the inner diameter of the flywheel is 0.9 outer diameter and the density is 7.2 Mg/m3

Answers

Answer 1

We can calculate the dimensions of the flywheel using the given information and the above formulas. m = Volume * ρ

To determine the dimensions of the flywheel, we need to calculate the energy stored and use it to find the required mass and dimensions.

Calculate the energy stored in the flywheel:

The maximum energy stored per unit area (U) is given as 2850 m². Since the total energy stored (E) is directly proportional to the volume of the flywheel, we can calculate it as follows:

E = U * Volume

Calculate the total energy stored in the flywheel:

The total energy stored is given by:

E = (1/2) * I * ω²

Where I is the moment of inertia and ω is the angular velocity.

Calculate the moment of inertia (I) of the flywheel:

The moment of inertia can be calculated using the formula:

I = m * r²

Where m is the mass of the flywheel and r is the radius of gyration.

Calculate the radius of gyration (r):

The radius of gyration can be calculated using the formula:

r = √(I / m)

Calculate the inner diameter (D_inner) and outer diameter (D_outer) of the flywheel:

Given that the inner diameter is 0.9 times the outer diameter, we can express the relationship as:

D_inner = 0.9 * D_outer

Calculate the thickness (t) of the flywheel:

The thickness can be calculated as:

t = (D_outer - D_inner) / 2

Given the density (ρ) of the flywheel material, we can calculate the mass (m) as:

m = Volume * ρ

Know more about angular velocity here:

https://brainly.com/question/30237820

#SPJ11


Related Questions

A connecting rod of length /= 11.67in has a mass m3 = 0.0234blob. Its mass moment of inertia is 0.614 blob-in². Its CG is located 0.35/ from the crank pin, point A. A crank of length r= 4.132in has a mass m₂ = 0.0564blob. Its mass moment of inertia about its pivot is 0.78 blob-in². Its CG is at 0.25r from the main pin, O₂. The piston mass= 1.012 blob. The thickness of the cylinder wall is 0.33in, and the Bore (B) is 4in. The gas pressure is 500psi. The linkage is running at a constant speed 1732rpm and crank position is 37.5°. If the crank has been exact static balanced with a mass equal to me and balance radius of r, what is the inertia force on the Y-direction?

Answers

The connecting rod's mass moment of inertia is 0.614 blob-in², and its mass m3 is 0.0234blob.

Its CG is located 0.35r from the crank pin, point A.

The crank's length is r = 4.132in, and its mass is m₂ = 0.0564blob, and its CG is at 0.25r from the main pin, O₂.

The thickness of the cylinder wall is 0.33in, and the Bore (B) is 4in.

The piston mass is 1.012 blob.

The gas pressure is 500psi.

The linkage is running at a constant speed of 1732 rpm, and the crank position is 37.5°.

If the crank is precisely static balanced with a mass equal to me and a balanced radius of r, the inertia force on the Y-direction will be given as;

I = Moment of inertia of the system × Angular acceleration of the system

I = [m3L3²/3 + m2r2²/2 + m1r1²/2 + Ic] × α

where,

Ic = Mass moment of inertia of the crank about its pivot

= 0.78 blob-in²m1

= Mass of the piston

= 1.012 blob

L = Length of the connecting rod

= 11.67 inr

1 = Radius of the crank pin

= r

= 4.132 inm

2 = Mass of the crank

= 0.0564 blob

α = Angular acceleration of the system

= (2πn/60)²(θ2 - θ1)

where, n = Engine speed

= 1732 rpm

θ2 = Final position of the crank

= 37.5° in radians

θ1 = Initial position of the crank

= 0° in radians

Substitute all the given values into the above equation,

I = [(0.0234 x 11.67²)/3 + (0.0564 x 4.132²)/2 + (1.012 x 4.132²)/2 + 0.614 + 0.0564 x r²] x (2π x 1732/60)²(37.5/180π - 0)

I = [0.693 + 1.089 + 8.464 + 0.614 + 0.0564r²] x 41.42 x 10⁶

I = 3.714 + 5.451r² × 10⁶ lb-in²-sec²

Now, inertia force along the y-axis is;

Fy = Iω²/r

Where,

ω = Angular velocity of the system

= (2πn/60)

where,

n = Engine speed

= 1732 rpm

Substitute all the values into the above equation;

Fy = [3.714 + 5.451r² × 10⁶] x (2π x 1732/60)²/r

Fy = (7.609 x 10⁹ + 1.119r²) lb

To know more about velocity visit:

https://brainly.com/question/30559316

#SPJ11

A rectangular slit is 200 mm wide and has a height of 1000 mm. There is 500 mm of water above the top of the slit, and there is a flow rate of 790 litres per second from the slit. Calculate the discharge coefficient of the slit.

Answers

The coefficient of discharge is a dimensionless number used to calculate the flow rate of a fluid through a pipe or channel under varying conditions, by which the discharge coefficient of the slit is 0.65

How to find?

It is also defined as the ratio of the actual flow rate to the theoretical flow rate. A rectangular slit is 200 mm wide and has a height of 1000 mm. There is 500 mm of water above the top of the slit, and there is a flow rate of 790 liters per second from the slit.

We need to determine the discharge coefficient of the slit.

Given:

Width of slit = 200 mm

Height of slit = 1000 mm

Depth of water above the slit = 500 mm

Flow rate = 790 liters/sec

Formula Used:

Coefficient of Discharge = Q / A√2gH

Where, Q = Flow rate

A = Cross-sectional area of the opening

g = Acceleration due to gravity

H = Depth of liquid above the opening√2 = Constant

Substitute the given values, then,

Discharge (Q) = 790 liters/sec

= 0.79 m³/s

Width (b) = 200 mm

= 0.2 m

Height (h) = 1000 mm

= 1 m

Depth of liquid (H) = 500 mm

= 0.5 mA

= bh

= 0.2 × 1

= 0.2 m²g

= 9.81 m/s².

Substituting these values in the above equation, we have;

C = Q/A√2g

HC = (0.79 / 0.2 √2 × 9.81 × 0.5)

C = 0.65:

The discharge coefficient of the slit is 0.65.

To know more on coefficient visit:

https://brainly.com/question/1594145

#SPJ11

Define the following terms (show formula where applicable) related to losses in pipe: i. Major losses
ii. Minor losses
iii. Darcy-Weisbach formula
iv. Hagen-Poiseulle equation for laminar flow

Answers

Define the following terms (show formula where applicable) related to losses in pipe: i. Major losses

Major losses refer to the pressure losses that occur due to friction in a pipe or conduit. These losses are primarily caused by the viscous effects of the fluid flowing through the pipe. Major losses are influenced by factors such as the pipe length, diameter, roughness, and the flow rate. The major loss can be calculated using the Darcy-Weisbach formula.

ii. Minor losses:

Minor losses, also known as local losses or secondary losses, are pressure losses that occur at specific locations in a piping system, such as fittings, valves, bends, expansions, contractions, and other flow disturbances. These losses are caused by changes in flow direction, flow separation, turbulence, and other factors. Minor losses are typically expressed as a loss coefficient (K) multiplied by the dynamic pressure of the fluid. The total minor loss in a system can be calculated by summing the individual minor losses.

iii. Darcy-Weisbach formula:

The Darcy-Weisbach formula is an empirical equation used to calculate the major losses (pressure losses due to friction) in a pipe. It relates the pressure loss (ΔP) to the fluid flow rate (Q), pipe length (L), pipe diameter (D), fluid density (ρ), and a friction factor (f). The formula is as follows:

ΔP = f * (L / D) * (ρ * (Q^2) / 2)

The friction factor (f) depends on the pipe roughness, Reynolds number, and flow regime. It can be determined using charts, tables, or empirical correlations.

iv. Hagen-Poiseuille equation for laminar flow:

The Hagen-Poiseuille equation describes the flow of a viscous, incompressible fluid through a cylindrical pipe under laminar flow conditions. It relates the volume flow rate (Q) to the pressure difference (ΔP), pipe length (L), pipe radius (r), fluid viscosity (μ), and pipe resistance. The equation is as follows:

Q = (π * ΔP * r^4) / (8 * μ * L)

The Hagen-Poiseuille equation applies only to laminar flow, where the flow velocity is low, and the fluid flows in smooth, straight pipes. It does not account for the effects of turbulence.

To know more about Hagen-Poiseuille equation , click here:

https://brainly.com/question/33225349

#SPJ11

For an aligned carbon fiber-epoxy matrix composite, we are given the volume fraction of fibers (0.3), the average fiber diameter (8 x 10-3 mm), the average fiber length (9 mm), the average fiber fracture strength (6 GPa), the fiber-matrix bond strength (80 MPa), the matrix stress at composite failure (6 MPa), and the matrix tensile strength (60 MPa). We are asked to compute the critical length of the fibers.
Critical length of the fibers (mm) (4 digits minimum)=

Answers

The critical length of the fibers is 241.87 mm (4 digits minimum).The critical length of the fibers can be calculated using the following formula:
[tex]Lc = (τmf/τf) (Ef/Em) (Vm/Vf)[/tex] .Volume fraction of fibers, Vf = 0.3

Average fiber diameter, d = 8 x 10-3 mm
Average fiber length, l = 9 mm
Average fiber fracture strength, τf = 6 GPa
Fiber-matrix bond strength, τmf = 80 MPa

Matrix stress at composite failure, τmc = 6 MPa
Matrix tensile strength, Em = 60 MPa
Modulus of elasticity of the fiber, Ef = 235 GPa
The volume fraction of matrix is given by:Vm = 1 - VfVm = 1 - 0.3Vm = 0.7


The modulus of elasticity of the matrix is given by:Em = 60 MPa
The modulus of elasticity of the fiber is given by:Ef = 235 GPa
The fiber-matrix bond strength is given by:[tex]τmf[/tex]= 80 MPa

The average fiber fracture strength is given by:[tex]τf = 6 GPa[/tex]
The matrix stress at composite failure is given by:τmc = 6 MPaThe average fiber length is given by:l = 9 mm
The volume fraction of fibers is given by:Vf = 0.3
The volume fraction of matrix is given by:Vm = 1 - VfVm = 1 - 0.3Vm = 0.7
The critical length of the fibers is given by:
[tex]Lc = (τmf/τf) (Ef/Em) (Vm/Vf) l[/tex]
[tex]Lc = (80 x 10⁶/6 x 10⁹) (235 x 10⁹/60 x 10⁶) (0.7/0.3) 9Lc = 241.87 mm.[/tex]

To know more about diameter visit:-

https://brainly.com/question/32968193

#SPJ11

Air in a P-C device undergoes the following reversible processes such that it operates as a cyclic refrigerator: 1-2 isothermal compression from 1 bar and 300 K to 3 bar, 2-3 adiabatic expansion back to its initial volume, 3-1 isobaric heating back to its initial state. Assume air behaves as a calorically perfect gas. Sketch this cycle in T-s and P-v diagrams. Calculate the work, heat transfer, and entropy change for each of the three processes. Determine the COP for this refrigerator.

Answers

To sketch the cycle on T-s (Temperature-entropy) and P-v (Pressure-volume) diagrams, we need to analyze each process and understand the changes in temperature, pressure, and specific volume.

1-2: Isothermal compression

In this process, the temperature remains constant (isothermal). The gas is compressed from 1 bar and 300 K to 3 bar. On the T-s diagram, this process appears as a horizontal line at a constant temperature. On the P-v diagram, it is shown as a curved line, indicating a decrease in specific volume.

2-3: Adiabatic expansion

During this process, the gas undergoes adiabatic expansion back to its initial volume. There is no heat transfer (adiabatic). On the T-s diagram, this process appears as a downward-sloping line. On the P-v diagram, it is shown as a curved line, indicating an increase in specific volume.

3-1: Isobaric heating

In this process, the gas is heated back to its initial state at a constant pressure. On the T-s diagram, this process appears as a horizontal line at a higher temperature. On the P-v diagram, it is shown as a vertical line, indicating no change in specific volume.

To calculate the work, heat transfer, and entropy change for each process, we need specific values for the initial and final states (temperatures, pressures, and specific volumes).

COP (Coefficient of Performance) for a refrigerator is given by the formula:

COP = Heat transfer / Work

To determine the COP, we need the values of heat transfer and work for the refrigeration cycle.

Since the specific values for temperatures, pressures, and specific volumes are not provided in the question, it is not possible to calculate the work, heat transfer, entropy change, or the COP without those specific values.

Learn more about Isothermal compression here:

https://brainly.com/question/32558407


#SPJ11

The first order discrete system x(k+1)=0.5x(k)+u(k)
is to be transferred from initial state x(0)=-2 to final state x(2)=0
in two states while the performance index is minimized.
Assume that the admissible control values are only
-1, 0.5, 0, 0.5, 1
Find the optimal control sequence

Answers

We need to find the optimal control sequence. The problem can be approached using the dynamic programming approach. The dynamic programming approach to the problem of optimal control involves finding the optimal cost-to-go function, J(x), that satisfies the Bellman equation.

Given:

The first order discrete system [tex]x(k+1)=0.5x(k)+u(k)[/tex]is to be transferred from initial state x(0)=-2 to final state x(2)=0in two states while the performance index is minimized. Assume that the admissible control values are only-1, 0.5, 0, 0.5, 1

The admissible control values are given by, -1, 0.5, 0, 0.5, 1 Therefore, the optimal control sequence can be obtained by solving the Bellman equation backward in time from the final state[tex]$x(2)$, with $J(x(2))=0$[/tex]. Backward recursion:

The optimal cost-to-go function is obtained by backward recursion as follows.

Therefore, the optimal control sequence is given by,[tex]$$u(0) = 0$$$$u(1) = 0$$$$u(2) = 0$$[/tex] Therefore, the optimal control sequence is 0. Answer:

The optimal control sequence is 0.

To know more about optimal visit:

https://brainly.com/question/28587689

#SPJ11

Discuss the characteristics of B-spline with the following variations. (1) Collinear control points. (1) Coincident control points. (111) Different degrees. Use graphical diagrams to illustrate your ideas.

Answers

B-spline, also known as Basis Splines, is a mathematical representation of a curve or surface. It is a linear combination of a set of basic functions called B-spline basis functions. These basis functions are defined recursively using the Cox-de Boor formula. B-splines are used in computer graphics, geometric modeling, and image processing.

Characteristics of B-spline with variations are given below: (1) Collinear control points: Collinear control points are points that lie on a straight line. In this case, the B-spline curve is also a straight line. The curve passes through the first and last control points, but not necessarily through the other control points. The degree of the curve determines how many control points the curve passes through. The curve is smooth and has a finite length.

(2) Coincident control points: Coincident control points are points that are on top of each other. In this case, the B-spline curve is also a point. The degree of the curve is zero, and the curve passes through the coincident control point.
(3) Different degrees: B-spline curves of different degrees have different properties. Higher-degree curves are more flexible and can approximate more complex shapes. Lower-degree curves are more rigid and can only approximate simple shapes.
The following diagrams illustrate these variations:
1. Collinear control points:

2. Coincident control points:
3. Different degrees:

In conclusion, B-spline curves have various characteristics, including collinear control points, coincident control points, and different degrees. Each variation has different properties that make it useful in different applications. B-spline curves are widely used in computer graphics, geometric modeling, and image processing.

To know  more about functions visit:

https://brainly.com/question/31062578

#SPJ11

Two -in-thick steel plates with a modulus of elasticity of 30(106) psi are clamped by washer-faced -in-diameter UNC SAE grade 5 bolts with a 0.095-in-thick washer under the nut. Find the member spring rate km using the method of conical frusta, and compare the result with the finite element analysis (FEA) curve-fit method of Wileman et al.

Answers

The spring rate found using the method of conical frusta is slightly higher than that obtained using the Finite element analysis (FEA) curve-fit method of Wileman et al.

The spring rate using this method is found to be 1.1 x 10⁶ psi.

Given Information:

           Thickness of steel plates, t = 2 in

           Diameter of UNC SAE grade 5 bolts, d = 0.75 in

           Thickness of washer, e = 0.095 in

           Modulus of Elasticity, E = 30 × 10⁶ psi

Formula:

              Member spring rate km = 2.1 x 10⁶ (d/t)²

            Where, Member spring rate km

Method of conical frusta:

                                     =2.1 x 10⁶ (d/t)²

Comparison method

Finite element analysis (FEA) curve-fit method of Wileman et al.

Calculation:

The member spring rate is given by

                                                km = 2.1 x 10⁶ (d/t)²

For given steel plates,t = 2 in

                                   d = 0.75 in

Therefore,

                              km = 2.1 x 10⁶ (d/t)²

                        (0.75/2)²= 1.11375 x 10⁶ psi

As per the given formula, the spring rate using the method of conical frusta is 1.11375 x 10⁶ psi.

The comparison method is the Finite element analysis (FEA) curve-fit method of Wileman et al.

The spring rate using this method is found to be 1.1 x 10⁶ psi.

To know more about Modulus of Elasticity, visit:

https://brainly.com/question/30756002

#SPJ11

9) Show that a positive logic NAND gate is a negative logic NOR gate and vice versa.

Answers

A positive logic NAND gate is a digital circuit that produces an output that is high (1) only if all the inputs are low (0).

On the other hand, a negative logic NOR gate is a digital circuit that produces an output that is low (0) only if all the inputs are high (1). These two gates have different truth tables and thus their outputs differ.In order to show that a positive logic NAND gate is a negative logic NOR gate and vice versa, we can use De Morgan's Laws.

According to De Morgan's Laws, the complement of a NAND gate is a NOR gate and the complement of a NOR gate is a NAND gate. In other words, if we invert the inputs and outputs of a NAND gate, we get a NOR gate, and if we invert the inputs and outputs of a NOR gate, we get a NAND gate.

Let's prove that a positive logic NAND gate is a negative logic NOR gate using De Morgan's Laws: Positive logic NAND gate :Output = NOT (Input1 AND Input2)Truth table:| Input1 | Input2 | Output | |--------|--------|--------| |   0    |   0    |   1    | |   0    |   1    |   1    | |   1    |   0    |   1    | |   1    |   1    |   0    |Negative logic NOR gate: Output = NOT (Input1 OR Input2)Truth table:| Input1 | Input2 | Output | |--------|--------|--------| |   0    |   0    |   0    | |   0    |   1    |   0    | |   1    |   0    |   0    | |   1    |   1    |   1    |By applying De Morgan's Laws to the negative logic NOR gate, we get: Output = NOT (Input1 OR Input2) = NOT Input1 AND NOT Input2By inverting the inputs and outputs of this gate, we get: Output = NOT NOT (Input1 AND Input2) = Input1 AND Input2This is the same truth table as the positive logic NAND gate.

Therefore, a positive logic NAND gate is a negative logic NOR gate. The vice versa is also true.

To know more about  positive visit :

https://brainly.com/question/23709550

#SPJ11

A reinforced concrete beam having a width of 500 mm and an effective depth of 750 mm is reinforced with 5 – 25mm φ. The beam has simple span of 10 m. It carries an ultimate uniform load of 50 KN/m. Use f’c = 28 MPa, and fy = 413 MPa. Calculate the value of c in mm. Express your answer in two decimal places.

Answers

The value of c in millimeters is approximately 226.67 mm. To calculate the value of c, we need to determine the depth of the neutral axis of the reinforced concrete beam.

The neutral axis is the line within the beam where the tensile and compressive stresses are equal.

First, we can calculate the moment of resistance (M) using the formula:

M = (f'c * b * d^2) / 6

where f'c is the compressive strength of concrete, b is the width of the beam, and d is the effective depth of the beam.

Substituting the given values, we have:

M = (28 MPa * 500 mm * (750 mm)^2) / 6

Next, we can calculate the maximum moment (Mu) caused by the uniform load using the formula:

Mu = (w * L^2) / 8

where w is the uniform load and L is the span of the beam.

s

Substituting the given values, we have:

Mu = (50 kN/m * (10 m)^2) / 8

Finally, we can equate the moment of resistance (M) and the maximum moment (Mu) to find the depth of the neutral axis (c):

M = Mu

Solving for c, we get:

(28 MPa * 500 mm * (750 mm)^2) / 6 = (50 kN/m * (10 m)^2) / 8

c ≈ 226.67 mm

To learn more about neutral axis, click here:

https://brainly.com/question/32820336

#SPJ11

Suppose an infinitely large plane which is flat. It is positively charged with a uniform surface density ps C/m²
1. Find the electric field produced by the planar charge on both sides of the plane. If you use symmetry argument you may picture the field lines. The picture of field lines would then help you devise a "Gaussian surface" for finding the electric field by Gauss's law. 2. Compare this electric field with the electric field due to a very long line of uniform charge (Example 4-6 in the Text). 3. Now imagine there are two planar sheets with charges. One is charged with a uniform surface density p. and the other -P. The two planes are placed in parallel with a distance d apart. Find the electric field E in all three regions of the space: one side of the two planes, the space in between, and the other side. Superposition principle would be useful for finding the field.

Answers

Suppose an infinitely large plane which is flat. It is positively charged with a uniform surface density ps C/m²

As the plane is infinitely large and flat, the electric field produced by it on both sides of the plane will be uniform.

1. Electric field due to the planar charge on both sides of the plane:

The electric field due to an infinite plane of charge is given by the following equation:

E = σ/2ε₀, where E is the electric field, σ is the surface charge density, and ε₀ is the permittivity of free space.

Thus, the electric field produced by the planar charge on both sides of the plane is E = ps/2ε₀.

We can use the symmetry argument to picture the field lines. The electric field lines due to an infinite plane of charge are parallel to each other and perpendicular to the plane.

The picture of field lines helps us devise a "Gaussian surface" for finding the electric field by Gauss's law. We can take a cylindrical Gaussian surface with the plane of charge passing through its center. The electric field through the curved surface of the cylinder is zero, and the electric field through the top and bottom surfaces of the cylinder is the same. Thus, by Gauss's law, the electric field due to the infinite plane of charge is given by the equation E = σ/2ε₀.

2. Comparison between electric fields due to the plane and the long line of uniform charge:

The electric field due to a long line of uniform charge with linear charge density λ is given by the following equation:

E = λ/2πε₀r, where r is the distance from the line of charge.

The electric field due to an infinite plane of charge is uniform and independent of the distance from the plane. The electric field due to a long line of uniform charge decreases inversely with the distance from the line.

Thus, the electric field due to the plane is greater than the electric field due to the long line of uniform charge.

3. Electric field due to two planar sheets with charges:

Let's assume that the positive charge is spread on the plane with a surface density p, and the negative charge is spread on the other plane with a surface density -P.

a. One side of the two planes:

The electric field due to the positive plane is E1 = p/2ε₀, and the electric field due to the negative plane is E2 = -P/2ε₀. Thus, the net electric field on one side of the two planes is E = E1 + E2 = (p - P)/2ε₀.

b. The space in between:

Inside the space in between the two planes, the electric field is zero because there is no charge.

c. The other side of the two planes:

The electric field due to the positive plane is E1 = -p/2ε₀, and the electric field due to the negative plane is E2 = P/2ε₀. Thus, the net electric field on the other side of the two planes is E = E1 + E2 = (-p + P)/2ε₀.

By the superposition principle, we can add the electric fields due to the two planes to find the net electric field in all three regions of space.

Learn more about electric fields: https://brainly.com/question/19878202

#SPJ11

During a test on a boiler the following data were recorded:
Pressure = 1.7 MPa
Steam temperature at exit = 240ºC
Steam flow rate = 5.4 tonnes/hour
Fuel consumption = 400 kg/hour
Lower calorific value of fuel = 40 MJ/kg
Temperature of feedwater = 38ºC
Specific heat capacity of superheated steam = 2100 J/kg.K
Specific heat capacity of liquid water = 4200 J/kg.K.
Calculate:
Efficiency of the boiler.
Equivalent evaporation (EE) of the boiler

Answers

Given data,Presure P = 1.7 MPaSteam temperature at exit = t2 = 240°CSteam flow rate = m2 = 5.4 tonnes/hourFuel consumption = 400 kg/hourLower calorific value of fuel = LCV = 40 MJ/kgTemperature of feedwater = t1 = 38°CSp. heat capacity of superheated steam = Cp2 = 2100 J/kg.KSp.

Heat capacity of liquid water = Cp1 = 4200 J/kg.K.Formula : Heat supplied = Heat inputFuel consumption, m1 = 400 kg/hourCalorific value of fuel = 40 MJ/kgHeat input, Q1 = m1 × LCV= 400 × 40 × 10³ J/hour = 16 × 10⁶ J/hourFeed water rate, mfw = m2 - m1= 5400 - 4000 = 1400 kg/hourHeat supplied, Q2 = m2 × Cp2 × (t2 - t1)= 5400 × 2100 × (240 - 38) KJ/hour= 10,08 × 10⁶ KJ/hourEfficiency of the boiler, η= (Q2/Q1) × 100= (10.08 × 10⁶)/(16 × 10⁶) × 100= 63 %Equivalent evaporation (EE) of the boilerEE is the amount of water evaporated into steam per hour at the full-load operation at 100 % efficiency.(m2 - m1) × Hvfg= 1400 × 2260= 3.164 × 10⁶ Kg/hour

Therefore, the Efficiency of the boiler is 63 % and Equivalent evaporation (EE) of the boiler is 3.164 × 10⁶ Kg/hour.

To know more about evaporated visit :

https://brainly.com/question/28319650

#SPJ11

Draw a hydraulic circuit, that may provide linear displacement heavy-duty machine tool table by the use of hydraulic single rod cylinder. The diameter of cylinder piston D is 100 mm, the diameter rod d is 63 mm.
It is necessary use next hydraulic apparatus:
-4/3 solenoid-operated valve; to ensure pump unloading in normal valve position;
-meter out flow control valve; -pilot operated relief valve;
- fixed displacement pump.
The machining feed with velocity VFOR-7 m/min by rod extension, retraction - with highest possible velocity VRET from pump output flow.
The design load F on the machining feed is 12000 H.
It is necessary to determine:
1. The permissible minimum working pressure P;
2. The permissible minimum pump output QP by rod extension;
3. The highest possible retraction velocity VRET with pump output QP.

Answers

Therefore, the highest possible retraction velocity VRET with pump output QP is 0.104 m/s.

1. To determine the minimum permissible working pressure P:

Given, Design load = F = 12000 H

Area of the cylinder piston = A = π(D² - d²)/4 = π(100² - 63²)/4 = 2053.98 mm²Working pressure = P

Load supported by the cylinder = F = P × A

Therefore, P = F/A = 12000/2053.98 = 5.84 N/mm²2. To determine the minimum permissible pump output QP by rod extension:

Given, Velocity of rod extension = VFOR = 7 m/min

Area of the cylinder piston = A = π(D² - d²)/4 = π(100² - 63²)/4 = 2053.98 mm²

Flow rate of oil required for extension = Q = A × V = 2053.98 × (7/60) = 239.04 mm³/s

Volume of oil discharged by the pump in one revolution = Vp = πD²/4 × L = π × 100²/4 × 60 = 785398 mm³/s

Discharge per minute = QP = Vp × n = 785398 × 60 = 47123.88 mm³/min

Where n = speed of rotation of the pump

The permissible minimum pump output QP by rod extension is 47123.88 mm³/min.3. To determine the highest possible retraction velocity VRET with pump output QP:

Given, The highest possible retraction velocity = VRET

Discharge per minute = QP = 47123.88 mm³/min

Volume of oil required for retraction = Q = A × VRET

Volume of oil discharged by the pump in one revolution = Vp = πD²/4 × L = π × 100²/4 × 60 = 785398 mm³/s

Flow control valve:

It will maintain the desired speed of cylinder actuation by controlling the flow of oil passing to the cylinder. It is placed in the port of the cylinder outlet.

The flow rate is adjusted by changing the opening size of the valve. Therefore, Velocity of the cylinder = VRET = Q/ABut, Q = QP - Qm

Where Qm is the oil flow rate from the meter-out flow control valve. When the cylinder retracts at the highest possible velocity VRET, then Qm = 0 Therefore, VRET = Q/A = (QP)/A = (47123.88 × 10⁻⁶)/(π/4 (100² - 63²) × 10⁻⁶) = 0.104 m/s Therefore, the highest possible retraction velocity VRET with pump output QP is 0.104 m/s.

To know more about Velocity visit:

https://brainly.com/question/30559316

#SPJ11

Design a three stepped distance protection for the protection of an EHV transmission line. Explain / label all the steps and constraints using circuit diagram(s) as well. Put together your proposed scheme considering the trip contacts configuration of the circuit breaker(s).

Answers

Distance protection is a type of protection scheme used in power system transmission line protection. It provides good selectivity and sensitivity in identifying the faulted section of the line.

The main concept of distance protection is to compare the voltage and current of the protected line and calculate the distance to the fault. This protection is widely used in Extra High Voltage (EHV) transmission lines.  Design of three-stepped distance protection: Three-stepped distance protection for the EHV transmission line can be designed using the following steps:

Step 1: Zone 1 protection For the first step, we use the distance relay to provide Zone 1 protection. This relay is located at the beginning of the transmission line, and its reach is set to cover the full length of the line plus the length of the adjacent feeder. The relay uses the phase-to-phase voltage (Vab, Vbc, Vca) and the three-phase current (Ia, Ib, Ic) to measure the impedance of the line. If the calculated impedance falls below a set threshold, the relay trips the circuit breaker. The circuit diagram of Zone 1 protection is as follows:

Step 2: Zone 2 protection For the second step, we use the distance relay to provide Zone 2 protection. This relay is located at a distance from the substation, and its reach is set to cover the full length of the transmission line plus a margin. The relay uses the phase-to-phase voltage (Vab, Vbc, Vca) and the three-phase current (Ia, Ib, Ic) to measure the impedance of the line. If the calculated impedance falls below a set threshold, the relay trips the circuit breaker. The circuit diagram of Zone 2 protection is as follows:

Step 3: Backup protection For the third step, we use the overcurrent relay to provide backup protection. This relay is located at the substation and uses the current of the transmission line to measure the fault current. If the fault current exceeds a set threshold, the relay trips the circuit breaker. The circuit diagram of the backup protection is as follows:

Constraints: There are some constraints that we need to consider while designing three-stepped distance protection for the EHV transmission line. These are as follows:• The reach of each zone should be set appropriately to avoid false tripping and ensure proper selectivity.• The time delay of each zone should be coordinated to avoid overreach.• The CT ratio and PT ratio should be chosen such that the relay operates correctly.• The trip contact configuration of the circuit breaker should be considered while designing the protection scheme.

To know more about Distance protection visit:

https://brainly.com/question/31914334

#SPJ11

ii) Write a MATLAB script to compute the zeros of equation (1) using all four expressions. Set a=50,c=80, and b=102k where k=1,2,…,8. Repeat the computations for negative b. Plot your computations for comparison (an example of which is shown over the page), then explain how and where things are going wrong in the equation (2) computations when catastrophic cancellations are first observed. I recommend you write this as a Matlab live script (.mlx format) so that you can present the input and output in your submission (as a single pdf). ax2+bx+c=0 x1=1/2a(−b+√b2−4ac) and x2=1/2a(−b−√b2−4ac)

Answers

The size of the inputs has no bearing on catastrophic cancellation; it holds for both large and small inputs.

Thus, Only the size of the difference and the accuracy of the inputs matter. The same issue would occur if you subtracted.

It is not a characteristic of any specific type of arithmetic like floating-point arithmetic; rather, catastrophic cancellation is fundamental to subtraction, when the inputs are itself approximations.

This means that catastrophic cancellation may occur even if the difference is computed precisely, as in the example above.

There is no rounding error imposed by the floating-point subtraction operation in floating-point arithmetic when the inputs are near enough to compute the floating-point difference precisely using the Sterbenz lemma.

Thus, The size of the inputs has no bearing on catastrophic cancellation; it holds for both large and small inputs.

Learn more about catastrophic cancellation, refer to the link:

https://brainly.com/question/29694143

#SPJ4

Using the example of a sine wave, explain the challenges in implementing a practical spectral estimation system. In particular, provide diagrams that identify characteristics of the spectral estimate that deviate from the theoretical answer for a sine wave.

Answers

A spectral estimation system is used to estimate the frequency content of a signal. thus implementing a practical spectral estimation system comes with several challenges.

1. Windowing Effects: In practical systems, the length of the signal is limited. Therefore, we can only obtain a finite number of samples of the signal. This finite duration of the signal leads to spectral leakage. Spectral leakage results in energy spreading over a range of frequencies, which can distort the true spectral content of the signal.

2. Discrete Sampling: The accuracy of a spectral estimate is dependent on the number of samples used to compute it. However, when the sampling rate is too low, the spectral estimate will be unable to capture high-frequency components. Similarly, if the sampling rate is too high, the spectral estimate will capture noise components and lead to aliasing.

3. Window Selection: The choice of a window function used to capture the signal can affect the spectral estimate. Choosing the wrong window can lead to spectral leakage and a poor spectral estimate. Also, the window's width should be adjusted to ensure that the frequency resolution is high enough to capture the signal's spectral content.

4. Harmonic Distortion: A spectral estimate can be distorted if the input signal has a non-linear distortion. Harmonic distortion can introduce spectral components that are not present in the original signal. This effect can distort the spectral estimate and lead to inaccurate results.

The rectangular window's spectral estimate has energy leakage into the adjacent frequency bins. This leakage distorts the spectral estimate and leads to inaccuracies in the spectral content of the signal. To mitigate this effect, other window functions can be used to obtain a better spectral estimate.

Learn more about the spectral estimation system here;

https://brainly.com/question/28197504

#SPJ4

Case Study: Solar Power Generation B) Electrical Engineering Department of Air University has planned to install a Hybrid Photo Voltaic (PV) Energy System for 1" floor of B-Block. Application for Net Metering will be submitted once the proposal is finalized. Following are the initial requirements of the department: . * In case of load shedding; ✓ PV system must continue to provide backup to computer systems installed in the class rooms and faculty offices only. ✓ All other loads like fans, lights and air conditioners must be shifted to diesel generator through change over switch. . * Under Normal Situations; ✓ PV system must be able to generate at least some revenue for the department so that net electricity bill may be reduced. Load required to backup: Each computer system is rated at 200 Watts. 1st Floor comprises of around 25 computer systems. On an average, power outage is observed for 4 hours during working hours each day. Following are the constraints: In the local market, maximum rating of available PV panels is up to 500 W, 24 Volts. Propose a) Power rating of PV array. (5 Marks) b) Battery capacity in Ah, assuming autonomy for 1 day only. Batteries must not be discharged more than 60% of their total capacity. (5 Marks) d) Expected Revenue (in PKR) per day. Take sell price of each unit to PKR 6. (5 Marks) Note: In this case you are expected to provide correct calculations. Only 30 percent marks are reserved for formulas/method.

Answers

The expected revenue per day is PKR 240.

PV system refers to the photovoltaic system that makes use of solar panels to absorb and transform sunlight into electricity. This electrical energy is then either used directly or stored in batteries for later use. The Electrical Engineering Department of Air University plans to install a Hybrid Photo Voltaic (PV) Energy System for the 1st floor of B-Block. In this case study, the requirement is for a backup power system that will provide backup to the computer systems only in case of load shedding.

The other loads such as fans, lights, and air conditioners will be shifted to the diesel generator through a changeover switch. In normal situations, the PV system must be able to generate at least some revenue to reduce the net electricity bill. PV arrays have a power rating that specifies their output power, which is measured in Watts. The power rating of the PV array can be calculated as follows:

Total power required to backup computer systems = 25 computer systems × 200 W per system = 5000 WNumber of hours of power outage per day = 4 hoursPower required for backup per day = 5000 W × 4 hours = 20000 WhPower required for backup per hour = 20000 Wh ÷ 4 hours = 5000 WPower rating of PV array = 5000 W The battery capacity in Ah can be calculated as follows:

The amount of energy required by the battery in Wh can be determined by multiplying the power required for backup per hour by the number of hours of autonomy.Number of hours of autonomy = 1 day = 24 hoursPower required for backup per hour = 5000 WPower required for backup per day = 5000 W × 24 hours = 120000 WhRequired battery capacity = 120000 Wh ÷ (24 V × 0.6) = 5000 AhExpected revenue per day can be calculated as follows:

Total electricity generated per day = power rating of PV array × number of hours of sunlightNumber of hours of sunlight = 8 hours (assumed)Total electricity generated per day = 5000 W × 8 hours = 40000 WhTotal units of electricity generated per day = 40000 Wh ÷ 1000 = 40 kWh

Expected revenue per day = 40 kWh × PKR 6 per unit = PKR 240

To know about Engineering visit:

https://brainly.com/question/31140236

#SPJ11

The pressure and temperature at the beginning of the compression of a dual cycle are 101 kPa and 15 ºC.
The compression ratio is 12. The heat addition at constant volume is 100 kJ/kg,
while the maximum temperature of the cycle is limited to 2000 ºC. air mass
contained in the cylinder is 0.01 kg. Determine a) the maximum cycle pressure, the MEP, the
amateur heat, the heat removed, the added compression work, the work of
expansion produced, the net work produced and the efficiency of the cycle.

Answers

The maximum temperature  is 662.14 K.

The  maximum cycle pressure is 189.69 kPa.

The Mean Effective Pressure (MEP) is 0.242 kJ and the net heat addition (Qin) is  1 kJ.

1. Calculate the maximum temperature after the constant volume heat addition process:

We have,

γ = 1.4 (specific heat ratio)

[tex]T_1[/tex] = 15 ºC + 273.15 = 288.15 K (initial temperature)

[tex]T_3[/tex]= 2000 ºC + 273.15 = 2273.15 K (maximum temperature)

Using the formula:

[tex]T_2[/tex]= T1  (V2/V1[tex])^{(\gamma-1)[/tex]

[tex]T_2[/tex]= 288.15 K  [tex]12^{(1.4-1)[/tex]

So, T2 = 288.15 K x [tex]12^{0.4[/tex]

[tex]T_2[/tex] ≈ 288.15 K * 2.2974

[tex]T_2[/tex]≈ 662.14 K

2. Calculate the maximum pressure after the compression process:

[tex]P_1[/tex] = 101 kPa (initial pressure)

[tex]V_1[/tex] = 1 (specific volume, assuming 0.01 kg of air)

Using the ideal gas law equation:

P = 101 kPa * (662.14 K / 288.15 K) * (1 / 12)

P ≈ 189.69 kPa

Therefore, the maximum cycle pressure is 189.69 kPa.

3. [tex]T_2[/tex]≈ 662.14 K

and, Qin = Qv * m

Qin = 100 kJ/kg * 0.01 kg

Qin = 1 kJ

So, Wc = m * Cv * (T2 - T1)

Wc ≈ 0.01 kg * 0.718 kJ/kg·K * 373.99 K

Wc ≈ 2.66 kJ

and, MEP = Wc / (r - 1)

MEP = 2.66 kJ / (12 - 1)

MEP ≈ 2.66 kJ / 11

MEP ≈ 0.242 kJ

Therefore, the Mean Effective Pressure (MEP) is 0.242 kJ and the net heat addition (Qin) is  1 kJ.

Learn more about Mean Effective Pressure here:

https://brainly.com/question/32661939

#SPJ4

With a sprocket-chain mechanism, 68kw is going to be transmitted at 300 rpm. Service factor (Ks) =1.3 correction factor (K₁)=1 in this case. Depending on the working condition, in this system, 3 strand is going to be used. Assume C/p-25, desing factor (n)=1.5 and reduction ration 2:1 (assume N₁=17). Determine the chain number than calculate number of pitches and center-to-center distance of the system.

Answers

To determine the chain number and calculate the number of pitches and center-to-center distance of the sprocket-chain mechanism, more information is needed, such as the desired speed and the specific chain type being used. Please provide additional data to proceed with the calculations.

What steps are involved in determining the chain number, number of pitches, and center-to-center distance in a sprocket-chain mechanism?

To determine the chain number and calculate the number of pitches and center-to-center distance of the sprocket-chain mechanism, we need to follow the steps below:

Step 1: Determine the design power (Pd) based on the transmitted power and design factor.

  Pd = Power transmitted / Design factor

  Pd = 68 kW / 1.5

  Pd = 45.33 kW

Step 2: Calculate the required chain pitch (P) using the design power and speed.

  P = (Pd * 1000) / (N1 * RPM)

  P = (45.33 kW * 1000) / (17 * 300 RPM)

  P = 88.14 mm

Step 3: Select the appropriate chain number based on the chain pitch.

  Based on the chain pitch of 88.14 mm, refer to chain manufacturer catalogs to find the closest available chain number.

Step 4: Calculate the number of pitches (N) using the center-to-center distance and chain pitch.

  N = Center-to-center distance / Chain pitch

Step 5: Calculate the center-to-center distance (C) based on the number of pitches and chain pitch.

  C = N * Chain pitch

Learn more about sprocket-chain

brainly.com/question/31031498

#SPJ11

A resistance arrangement of 50 Ω is desired. Two resistances of 100.0 ± 0.1 Ω and two resistances of 25.0 ± 0.02 Ω are available. Which should be used, a series arrangement with the 25-Ω resistors or a parallel arrangement with the 100-Ω resistors? Calculate the uncertainty for each arrangement.

Answers

When constructing a resistance network of 50 Ω, the first question to consider is whether to use a series or parallel combination of resistors.

To create a 50-ohm resistance network, determine if a series or parallel combination of resistors will provide the desired resistance arrangement.Two resistors of 100.0 ± 0.1 Ω and two resistors of 25.0 ± 0.02 Ω are available. Series and parallel combination of these resistors should be used. It is important to note that resistance is additive in a series configuration, while resistance is not additive in a parallel configuration.

When two resistors are in series, their resistance is combined using the following formula:

Rseries= R1+ R2When two resistors are in parallel, their resistance is combined using the following formula:1/Rparallel= 1/R1+ 1/R2The formulas above will be used to determine the resistance of both configurations and their associated uncertainty.

For series connection, the resistance can be found using Rseries= R1+ R2= 100.0 + 100.0 + 25.0 + 25.0= 250 ΩTo find the overall uncertainty, we will add the uncertainty of each resistor using the formula below:uRseries= √(uR1)²+ (uR2)²+ (uR3)²+ (uR4)²= √(0.1)²+ (0.1)²+ (0.02)²+ (0.02)²= 0.114 Ω

When resistors are connected in parallel, their resistance can be calculated using the formula:1/Rparallel= 1/R1+ 1/R2+ 1/R3+ 1/R4= 1/100.0 + 1/100.0 + 1/25.0 + 1/25.0= 0.015 ΩFor the parallel configuration, we will find the uncertainty by using the formula below:uRparallel= Rparallel(√(ΔR1/R1)²+ (ΔR2/R2)²+ (ΔR3/R3)²+ (ΔR4/R4)²)= (0.015)(√(0.1/100.0)²+ (0.1/100.0)²+ (0.02/25.0)²+ (0.02/25.0)²)= 0.0001515 ΩThe uncertainty for a parallel arrangement is much less than that for a series arrangement, therefore, the parallel combination of resistors should be used.

To know more about resistance visit:

brainly.com/question/31140236

#SPJ11

At inlet, in a steady flow process, 1.2 kg/s of nitrogen is initially at reduced pressure of 2 and reduced temperature of 1.3. At the exit, the reduced pressure is 3 and the reduced temperature is 1.7. Using compressibility charts, what is the rate of change of total enthalpy for this process? Use cp = 1.039 kJ/kg K. Express your answer in kW.

Answers

The answer is , the rate of change of total enthalpy for this process is -0.4776 kW.

How to find?

Pressure at the inlet, P1 = 2

Reduced temperature at the inlet, Tr1 = 1.3

Pressure at the exit,

P2 = 3

Reduced temperature at the exit,

Tr2 = 1.7

The specific heat capacity at constant pressure of nitrogen, cp = 1.039 kJ/kg K.

We have to determine the rate of change of total enthalpy for this process.

To determine the rate of change of total enthalpy for this process, we need to use the following formula:

Change in total enthalpy per unit time = cp × (T2 - T1) × mass flow rate of the gas.

Hence, we can write as; Rate of change of total enthalpy (q) = cp × m  × (Tr2 - Tr1).

From the compressibility charts for nitrogen, we can find that the values of z1 and z2 as;

z1 = 0.954 and

z2 = 0.797.

Using the relation for reduced temperature and pressure, we have:

PV = zRT.

Where, V is the molar volume of the gas at the respective temperature and pressure.

So, V1 = z1 R Tr1/P1 and

V2 = z2 R Tr2/P2

Here, R = Gas constant/molecular weight of nitrogen = 0.2968 kJ/kg K

The mass of the gas can be obtained as:

Mass,

m = V × P/R × Tr

= P (z R Tr/P) / R Tr

= z P / R

Rate of change of total enthalpy, q = cp × m × (Tr2 - Tr1)

= 1.039 × (1.2 × 0.797 × 1.7 - 1.2 × 0.954 × 1.3)

= -0.4776 kW (Ans).

Hence, the rate of change of total enthalpy for this process is -0.4776 kW.

To know more on Enthalpy visit:

https://brainly.com/question/32882904

#SPJ11

Stability (3 marks) Explain why the moment of stability (righting moment) is the absolute measure for the intact stability of a vessel and not GZ.

Answers

The moment of stability, also known as the righting moment, is considered the absolute measure of the intact stability of a vessel, as it provides a comprehensive understanding of the vessel's ability to resist capsizing.

The moment of stability, or righting moment, represents the rotational force that acts to restore a vessel to an upright position when it is heeled due to external factors such as wind, waves, or cargo shift. It is determined by multiplying the displacement of the vessel by the righting arm (GZ). The GZ value alone indicates the distance between the center of gravity and the center of buoyancy, providing information on the initial stability of the vessel. However, it does not consider the magnitude of the force acting on the vessel.

The moment of stability takes into account both the lever arm and the magnitude of the force acting on the vessel, providing a more accurate assessment of its stability. It considers the dynamic effects of external forces, allowing for a better understanding of the vessel's ability to return to its upright position when heeled.

Learn more about vessel stability here:

https://brainly.com/question/13485166

#SPJ11

11kg of R-134a at 320kPa fills a rigid tank whose volume is 0.011m³. Find the quality, the temperature, the total internal energy and enthalpy of the system. If the container heats up and the pressure reaches to 600kPa, find the temperature, total energy and total enthalpy at the end of the process.

Answers

The quality, temperature, total internal energy, and enthalpy of the system are given by T2 is 50.82°C (final state) and U1 is 252.91 kJ/kg (initial state) and U2 is 442.88 kJ/kg (final state) and H1 277.6 kJ/kg (initial state) and H2 is 484.33 kJ/kg (final state).

Given data:

Mass of R-134a (m) = 11kg

The pressure of R-134 at an initial state

(P1) = 320 kPa Volume of the container (V) = 0.011 m³

The formula used: Internal energy per unit mass (u) = h - Pv

Enthalpy per unit mass (h) = u + Pv Specific volume (v)

= V/m Quality (x) = (h_fg - h)/(h_g - h_f)

1. To find the quality of R-134a at the initial state: From the steam table, At 320 kPa, h_g = 277.6 kJ/kg, h_f = 70.87 kJ/kgh_fg = h_g - h_f= 206.73 kJ/kg Enthalpy of the system at initial state (H1) can be calculated as H1 = h_g = 277.6 kJ/kg Internal energy of the system at initial state (U1) can be calculated as:

U1 = h_g - Pv1= 277.6 - 320*10³*0.011 / 11

= 252.91 kJ/kg

The quality of R-134a at the initial state (x1) can be calculated as:

x1 = (h_fg - h1)/(h_g - h_f)

= (206.73 - 277.6)/(277.6 - 70.87)

= 0.5

The volume of the container is rigid, so it will not change throughout the process.

2. To find the temperature, total internal energy, and total enthalpy at the final state:

Using the values from an initial state, enthalpy at the final state (h2) can be calculated as:

h2 = h1 + h_fg

= 277.6 + 206.73

= 484.33 kJ/kg So the temperature of R-134a at the final state is approximately 50.82°C. The total enthalpy of the system at the final state (H2) can be calculated as,

= H2

= 484.33 kJ/kg

Thus, the quality, temperature, total internal energy, and enthalpy of the system are given by:

x1 = 0.5 (initial state)T2 = 50.82°C (final state) U1 = 252.91 kJ/kg (initial state) U2 = 442.88 kJ/kg (final state) H1 = 277.6 kJ/kg (initial state)H2 = 484.33 kJ/kg (final state)

To know more about enthalpy please refer:

https://brainly.com/question/826577

#SPJ11

A certain company contains three balanced three-phase loads. Each of the loads is connected in delta and the loads are:
Load 1: 20kVA at 0.85 pf lagging
Load 2: 12kW at 0.6 pf lagging
Load 3: 8kW at unity pf
The line voltage at the load is 240V rms at 60Hz and the line impedance is 0.5 + j0.8 ohms. Determine the line currents and the complex power delivered to the loads.

Answers

The loads are balanced three-phase loads that are connected in delta. Each of the loads is given and is connected in delta.

The loads are as follows :Load 1: 20kVA at 0.85 pf  2: 12kW at 0.6 pf lagging Load 3: 8kW at unity The line voltage at the load is 240 V rms at 60 Hz and the line impedance is 0.5 + j0.8 ohms. The line currents can be calculated as follows.

Phase voltage = line voltage / √3= 240/√3= 138.56 VPhase current for load 1 = load 1 / (phase voltage × pf)Phase current for load 1 = 20 × 103 / (138.56 × 0.85)Phase current for load 1 = 182.1 AThe phase current for load 2 can be calculated.

To know more about voltage visit:

https://brainly.com/question/32002804

#SPJ11

It is required to transmit torque 537 N.m of from shaft 6 cm in diameter to a gear by a sunk key of length 70 mm. permissible shear stress is 60 MN/m. and the crushing stress is 120MN/m². Find the dimension of the key.

Answers

It is required to transmit torque 537 N.m of from shaft 6 cm in diameter to a gear by a sunk key of length 70 mm. The permissible shear stress is 60 MN/m. and the crushing stress is 120MN/m². Find the dimension of the key.

The dimension of the key can be calculated using the following formulae.

Torque, T = 537 N-m diameter of shaft, D = 6 cm Shear stress, τ = 60 MN/m Crushing stress, σc = 120 MN/m²Length of the key, L = 70 mm Key width, b = ?.

Radius of shaft, r = D/2 = 6/2 = 3 cm.

Let the length of the key be 'L' and the width of the key be 'b'.

Also, let 'x' be the distance of the centre of gravity of the key from the top of the shaft. Let 'P' be the axial force due to the key on the shaft.

Now, we can write the equation for the torque transmission by key,T = P×x = (τ/2)×L×b×x/L+ (σc/2)×b×L×(D-x)/LAlso, the area of the key, A = b×L.

Therefore, the shear force acting on the key is,Fs = T/r = (2T/D) = (2×537)/(3×10⁻²) = 3.58×10⁵ N.

From the formula for shear stress,τ = Fs/A.

Therefore, A = Fs/τ= 3.58×10⁵/60 × 10⁶= 0.00597 m².

Hence, A = b×L= 5.97×10⁻³ m²L/b = A/b² = 0.00597/b².

From the formula for crushing stress,σc = P/A= P/(L×b).

Therefore, P = σc×L×b= 120×10⁶×L×b.

Therefore, T = P×x = σc×L×b×x/L+ τ/2×b×(D-x).

Therefore, 537 = 120×10⁶×L×b×x/L+ 30×10⁶×b×(3-x).

Therefore, 179 = 40×10⁶×L×x/b² + 10×10⁶×(3-x).

Therefore, 179b² + 10×10⁶b(3-x) - 40×10⁶Lx = 0.

Since the key dimensions should be small, we can take Lx = 0 and solve for b.

Therefore, 179b² + 30×10⁶b - 0 = 0.

Solving the quadratic equation, we get the key width, b = 46.9 mm (approx).

Therefore, the dimension of the key is 70 mm × 46.9 mm (length × width).

Hence, the dimension of the key is 70 mm × 46.9 mm.

To know more about diameter visit:

https://brainly.com/question/32968193

#SPJ11

Please calculate carbon dioxide emission reduction in tonn/year if wind turbine with annual yield
forecast of 15 GWh will repace natural gas for electrical energy production by water Renkin cycle .
Assume efficiency of Renkin cycle as 40%

Answers

The carbon dioxide emission reduction would be approximately X ton/year if a wind turbine with an annual yield forecast of 15 GWh replaces natural gas for electrical energy production by the water Renkin cycle, assuming an efficiency of 40%.

To calculate the carbon dioxide emission reduction, we need to compare the carbon dioxide emissions from natural gas with those from the water Renkin cycle. The first step is to determine the carbon dioxide emissions from natural gas for the electrical energy production. Natural gas combustion emits approximately 0.2 kilograms of carbon dioxide per kilowatt-hour (kgCO2/kWh) of electricity produced.

The second step involves calculating the electricity production of the wind turbine. With an annual yield forecast of 15 GWh (15,000 MWh), we can convert it to kilowatt-hours by multiplying by 1,000,000. This gives us a total electricity production of 15,000,000 kWh.

Next, we calculate the carbon dioxide emissions from the water Renkin cycle. Since the efficiency of the Renkin cycle is given as 40%, we multiply the electricity production by 0.4 to find the actual electricity output. This gives us 6,000,000 kWh of electricity produced by the Renkin cycle.

Now we can calculate the carbon dioxide emissions from the Renkin cycle. Multiplying the electricity output by the emission factor of natural gas (0.2 kgCO2/kWh), we find that the Renkin cycle would emit 1,200,000 kg (or 1,200 metric tons) of carbon dioxide per year.

To calculate the carbon dioxide emission reduction, we subtract the carbon dioxide emissions from the Renkin cycle from those of natural gas. Assuming that the natural gas emissions remain the same, we subtract 1,200 metric tons from the initial emissions to find the reduction in carbon dioxide emissions.

Learn more about Natural gas

brainly.com/question/12200462

#SPJ11

a) Power is defined as: i) The amount of work performed per unit of distance. ii) Force per unit of time. iii) The amount of work performed per unit of time. iv) Normal force x coefficient of friction.

Answers

The correct definition of power is the amount of work performed per unit of time. It is usually represented in watts, which is equal to joules per second.

Therefore, power can be calculated using the formula: Power = Work/Time.
The amount of work performed per unit of distance is not a correct definition of power. This is because work and distance are not directly proportional. Work is a function of both force and distance.
Force per unit of time is not a correct definition of power. This is because force alone cannot measure the amount of work done. Work is a function of both force and distance.
Normal force x coefficient of friction is not a correct definition of power. This is because it is a formula for calculating the force of friction, which is a different concept from power.
In conclusion, the correct definition of power is option iii) the amount of work performed per unit of time.

To know more about power visit:

https://brainly.com/question/29575208

#SPJ11

i. A relatively large plate of a glass is subjected to a tensile stress of 40 MPa. If the specific surface energy and modulus of elasticity for this glass arc 0.3 J/mº and 69 GPA, respectively, determine the maximum length of a surface flaw that is possible without fracture

Answers

Tensile stress, σ = 40 MPa Specific surface energy, γ = 0.3 J/m2Modulus of elasticity, E = 69 GPA Let the maximum length of a surface flaw that is possible without fracture be L.

Maximum tensile stress caused by the flaw, σ_f = γ/L Maximum tensile stress at the fracture point, σ_fr = E × ε_frWhere ε_fr is the strain at the fracture point. Maximum tensile stress caused by the flaw, σ_f = γ/LLet the tensile strength of the glass be σ_f. Then, σ_f = γ/L Maximum tensile stress at the fracture point, σ_fr = E × ε_frStress-strain relation: ε = σ/Eε_fr = σ_f/Eσ_fr = E × ε_fr= E × (σ_f/E)= σ_fMaximum tensile stress at the fracture point, σ_fr = σ_fSubstituting the value of σ_f in the above equation:σ_f = γ/Lσ_fr = σ_f= γ/L Therefore, L = γ/σ_fr:

Thus, the maximum length of a surface flaw that is possible without fracture is L = γ/σ_fr = 0.3/40 = 0.0075 m or 7.5 mm. Therefore, the main answer is: The maximum length of a surface flaw that is possible without fracture is 7.5 mm.

To know more about  Tensile  visit:-

https://brainly.com/question/18916582

#SPJ11

Q5. The stream function for a certain flow field is Y = 2y2 – 2x2 + 5 = - a) Determine the corresponding velocity potential

Answers

The velocity potential is given by ϕ = 2y² - 5.

The stream function for a flow field is given by Y = 2y² - 2x² + 5 = -

Now let's differentiate the equation in terms of x to obtain the velocity potential given by the following relation:

∂Ψ/∂x = - ∂ϕ/∂y

where Ψ = stream function

ϕ = velocity potential

∂Ψ/∂x = -4x and ∂ϕ/∂y = 4y

Hence we can integrate ∂ϕ/∂y with respect to y to get the velocity potential.

∂ϕ/∂y = 4yϕ = 2y² + c where c is a constant to be determined since the velocity potential is only unique up to a constant. c can be obtained from the stream function Y = 2y² - 2x² + 5 = -ϕ = 2y² - 5 and the velocity potential

Therefore the velocity potential is given by ϕ = 2y² - 5.

The velocity potential of the given stream function has been obtained.

To know more about velocity visit

brainly.com/question/30559316

#SPJ11

Compute the Fourier Series decomposition of a square waveform with 90% duty cycle

Answers

The Fourier series decomposition of the square waveform with a 90% duty cycle is given by: f(t) = (a0/2) + ∑[(an * cos((2πnt)/T)) + (bn * sin((2πnt)/T))]

The Fourier series decomposition for a square waveform with a 90% duty cycle:

Definition of the Square Waveform:

The square waveform with a 90% duty cycle is defined as follows:

For 0 ≤ t < T0.9 (90% of the period), the waveform is equal to +1.

For T0.9 ≤ t < T (10% of the period), the waveform is equal to -1.

Here, T represents the period of the waveform.

Fourier Series Coefficients:

The Fourier series coefficients for this waveform can be computed using the following formulas:

a0 = (1/T) ∫[0 to T] f(t) dt

an = (2/T) ∫[0 to T] f(t) cos((2πnt)/T) dt

bn = (2/T) ∫[0 to T] f(t) sin((2πnt)/T) dt

where a0, an, and bn are the Fourier coefficients.

Computation of Fourier Coefficients:

For the given square waveform with a 90% duty cycle, we have:

a0 = (1/T) ∫[0 to T] f(t) dt = 0 (since the waveform is symmetric around 0)

an = 0 for all n ≠ 0 (since the waveform is symmetric and does not have cosine terms)

bn = (2/T) ∫[0 to T] f(t) sin((2πnt)/T) dt

Computation of bn for n = 1:

We need to compute bn for n = 1 using the formula:

bn = (2/T) ∫[0 to T] f(t) sin((2πt)/T) dt

Breaking the integral into two parts (corresponding to the two regions of the waveform), we have:

bn = (2/T) [∫[0 to T0.9] sin((2πt)/T) dt - ∫[T0.9 to T] sin((2πt)/T) dt]

Evaluating the integrals, we get:

bn = (2/T) [(-T0.9/2π) cos((2πt)/T)] from 0 to T0.9 - (-T0.1/2π) cos((2πt)/T)] from T0.9 to T

bn = (2/T) [(T - T0.9)/2π - (-T0.9)/2π]

bn = (T - T0.9)/π

Fourier Series Decomposition:

The Fourier series decomposition of the square waveform with a 90% duty cycle is given by:

f(t) = (a0/2) + ∑[(an * cos((2πnt)/T)) + (bn * sin((2πnt)/T))]

However, since a0 and an are 0 for this waveform, the decomposition simplifies to:

f(t) = ∑[(bn * sin((2πnt)/T))]

For n = 1, the decomposition becomes:

f(t) = (T - T0.9)/π * sin((2πt)/T)

This represents the Fourier series decomposition of the square waveform with a 90% duty cycle, including the computation of the Fourier coefficients and the final decomposition expression for the waveform.

To know more about waveform, visit:

https://brainly.com/question/26058582

#SPJ11

Other Questions
Black, Brown, and White were partners and carried ona small business manufacturing precast-concreteproducts, cinder blocks, and such. Black, without theknowledge of her partners, agreed to sell the businessto Gray. Can Brown and White block the sale, and why?If Black's deal were to sell Gray $10,000 worth ofblocks for $8,000, what could Brown and White doabout the matter? Which variable rises after capillary beds?a. Blood pressureb. Blood vessel areac. blood velocityd. blood volume As an energy engineer, has been asked from you to prepare a design of Pelton turbine in order to establish a power station worked on the Pelton turbine on the Tigris River. The design specifications are as follow: Net head, H=200m; Speed N=300 rpm; Shaft power=750 kW. Assuming the other required data wherever necessary. This is all one question. Please answer all 47. (8 points) A monopolist sells in two states and practices price discrimination by charging different prices in each state. The monopolist produces at constant marginal cost MC = 10. Demand in market 1 is Q1 = 50 -- P1. Market 2 demand is Q2 = 90 - 1.5p2 If the monopolist decides to practice third-degree price discrimination, what should the price and quantity be in each market? Which of the following is an incorrect statement about "calories"?a. All one needs to know to accurately calculate one's daily calorie needs is knowledge of their sex and their weight. b. Two hundred calories from an avocado (which offers healthy fats and other nutrients) can be a better choice than eating 100 calories of deli meat. c. Fiber helps to slow the absorption of sugar. d. Healthy eating and drinking choices is about more than calories.e. A zero-calorie pop/soda, for example, might also provide zero nutrients, and come packed with artificial sweetners. f. Consuming 100 calories in the form of an apple will provide a more "full" feeling than drinking 100 calories of pop/soda/Red Bull, etc. One kilogram of water initially at 160C, 1.5 bar, undergoes an isothermal, internally reversible compression process to the saturated liquid state. Determine the work and heat transfer, each in kJ. Sketch the process on p-v and T-s coordinates. Associate the work and heat transfer with areas on these diagrams. A cantilever beam 4 m long deflects by 16 mm at its free end due to a uniformly distributed load of 25 kN/m throughout its length. What force P (kN) should be applied at the mid-length of the beam for zero displacement at the free end? What are the infective stage and diagnostic stages for the following diseases?1. Giardia Lamblia.2. Leishmania.3. Ascaris lumbricoides.4. Toxoplasma Gondi.5. african trypanosomiasis.6. Chagas disease.7. Trichomoniasis Vagainalis.8. Malaria.9. Hookworms.10. Enterobiasis.11. Entermba Histolatika What is a divisional structure? In what ways can ithelp a firm in how it addresses the needs of its customers All the stator flux in a star-connected, three-phase, two-pole, slip-ring induction motor may be assumed to link with the rotor windings. When connected direct-on to a supply of 415 V, 50 Hz the maximum rotor current is 100 A. The standstill values of rotor reactance and resistance are 1.2 Ohms /phase and 0.5 Ohms /phase respectively. a. Calculate the number of stator turns per phase if the rotor has 118 turns per phase.b. At what motor speed will maximum torque occur? c. Determine the synchronous speed, the slip speed and the rotor speed of the motor M2Q10Net Realizable Value Method, Decision to Sell at Split-off or Process Further Arvin, Inc., produces two products, ins and outs, in a single process. The joint costs of this process were \( \$ 50,000 \ A) It is Tu that a UAV that you will design will climb 200m per minute with a speed of 250 km/h in the UAV that you will design. in this case, calculate the thrust-to-weight ratio according to the climbing situation. Calculate the wing loading for a stall speed of 100km/h in sea level conditions (Air density : 1,226 kg/m^3). Tu the wing loading for a stall speed of 100km/h in sea level conditions (Air density: 1,226 kg/m^3). The maximum transport coefficient is calculated as 2.0.(T/W)climb =1/(L/D)climb+ Vvertical/VB) How should Dec choose between T/W and W/S rates calculated according to various flight conditions? Question 1The difference between a nucleoside and a nucleotide is thatA. nucleotides contain a different sugar compared to nucleosides.B. the bases in nucleotides are attached to sugars at different carbons compared to nucleosides.C. nucleosides are used to synthesize DNA, whereas nucleotides are used to synthesize RNA.D. nucleotides contain one or more phosphate groups, whereas nucleosides have none.E. nucleosides contain purine bases, whereas nucleotides contain pyrimidine bases.Question 3Which statement is true regarding the relationship between replication and transcription of DNA?A. Replication requires both a template and a primer, whereas transcription requires only a template.B. The polymerases for both require a Mn2+ cofactor for activity.C. Copies of both DNA strands are made during both processes.D. Both have extensive processes to correct errors.E. Both utilize the same nucleotides.Question 5In eukaryotes, nucleosomes are formed by binding of DNA and histone proteins. Which of the following is NOT true regarding histone proteins?A. H1 functions as a monomerB. Histone proteins have five major classes: H1, H2A, H2B, H3, and H4C. Positively coiled DNA is wrapped around a histone core to form nucleosomeD. H1, H2A, H3 and H4 form the nucleosome histone core.E. They are found in the nucleus. Andrew is saving up money for a down payment on a car. He currently has $3078, but knows he can get a loan at a lower interest rate if he can put down $3887. If he invests the $3078 in an account that earns 4.4% annually, compounded monthly, how long will it take Andrew to accumulate the $3887 ? Round your answer to two decimal places, if necessary. Answer How to enter your answer (opens in new window) Keyboard Shortcuts A gas in a closed container is heated with (3+7) J of energy, causing the lid of the container to rise 3.5 m with 3.5 N of force. What is the total change in energy of the system? Which type of risk is based on the financial integrity of a bond issuer? liquidity risk call risk business risk interest rate risk Problem # 1 [35 Points] Vapor Compression Refrigeration System Saturated vapor enters the compressor at -10oC. The temperature of the liquid leaving the liquid leaving the condenser be 30oC. The mass flow rate of the refrigerant is 0.1 kg/sec. Include in the analysis the that the compressor has an isentropic efficiency of 85%. Determine for the cycle [a] the compressor power, in kW, and [b] the refrigeration capacity, in tons, and [c] the COP. Given: T1 = -10oC T3 = 30oC nsc = 85% Find: [a] W (kW) x1 = 100% m = 0.1 kg/s [b] Q (tons) [c] COP Schematic: Process Diagram: Engineering Model: Property Data: h1 = 241.35 kJ/kg h2s = 272.39 kJ/kg h3 = 91.48 kJ/kgProblem # 2 [35 Points] Vapor Compression Heat Pump System Saturated vapor enters the compressor at -5oC. Saturated vapor leaves the condenser be 30oC. The mass flow rate of the refrigerant is 4 kg/min. Include in the analysis the that the compressor has an isentropic efficiency of 85%. Determine for the cycle [a] the compressor power, in kW, and [b] the heat pump system capacity, in kW, and [c] the COP. Given: T1 = -5oC T3 = 30oC nsc = 85% Find: [a] W (kW) x1 = 100% x3 = 0% m = 4.0 kg/min [b] Q (kW) [c] COP Schematic: Process Diagram: Engineering Model: Property Data: h1 = 248.08 kJ/kg h2s = 273.89 kJ/kg h4 = 81.9 kJ/kgProblem # 3 [30 Points] Gas Turbine Performance Air enters a turbine at 10 MPa and 300 K and exits at 4 MPa and to 240 K. Determine the turbine work output in kJ/kg of air flowing [a] using the enthalpy departure chart, and [b] assuming the ideal gas model. Given: Air T1 = 300 K T2 = 240 K Find: w [a] Real Gas P1 = 10 MPA P2 = 4 MPa [b] Ideal Gas System Schematic: Process Diagram: Engineering Model: Property Data: ______T A-1 _____T A-23 __ Figure A-4 MW = 28.97 kg/kmol h1* = 300 kJ/kg h1/RTc = 0.5 Tc = 133 K h2* = 240.2 kJ/kg h2/RTc = 0.1 Pc = 37.7 bar R = 8.314 kJ/kmolK Question 6 (1 point)A is created when a settler transfers property to a trustee who holds property for the benefit of a beneficiary.1) Will2) Trust3) Charity41 None of the above 41The site of the formation of the primary structure for protein synthesis in animal cells is thea) mitochondrionb) nucleusc) SER d) RERe) vacuole42. Phospholipids can form all of the following structures in water except which one?a) cell membranes b) bilayersc)nuclear membranes d) vesiclese) Bones cell membranes what is social process and perspectives? explain it and its allimportant point in detail in 250 words.