The total weight of the raw material will not be less than 1,500 tons. The factory manager plans to use two different trucking firms. Big Red has heavy-duty trucks that can transport 200 tons at a cost of $50 per truckload. Common Joe is a more economical firm, costing only $20 per load, but its trucks can transport only 90 tons. The factory manager does not wish to spend more than $450 on transportation. The availability of trucks is the same for both firms

Answers

Answer 1

The total cost of transporting the raw materials is $890, which is less than the $450 budget of the factory manager.

The best way to maximize the transportation of raw materials from a factory to its storage area using Big Red and Common Joe trucking firms while ensuring the factory manager does not spend more than $450 is to use 5 Big Red trucks and 5 Common Joe trucks.In order to get the best result from the two trucking firms, the following steps should be followed.

Step 1: Determine the number of trucks that can be transported using Big Red's heavy-duty trucks.

$200 per truck is the cost of transporting 200 tons by Big Red.

The formula for calculating the number of trucks that can be used is as follows:

$450/$50 = 9 truckloads

Step 2: Determine the number of trucks that can be transported using Common Joe trucks.

$20 per truck is the cost of transporting 90 tons by Common Joe.

The formula for calculating the number of trucks that can be used is as follows:

$450/$20 = 22.5 truckloads

The number of trucks that can be used is 22, but since it is not an integer, it will be rounded down to 22.The total number of tons that can be transported using the two trucking firms is calculated as follows:

5 * 200 = 1000 tons of raw materials can be transported by Big Red

5 * 90 = 450 tons of raw materials can be transported by Common Joe

The total tons of raw materials that can be transported is therefore 1,450 tons.

Therefore, to transport a total of 1,500 tons of raw materials, 50 more tons need to be transported. 10 more truckloads of Big Red will transport these additional tons.

Therefore, 15 truckloads will be transported by Big Red (5 + 10 = 15), and the remaining 7 truckloads will be transported by Common Joe. (22 - 15 = 7).

As a result, the total cost of transporting the raw materials is:

$50 * 15 + $20 * 7 = $750 + $140

= $890, which is less than the $450 budget of the factory manager.

To know more about budget visit:

https://brainly.com/question/31952035

#SPJ11


Related Questions

Given a data set consisting of 33 unique whole number observations, its five-number summary is:
12, 24, 38, 51, 69
How many observations are strictly less than 24?

Answers

There are 8 observations in the data set that are strictly less than 24.

The five-number summary gives us the minimum value, the first quartile (Q1), the median, the third quartile (Q3), and the maximum value of the data set.

We know that the value of Q1 is 24, which means that 25% of the data set is less than or equal to 24. Therefore, we can conclude that the number of observations that are strictly less than 24 is 25% of the total number of observations.

To calculate this value, we can use the following proportion:

25/100 = x/33

where x is the number of observations that are strictly less than 24.

Solving for x, we get:

x = (25/100) * 33

x = 8.25

Since we can't have a fraction of an observation, we round down to the nearest whole number, which gives us:

x = 8

Therefore, there are 8 observations in the data set that are strictly less than 24.

To know more about median refer to

https://brainly.com/question/28060453

#SPJ11

A square rug measures 8 ft by 8 ft. Find the diagonal distance of the rug to the nearest whole number

Answers

The diagonal distance of the rug to the nearest whole number is 11 feet.

The diagonal of a square can be determined using the Pythagorean theorem, which states that a² + b² = c², where a and b are the lengths of the two legs of a right triangle and c is the length of the hypotenuse (the diagonal in this case).

Let's utilize this theorem to find the diagonal of the rug:In this instance:a = 8 (one side of the square rug)b = 8 (the other side of the square rug)c² = a² + b²c² = 8² + 8²c² = 128c = √128c ≈ 11.31

Since the problem requests the answer to the nearest whole number, we can round this value up to 11.

Therefore, the diagonal distance of the rug to the nearest whole number is 11 feet.

Know more about Pythagorean theorem here,

https://brainly.com/question/14930619

#SPJ11

Let A = and b The QR factorization of the matrix A is given by: 3 3 2 V }V2 3 4 Applying the QR factorization to solving the least squares problem Ax = b gives the system: 9]-[8] (b) Use backsubstitution to solve the system in part (a) and find the least squares solution_

Answers

Let A be a given matrix and b be a given vector. The QR factorization of the matrix A involves finding two matrices Q and R, where Q is orthogonal and R is upper-triangular.

To solve the least squares problem Ax = b using QR factorization, we first find the QR factorization of A:

A = QR

Next, we express the problem as:

QRx = b

Now, we can multiply both sides by the transpose of Q (since Q is orthogonal, its transpose is its inverse):

(Q^T)QRx = (Q^T)b

This simplifies to:

Rx = (Q^T)b

Since R is an upper-triangular matrix, we can use back-substitution to solve the system Rx = (Q^T)b and find the least squares solution.

1. Compute the matrix product (Q^T)b.
2. Use back-substitution to solve the upper-triangular system Rx = (Q^T)b, starting with the last equation and working upward.

The solution x obtained through this process is the least squares solution for Ax = b.

To know more about QR factorization refer here:

https://brainly.com/question/30481086?#

#SPJ11

consider the function f(x)=2x^3 18x^2-162x 5, -9 is less than or equal to x is less than or equal to 4. this function has an absolute minimum value equal to

Answers

The function f(x)=2x³ 18x²-162x 5, -9 is less than or equal to x is less than or equal to 4, has an absolute minimum value of -475 at x = -9.

What is the absolute minimum value of the function f(x) = 2x³ + 18x² - 162x + 5, where -9 ≤ x ≤ 4?

To find the absolute minimum value of the function, we need to find all the critical points and endpoints in the given interval and then evaluate the function at each of those points.

First, we take the derivative of the function:

f'(x) = 6x² + 36x - 162 = 6(x² + 6x - 27)

Setting f'(x) equal to zero, we get:

6(x² + 6x - 27) = 0

Solving for x, we get:

x = -9 or x = 3

Next, we need to check the endpoints of the interval, which are x = -9 and x = 4.

Now we evaluate the function at each of these critical points and endpoints:

f(-9) = -475f(3) = -405f(4) = 1825

Therefore, the absolute minimum value of the function is -475, which occurs at x = -9.

Learn more about derivative

brainly.com/question/30365299

#SPJ11

Harry pays $28 for a one month gym membership and has to pay $2 for every fitness class he takes. This is represented by the following function, where x is the number of classes he takes.

Answers

Taking the data into consideration, the function would be C(x) = 2x + 28, and Harry would have to pay $52 if he were to take 12 classes, as seen below.

How to solve the function

Taking the information provided in the prompt into consideration, the cost Harry has to pay for the gym membership and fitness classes can be represented by the following function:

C(x) = 2x + 28

Where x is the number of fitness classes he takes, and C(x) is the total cost he has to pay. If Harry takes 12 classes, then we can substitute x = 12 into the function:

C(12) = 2(12) + 28

C(12) = 24 + 28

C(12) = 52

Therefore, Harry has to pay a total of $52 if he takes 12 classes.

This is the complete question we found online:

Harry pays $28 for a one month gym membership and has to pay $2 for every fitness class he takes. This is represented by the following function, where x is the number of classes he takes.

What is the total amount Harry has to pay if he takes 12 classes?

Learn more about functions here:

https://brainly.com/question/25638609

#SPJ1

The time to complete an exam is approximately Normal with a mean of 39 minutes and a standard deviation of 4 minutes. The bell curve below represents the distribution for testing times. The scale on the horizontal axis is equal to the standard deviation. Fill in the indicated boxes. M= = 39 0=4 + H-30 u-20 μ-σ H+O μ+ 20 μ+ 30

Answers

Indicated boxes are filled as follows- M = 39, σ = 4, μ - σ = 35, μ = 39, μ + σ = 43, μ + 20 = 59, μ + 30 = 69, H - 30 = 9 and H - 20 = 19

M=39 represents the mean of the Normal distribution.

0=4 represents the standard deviation of the Normal distribution.

H-30 represents the value of the horizontal axis that is 30 minutes less than the mean, i.e., H-30=39-30=9.

u-20 represents the value of the horizontal axis that is 20 minutes less than the mean, i.e., u-20=39-20=19.

μ-σ represents the value of the horizontal axis that is one standard deviation less than the mean, i.e., μ-σ=39-4=35.

H+σ represents the value of the horizontal axis that is one standard deviation greater than the mean, i.e., H+σ=39+4=43.

μ+ 20 represents the value of the horizontal axis that is 20 minutes greater than the mean, i.e., μ+20=39+20=59.

μ+ 30 represents the value of the horizontal axis that is 30 minutes greater than the mean, i.e., μ+30=39+30=69.

To know more about Normal distribution refer to-

https://brainly.com/question/29509087

#SPJ11

Let T be the linear transformation defined by
T(x1,x2,x3,x4,x5)=−6x1+7x2+9x3+8x4.
Its associated matrix A is an n×m matrix,
where n=? and m=?

Answers

The linear transformation for the given A has 1 row and 5 columns, we have n=1 and m=5.

Let T be the linear transformation defined by T(x1,x2,x3,x4,x5)=−6x1+7x2+9x3+8x4. To find the associated matrix A, we need to consider the image of the standard basis vectors under T. The standard basis vectors for R^5 are e1=(1,0,0,0,0), e2=(0,1,0,0,0), e3=(0,0,1,0,0), e4=(0,0,0,1,0), and e5=(0,0,0,0,1).

T(e1) = T(1,0,0,0,0) = -6(1) + 7(0) + 9(0) + 8(0) = -6
T(e2) = T(0,1,0,0,0) = -6(0) + 7(1) + 9(0) + 8(0) = 7
T(e3) = T(0,0,1,0,0) = -6(0) + 7(0) + 9(1) + 8(0) = 9
T(e4) = T(0,0,0,1,0) = -6(0) + 7(0) + 9(0) + 8(1) = 8
T(e5) = T(0,0,0,0,1) = -6(0) + 7(0) + 9(0) + 8(0) = 0

Therefore, the associated matrix A is given by
A = [T(e1) T(e2) T(e3) T(e4) T(e5)] =
[-6 7 9 8 0].

Since A has 1 row and 5 columns, we have n=1 and m=5.

Learn more on linear transformation here:

https://brainly.com/question/30514241

#SPJ11

Dilation centered at the origin with a scale factor of 4

Answers

The dilation centered at the origin with a scale factor of 4 refers to a transformation that stretches or shrinks an object four times its original size, with the origin as the center of dilation.

In geometry, a dilation is a transformation that changes the size of an object while preserving its shape. A dilation centered at the origin means that the origin point (0, 0) serves as the fixed point around which the dilation occurs. The scale factor determines the amount of stretching or shrinking.
When the scale factor is 4, every point in the object is multiplied by a factor of 4 in both the x and y directions. This means that the x-coordinate and y-coordinate of each point are multiplied by 4.
For example, if we have a point (x, y), after the dilation, the new coordinates would be (4x, 4y). The resulting figure will be four times larger than the original figure if the scale factor is greater than 1, or it will be four times smaller if the scale factor is between 0 and 1.
Overall, a dilation centered at the origin with a scale factor of 4 stretches or shrinks an object four times its original size, with the origin as the center of dilation.

Learn more about origin here
https://brainly.com/question/21394771



#SPJ11

a.) How many ways are there to pack eight indistinguishable copies of the same book into five indistinguishable boxes, assuming each box can contain as many as eight books?
b.) How many ways are there to pack seven indistinguishable copies of the same book into four indistinguishable boxes, assuming each box can contain as many as seven books?

Answers

a.) To solve this problem, we can use a stars and bars approach. We need to distribute 8 books into 5 boxes, so we can imagine having 8 stars representing the books and 4 bars representing the boundaries between the boxes.

For example, one possible arrangement could be:

* | * * * | * | * *

This represents 1 book in the first box, 3 books in the second box, 1 book in the third box, and 3 books in the fourth box. Notice that we can have empty boxes as well.

The total number of ways to arrange the stars and bars is the same as the number of ways to choose 4 out of 12 positions (8 stars and 4 bars), which is:

Combination: C(12,4) = 495

Therefore, there are 495 ways to pack eight indistinguishable copies of the same book into five indistinguishable boxes.

b.) Using the same approach, we can distribute 7 books into 4 boxes using 6 stars and 3 bars.

For example:

* | * | * * | *

This represents 1 book in the first box, 1 book in the second box, 2 books in the third box, and 3 books in the fourth box.

The total number of ways to arrange the stars and bars is the same as the number of ways to choose 3 out of 9 positions, which is:

Combination: C(9,3) = 84

Therefore, there are 84 ways to pack seven indistinguishable copies of the same book into four indistinguishable boxes.

Learn more about number of ways: https://brainly.com/question/4658834

#SPJ11

determine whether the series is convergent or divergent. [infinity] k = 1 ke−5k convergent divergent

Answers

The series [infinity] k = 1 ke^(-5k) converges.

To determine if the series [infinity] k = 1 ke^(-5k) converges or diverges, we can use the ratio test.

The ratio test states that if lim n→∞ |an+1/an| = L, then the series converges if L < 1, diverges if L > 1, and the test is inconclusive if L = 1.

Let an = ke^(-5k), then an+1 = (k+1)e^(-5(k+1)).

Now, we can calculate the limit of the ratio of consecutive terms:

lim k→∞ |(k+1)e^(-5(k+1))/(ke^(-5k))|

= lim k→∞ |(k+1)/k * e^(-5(k+1)+5k)|

= lim k→∞ |(k+1)/k * e^(-5)|

= e^(-5) lim k→∞ (k+1)/k

Since the limit of (k+1)/k as k approaches infinity is 1, the limit of the ratio of consecutive terms simplifies to e^(-5).

Since e^(-5) < 1, by the ratio test, the series [infinity] k = 1 ke^(-5k) converges.

Learn more about converges here

https://brainly.com/question/31433507

#SPJ11

determine the gage pressure exerted on the reservoir of an inclined manometer if it has 15 degrees angle, uses a fluid with a specific gravity of 0.7 and reads 10.2cm.

Answers

Thus, the gage pressure exerted on the reservoir of the inclined manometer is 17.5 Pa.

To determine the gage pressure exerted on the reservoir of an inclined manometer, we need to use the following formula:

ΔP = ρghsin(θ)

Where:
- ΔP is the pressure difference between the two arms of the manometer
- ρ is the density of the fluid
- g is the acceleration due to gravity
- h is the height difference between the two arms of the manometer
- θ is the angle of inclination

In this case, we are given that the fluid has a specific gravity of 0.7, which means that its density can be calculated as:

ρ = specific gravity x density of water
ρ = 0.7 x 1000 kg/m³
ρ = 700 kg/m³

We are also given that the manometer reads 10.2cm, which represents the height difference between the two arms of the manometer.

Finally, we are told that the manometer is inclined at an angle of 15 degrees.

Using these values, we can plug them into the formula and solve for ΔP:

ΔP = ρghsin(θ)
ΔP = 700 kg/m³ x 9.81 m/s² x 0.102 m x sin(15°)
ΔP = 17.5 Pa

Therefore, the gage pressure exerted on the reservoir of the inclined manometer is 17.5 Pa.

Know more about the gage pressure

https://brainly.com/question/13390708

#SPJ11

simplify to an expression of the form (a sin()). 6 sin 6 6 cos 6

Answers

The expression in the form of (a sin()) is 12 sin 6 sin (42). This is the simplified form of the original expression.


To simplify the expression 6 sin 6 6 cos 6 into an expression of the form (a sin()), we need to use the identity sin^2(x) + cos^2(x) = 1. We can rewrite 6 cos 6 as 6 sin (90-6) using the identity sin(x+y) = sin(x)cos(y) + cos(x)sin(y). Therefore, our expression becomes 6 sin 6 6 sin (84).
Now, using the identity sin(x-y) = sin(x)cos(y) - cos(x)sin(y), we can simplify further to get:
6 sin 6 6 sin (90-6)
= 6 sin 6 6 sin 6cos(84)
= 6 sin 6 (2 sin 6 cos 84)
= 12 sin 6 sin (42).
Therefore, the expression in the form of (a sin()) is 12 sin 6 sin (42). This is the simplified form of the original expression.
In summary, to simplify an expression to the form (a sin()), we need to use trigonometric identities and manipulate the expression until it is in the desired form. In this case, we used the identities sin(x+y) and sin(x-y) to simplify the expression 6 sin 6 6 cos 6 into the expression 12 sin 6 sin (42).

To know more about sin(x) visit :

https://brainly.com/question/29923110

#SPJ11

Two 4.8 cm× 4.8 cm metal plates are separated by a 0.22-mm-thick piece of teflon. find max potential difference

Answers

The maximum potential difference that can be applied between the plates without causing dielectric breakdown is 11 volts.

The maximum potential difference that can be applied between the plates without causing dielectric breakdown (i.e., breakdown of the insulating material) can be determined by calculating the breakdown voltage of the teflon. The breakdown voltage is the minimum voltage required to create an electric arc (or breakdown) across the insulating material. For teflon, the breakdown voltage is typically in the range of 40-60 kV/mm.

To find the maximum potential difference that can be applied between the plates, we need to convert the thickness of the teflon from millimeters to meters and then multiply it by the breakdown voltage per unit length:

[tex]t = 0.22 mm = 0.22 (10^{-3}) m[/tex]

breakdown voltage = 50 kV/mm = [tex]50 (10^3) V/m[/tex]

The maximum potential difference is then given by: V = Ed

where E is the breakdown voltage per unit length and d is the distance between the plates. Since the plates are separated by the thickness of the teflon, we have:

[tex]d = 0.22 (10^{-3} ) m[/tex]

Substituting the values, we get:

[tex]V = (50 (10^3) V/m) (0.22 ( 10^{-3} m) = 11 V[/tex]

Therefore, the maximum potential difference that can be applied between the plates without causing dielectric breakdown is 11 volts.

To know more about "Potential difference" refer here:

https://brainly.com/question/23716417#

#SPJ11

Find the coordinate at times t = 0, 3, 4 of a particle following the path x = 6 + 5t, y = -8. t = 0, ____ t = 3, ____t = 4, ____

Answers

At t = 0, the coordinates are (6, -8), at t = 3, the coordinates are (21, -8), and at t = 4, the coordinates are (26, -8).

To find the coordinates of the particle at different times, we substitute the given values of t into the equations for x and y.

Given the path equations:

x = 6 + 5t

y = -8

For t = 0:

x = 6 + 5(0) = 6

y = -8

At t = 0, the particle's coordinates are (6, -8).

For t = 3:

x = 6 + 5(3) = 6 + 15 = 21

y = -8

At t = 3, the particle's coordinates are (21, -8).

For t = 4:

x = 6 + 5(4) = 6 + 20 = 26

y = -8

At t = 4, the particle's coordinates are (26, -8).

Therefore, at t = 0, the coordinates are (6, -8), at t = 3, the coordinates are (21, -8), and at t = 4, the coordinates are (26, -8).

To know more about coordinates refer to-

https://brainly.com/question/16634867

#SPJ11

Which problems can be solved by performing this multiplication?



1/5×30



Select each correct answer

Answers

By using the multiplication concept, we found that 1/5 of 30 is equal to 6. The following problem can be solved by multiplying 1/5 × 30. It is one of the fundamental arithmetic operations.

The multiplication 1/5 × 30 is used to solve the problem of finding the result when 1/5 of 30 is taken. Multiplication is a fundamental arithmetic operation taught to students in the early grades. Multiplication can be used to solve a variety of mathematical problems, including those that involve finding the total value of multiple items or the number of items in a set. In this case, the multiplication 1/5 × 30 is used to solve the problem of finding the result when 1/5 of 30 is taken.

To find the result of 1/5 of 30, we must multiply 30 by 1/5. To multiply a fraction by a whole number, we can multiply the numerator of the fraction by the whole number and then divide the result by the denominator of the fraction. So,

= 1/5 × 30

= (1 × 30)/5

= 30/5

= 6

Therefore, the result of 1/5 of 30 is 6. This means that if we divide 30 into five equal parts, each part will have a value of 6. The multiplication 1/5 × 30 can solve the problem of finding the result when 1/5 of 30 is taken. By using the multiplication formula, we found that 1/5 of 30 is equal to 6.

To know more about the  multiplication, visit:

brainly.com/question/1210406

#SPJ11

Determine the probability P (5) for binomial experiment with n = trials and the success probability p = 0.2 Then find the mean variance;, and standard deviation_ Part of 3 Determine the probability P (5) . Round the answer to at least three decimal places P(5) = 409 Part 2 of 3 Find the mean. If necessary, round the answer to two decimal places The mean is 1.8 Part 3 of 3 Find the variance and standard deviation_ If necessary, round the variance to two decimal places and standard deviation to at least three decimal places_ The variance The standard deviation

Answers

Answer: Part 1:

To find the probability P(5) for a binomial experiment with n trials and success probability p=0.2, we can use the formula for the probability mass function of a binomial distribution:

P(X = k) = (n choose k) * p^k * (1-p)^(n-k)

where X is the number of successes, k is the number of successes we are interested in (in this case, k=5), n is the total number of trials, p is the probability of success on a single trial, and (n choose k) represents the number of ways to choose k successes from n trials.

Plugging in the values we have, we get:

P(5) = (n choose 5) * 0.2^5 * (1-0.2)^(n-5)

Since we don't know the value of n, we can't calculate this probability exactly. However, we can use an approximation known as the normal approximation to the binomial distribution. If X has a binomial distribution with parameters n and p, and if n is large and p is not too close to 0 or 1, then X is approximately normally distributed with mean μ = np and variance σ^2 = np(1-p). In this case, we have n=10 and p=0.2, so μ = np = 2 and σ^2 = np(1-p) = 1.6.

Using this approximation, we can standardize the random variable X by subtracting the mean and dividing by the standard deviation:

Z = (X - μ) / σ

The probability P(X=5) can then be approximated by the probability that Z lies between two values that we can find using a standard normal table or calculator. We have:

Z = (5 - 2) / sqrt(1.6) = 2.5

Using a standard normal table or calculator, we find that the probability of Z being less than or equal to 2.5 is approximately 0.9938. Therefore, the approximate probability P(X=5) is:

P(5) ≈ 0.9938

Rounding to three decimal places, we get:

P(5) ≈ 0.994

Part 2:

The mean of a binomial distribution with parameters n and p is μ = np. In this case, we have n=10 and p=0.2, so the mean is:

μ = np = 10 * 0.2 = 2

Rounding to two decimal places, we get:

μ ≈ 2.00

Part 3:

The variance of a binomial distribution with parameters n and p is σ^2 = np(1-p). In this case, we have n=10 and p=0.2, so the variance is:

σ^2 = np(1-p) = 10 * 0.2 * (1-0.2) = 1.6

Rounding to two decimal places, we get:

σ^2 ≈ 1.60

The standard deviation is the square root of the variance:

σ = sqrt(σ^2) = sqrt(1.6) = 1.264

Rounding to three decimal places, we get:

σ ≈ 1.264

Therefore, the mean is approximately 2.00, the variance is approximately 1.60, and the standard deviation is approximately 1.264.

Part 1:

Using the binomial probability formula, we can find the probability of getting exactly 5 successes in a binomial experiment with n = trials and p = 0.2 success probability:

P(5) = (n choose 5) * p^5 * (1-p)^(n-5)

Since n is not given, we cannot find the exact probability.

Part 2:

The mean of a binomial distribution with n trials and success probability p is given by:

mean = n * p

Substituting n = 10 and p = 0.2, we get:

mean = 10 * 0.2 = 2

Rounding to two decimal places, the mean is 2.00.

Part 3:

The variance of a binomial distribution with n trials and success probability p is given by:

variance = n * p * (1-p)

Substituting n = 10 and p = 0.2, we get:

variance = 10 * 0.2 * (1-0.2) = 1.6

Rounding to two decimal places, the variance is 1.60.

The standard deviation is the square root of the variance:

standard deviation = sqrt(variance) = sqrt(1.60) = 1.264

Rounding to three decimal places, the standard deviation is 1.264.

To know more about binomial probability , refer here :

https://brainly.com/question/12474772#

#SPJ11

If 6 chickens lay 18 eggs, find the unit rate in eggs per chicken.

Answers

The unit rate in eggs per chicken is 3. To find the unit rate, we divide the total number of eggs by the total number of chickens.

Given that 6 chickens lay 18 eggs, we can use this information to calculate the unit rate. We divide the total number of eggs (18) by the total number of chickens (6).

To find the unit rate in eggs per chicken, divide the total number of eggs by the total number of chickens. So, the unit rate in eggs per chicken is: 18/6 = 3.

To determine the rate of eggs per chicken, you can calculate it by dividing the total number of eggs by the total number of chickens. In this case, the unit rate for eggs per chicken is obtained by dividing 18 eggs by 6 chickens, resulting in a value of 3.

Therefore, the unit rate in eggs per chicken is 3.

Conclusion: The unit rate in eggs per chicken is 3, as calculated by dividing the total number of eggs (18) by the total number of chickens (6). This represents the average number of eggs laid per chicken.

To know more about the unit rate, Visit :

https://brainly.com/question/30604581

#SPJ11

At Shake Shack in Center City, the delivery truck was unable to drop off the usual


order. The restaurant was stuck selling ONLY burgers and fries all Saturday long. 850


items were sold on Saturday. Each burger was $5. 79 and each order of fries was


$2. 99 for a grand total of $4,019. 90 revenue on Saturday. How many burgers and


how many orders of fries were sold?

Answers

528 burgers and 322 orders of fries were sold on Saturday.

At Shake Shack in Center City, the delivery truck was unable to drop off the usual order. The restaurant was stuck selling ONLY burgers and fries all Saturday long. 850 items were sold on Saturday. Each burger was $5.79 and each order of fries was $2.99 for a grand total of $4,019.90 revenue on Saturday. How many burgers and how many orders of fries were sold?

:The number of burgers and orders of fries sold can be calculated using the following algebraic equation:

5.79B + 2.99F = 4019.90

where B is the number of burgers sold and F is the number of orders of fries sold. To solve for B and F, we need to use the fact that a total of 850 items were sold on Saturday.B + F = 850F = 850 - BSubstitute 850 - B for F in the first equation:

5.79B + 2.99(850 - B) = 4019.905.79B + 2541.50 - 2.99B

= 4019.902.80B = 1478.40B

= 528.71 burgers were sold on Saturday.

To find out how many orders of fries were sold, substitute this value for B in the equation

F = 850 - B:F = 850 - 528F

= 322

Therefore, 528 burgers and 322 orders of fries were sold on Saturday.

:Thus, it can be concluded that 528 burgers and 322 orders of fries were sold on Saturday.

To know more about algebraic equation visit:

brainly.com/question/29131718

#SPJ11

Evaluate the iterated integral. 6 1 x 0 (5x − 2y) dy dx

Answers

The value of the iterated integral ∫∫R (5x - 2y) dy dx over the region R given by 0 ≤ x ≤ 6 and 0 ≤ y ≤ x/2 is 81.

The iterated integral ∫∫R (5x - 2y) dy dx over the region R given by 0 ≤ x ≤ 6 and 0 ≤ y ≤ x/2 is:

∫[0,6]∫[0,x/2] (5x - 2y) dy dx

We can integrate with respect to y first:

∫[0,6]∫[0,x/2] (5x - 2y) dy dx = ∫[0,6] [5xy - y^2]⌈y=0⌉⌊y=x/2⌋ dx

= ∫[0,6] [(5x(x/2) - (x/2)^2) - (0 - 0)] dx

= ∫[0,6] [(5/2)x^2 - (1/4)x^2] dx

= ∫[0,6] [(9/4)x^2] dx

= (9/4) * (∫[0,6] x^2 dx)

= (9/4) * [x^3/3]⌈x=0⌉⌊x=6⌋

= (9/4) * [(6^3/3) - (0^3/3)]

= 81

Therefore, the value of the iterated integral ∫∫R (5x - 2y) dy dx over the region R given by 0 ≤ x ≤ 6 and 0 ≤ y ≤ x/2 is 81.

Learn more about iterated integral here

https://brainly.com/question/30216057

#SPJ11

Air is compressed into a tank of volume 10 m 3. The pressure is 7 X 10 5 N/m 2 gage and the temperature is 20°C. Find the mass of air in the tank. If the temperature of the compressed air is raised to 40°C, what is the gage pressure of air in the tank in N/m 2 in kg f/cm 2

Answers

The gage pressure of the air in the tank at 40°C is 746,200 [tex]N/m^2 or 7.462 kg f/cm^2.[/tex]

To find the mass of air in the tank, we can use the ideal gas law:

PV = nRT

where P is the pressure, V is the volume, n is the number of moles of gas, R is the gas constant, and T is the temperature.

First, we need to find the number of moles of air in the tank:

n = PV/RT

where R = 8.314 J/(mol·K) is the gas constant.

n = (7 X [tex]10^5 N/m^2[/tex] + 1 atm) x[tex]10 m^3[/tex] / [(273.15 + 20) K x 8.314 J/(mol·K)]

n = 286.65 mol

Next, we can find the mass of air using the molecular weight of air:

m = n x M

where M = 28.97 g/mol is the molecular weight of air.

m = 286.65 mol x 28.97 g/mol

m = 8,311.8 g or 8.3118 kg

So the mass of air in the tank is 8.3118 kg.

To find the gage pressure of the air in the tank at 40°C, we can use the ideal gas law again:

P2 = nRT2/V

where P2 is the new pressure, T2 is the new temperature, and V is the volume.

First, we need to convert the temperature to Kelvin:

T2 = 40°C + 273.15

T2 = 313.15 K

Next, we can solve for the new pressure:

P2 = nRT2/V

P2 = 286.65 mol x 8.314 J/(mol·K) x 313.15 K / 10 [tex]m^3[/tex]

P2 = 746,200 [tex]N/m^2[/tex] or 7.462 kg [tex]f/cm^2[/tex] (using 1 [tex]N/m^2[/tex] = 0.00001 kg [tex]f/cm^2)[/tex]

for such more question on gage pressure

https://brainly.com/question/16118479

#SPJ11

Find the equation for the tangent plane and the normal line at the point P_0(2, 1, 2) on the surface 2x^2 + 4y^2 +3z^2 = 24. Choose the correct equation for the tangent plane. A. 5x + 4y + 5z =24 B. 2x + 2y + 3z = 12 C. 2x+5y + 3z = 15 D. 5x+4y + 3z = 20 Find the equations for the normal line. x = y = z = (Type expressions using t as the variable.)

Answers

In multivariable calculus, the tangent plane is a plane that "touches" a surface at a given point and has the same slope or gradient as the surface at that point.

To find the equation for the tangent plane at the point P0(2, 1, 2) on the surface 2x^2 + 4y^2 +3z^2 = 24, we need to find the gradient vector of the surface at P0, which gives us the normal vector of the plane. Then, we can use the point-normal form of the equation for a plane to find the equation of the tangent plane.

The gradient vector of the surface is given by:

grad(2x^2 + 4y^2 +3z^2) = (4x, 8y, 6z)

At P0(2, 1, 2), the gradient vector is (8, 8, 12), which is the normal vector of the tangent plane.

Using the point-normal form of the equation for a plane, we have:

8(x - 2) + 8(y - 1) + 12(z - 2) = 0

Simplifying, we get:

4x + 4y + 3z = 20

Therefore, the correct equation for the tangent plane is D. 5x + 4y + 3z = 20.

To find the equations for the normal line, we need to use the direction vector of the line, which is the same as the normal vector of the tangent plane. Thus, the direction vector of the line is (8, 8, 12).

The equations for the normal line can be expressed as:

x = 2 + 8t

y = 1 + 8t

z = 2 + 12t

where t is a parameter that can take any real value.

To learn more about  equation visit:

brainly.com/question/10413253

#SPJ11

Find the position vector of a particle that has the given acceleration and the specified initial velocity and position. a(t)=ti+e^tj+e^-tk, v(0)=k, r(0)=j+k

Answers

The position vector of the particle is r(t) = (1/2)t^2 i + (e^t -1) j + (1-e^-t) k + j + k.

Given: a(t) = ti + e^tj + e^-tk, v(0) = k, r(0) = j+k.

Integrating the acceleration function, we get the velocity function:

v(t) = ∫ a(t) dt = (1/2)t^2 i + e^t j - e^-t k + C1

Using the initial velocity, v(0) = k, we can find the constant C1:

v(0) = C1 + k = k

C1 = 0

So, the velocity function is:

v(t) = (1/2)t^2 i + e^t j - e^-t k

Integrating the velocity function, we get the position function:

r(t) = ∫ v(t) dt = (1/6)t^3 i + e^t j + e^-t k + C2

Using the initial position, r(0) = j+k, we can find the constant C2:

r(0) = C2 + j + k = j + k

C2 = 0

So, the position function is:

r(t) = (1/6)t^3 i + (e^t -1) j + (1-e^-t) k + j + k

For more questions like Vector click the link below:

https://brainly.com/question/29740341

#SPJ11

The population of town a increases by 28very 4 years. what is the annual percent change in the population of town a?

Answers

The annual percent change in the population of town a is 0.07%.

To find the annual percent change in the population of town a, we need to first calculate the average annual increase.
We know that the population increases by 28 every 4 years, so we can divide 28 by 4 to get the average annual increase: [tex]\frac{28}{4} = 7[/tex]
Therefore, the population of town a increases by an average of 7 per year.

To find the annual percent change, we can use the following formula:
[tex]Annual percent change = (\frac{Average annual increase}{Initial population})   100[/tex]

Let's say the initial population of town a was 10,000.
[tex]Annual percent change =  (\frac{7}{10000})100 = 0.07[/tex]%

Therefore, the annual percent change in the population of town a is 0.07%.

To know more about "Percent" refer here;

https://brainly.com/question/30314535#

#SPJ11

From a speed of 114 meters per second, a car begins to decelerate. The rate of deceleration is 6 meters per square second. How many meters does the car travel after 10 seconds? (Do not include units in your answer.) Provide your answer below:

Answers

The car travels 660 meters after 10 seconds of deceleration.

To solve this problem, we can use the formula: distance = initial velocity * time + (1/2) * acceleration * time^2. The initial velocity is 114 m/s, the time is 10 seconds, and the acceleration is -6 m/s^2 (negative because it represents deceleration). Plugging these values into the formula, we get:

distance = 114 * 10 + (1/2) * (-6) * 10^2

distance = 1140 - 300

distance = 840 meters

Therefore, the car travels 840 meters after 10 seconds of deceleration.

Learn more about deceleration here

https://brainly.com/question/28500124

#SPJ11

Prove that the area of a regular n-gon, with a side of length s, is given by the formula: ns2 Area = 4 tan (15) (Note: when n = 3, we get the familiar formula for the area of an equilateral triangle 2V3 which is .) 4. s3 )

Answers

The area of a regular n-gon with side length s is given by ns2(2 + √3)/4, or ns2tan(π/n)/4 using the trigonometric identity.

Consider a regular n-gon with side length s. We can divide the n-gon into n congruent isosceles triangles, each with base s and equal angles. Let one such triangle be denoted by ABC, where A and B are vertices of the n-gon and C is the midpoint of a side.

The angle at vertex A is equal to 360°/n since the n-gon is regular. The angle at vertex C is equal to half of that angle, or 180°/n, since C is the midpoint of a side. Thus, the angle at vertex B is equal to (360°/n - 180°/n) = 2π/n radians.

We can now use trigonometry to find the area of the triangle ABC: the height of the triangle is given by h = (s/2)tan(π/n), and the area is A = (1/2)sh. Since there are n such triangles in the n-gon, the total area is given by ns2tan(π/n)/4.

Using the fact that tan(π/12) = √6 - √2, we can simplify this expression to ns2(√6 - √2)/4. Multiplying top and bottom by (√6 + √2), we obtain ns2(2 + √3)/4.

For such more questions on Trigonometric identity:

https://brainly.com/question/24496175

#SPJ11

Can the least squares line be used to predict the yield for a ph of 5.5? if so, predict the yield. if not, explain why not.

Answers

Yes, the least squares line can be used to predict the yield for a pH of 5.5. To predict the yield using the least squares method, follow these steps:

1. Obtain the data points (pH and yield) and calculate the mean values of pH and yield.
2. Calculate the differences between each pH value and the mean pH value, and each yield value and the mean yield value.
3. Multiply these differences and sum them up.
4. Calculate the squares of the differences in pH values and sum them up.
5. Divide the sum of the products from step 3 by the sum of the squared differences from step 4. This gives you the slope of the least squares line.
6. Calculate the intercept of the least squares line using the formula: intercept = mean yield - slope * mean pH.
7. Finally, use the equation of the least squares line (y = intercept + slope * x) to predict the yield at a pH of 5.5.

Please note that you'll need the specific data points to complete these steps and make an accurate prediction for the yield at pH 5.5.

To know more about least squares refer here :

https://brainly.com/question/18296085#

#SPJ11

The AO, of Adequate intake of water, for pregnant women is a mean of 3L/d, liters per day. Sample data n=200, x=2. 5, s=1. The sample data appear to come from a normally distributed population with a 0=1. 2

Answers

The sample mean is 2.5 liters per day, and the sample standard deviation is 1 liter. The population mean is given as 3 liters per day. It appears that the sample data come from a normally distributed population.

The sample data provides information about the daily water intake of pregnant women. The sample size is 200, and the sample mean is 2.5 liters per day, with a sample standard deviation of 1 liter. The population mean, or Adequate Intake (AI), for pregnant women is given as 3 liters per day.

To determine if the sample data come from a normally distributed population, additional information is required. In this case, the population standard deviation is not provided, but the population mean is given as 3 liters per day.

If the sample data come from a normally distributed population, we can use statistical tests such as the t-test or confidence intervals to make inferences about the population mean. However, without additional information or assumptions, we cannot conclusively determine if the sample data come from a normally distributed population.

Learn more about standard deviation here:

https://brainly.com/question/13498201

#SPJ11

Question 13: Design matrix and observation vector find LSQ quadratic polynomial Proctor ? Proctor Consider the data set: (-2, 1), (0, 1), (-2, 1) and (1, 3). Your goal here is to find the best fit quadratic polynomial y(x) = 20 + a1x + 22x2 for this data. To find 20, 21, 22, you have to solve the linear system ap X 01 =y, a2 where X= and y = ?

Answers

To find the LSQ quadratic polynomial for the given data set, we need to start with creating the design matrix and observation vector. The design matrix X is constructed using the x values of the data set and is given by:
X = [1 -2 4; 1 0 0; 1 -2 4; 1 1 1]

Here, each row corresponds to one data point, with the first column representing the constant term, the second column representing the linear term, and the third column representing the quadratic term.
The observation vector y is constructed using the corresponding y values of the data set and is given by:
y = [1; 1; 1; 3]
Now, to find the LSQ quadratic polynomial, we need to solve the linear system X'Xp = X'y, where p is the parameter vector containing the coefficients of the quadratic polynomial.
Solving this system, we get:
p = [-11/4; 1/2; 9/4]
Therefore, the best fit quadratic polynomial for the given data set is:
y(x) = 20 - 11/4x + 1/2x^2 + 9/4x^2
Note that the constant term 20 is not obtained from the linear system and is instead taken directly from the polynomial form.

Learn more about matrix here

https://brainly.com/question/2456804

#SPJ11

Find the Maclaurin series for f(x) = ln(1 - 8x). In(1 - 8x^5).In (2-8x^5) [infinity]Σ n=1 ______On what interval is the expansion valid? Give your answer using interval notation. If you need to use co type INF. If there is only one point in the interval of convergence, the interval notation is (a). For example, it is the only point in the interval of convergence, you would answer with [0]. The expansion is valid on

Answers

The interval of convergence for the Maclaurin series of f(x) is (-1/8, 1/8).

We can use the formula for the Maclaurin series of ln(1 - x), which is:

ln(1 - x) = -Σ[tex](x^n / n)[/tex]

Substituting -8x for x, we get:

f(x) = ln(1 - 8x) = -Σ [tex]((-8x)^n / n)[/tex] = Σ [tex](8^n * x^n / n)[/tex]

Now, we can use the formula for the product of two series to find the Maclaurin series for[tex]f(x) = ln(1 - 8x) * ln(1 - 8x^5) * ln(2 - 8x^5)[/tex]:

f(x) = [Σ [tex](8^n * x^n / n)[/tex]] * [Σ ([tex]8^n * x^{(5n) / n[/tex])] * [Σ [tex](-1)^n * (8^n * x^{(5n) / n)})[/tex]]

Multiplying these series out term by term, we get:

f(x) = Σ[tex]a_n * x^n[/tex]

where,

[tex]a_n[/tex] = Σ [tex][8^m * 8^p * (-1)^q / (m * p * q)][/tex]for all (m, p, q) such that m + 5p + 5q = n

The series Σ [tex]a_n * x^n[/tex] converges for |x| < 1/8, since the series for ln(1 - 8x) converges for |x| < 1/8 and the series for [tex]ln(1 - 8x^5)[/tex]and [tex]ln(2 - 8x^5)[/tex]converge for [tex]|x| < (1/8)^{(1/5)} = 1/2.[/tex]

To know more about Maclaurin series refer here:

https://brainly.com/question/31745715

#SPJ11

There are 20 counters in a box 6 are red and 5 are green and the rest are blue

find the probability that she takes a blue counter

Answers

The probability of drawing a blue counter from the box is 9/20.

To find the probability of drawing a blue counter, we need to determine the number of blue counters in the box and divide it by the total number of counters.

Given that there are 20 counters in total, 6 of them are red, and 5 of them are green. To find the number of blue counters, we can subtract the sum of red and green counters from the total number of counters:

20 - 6 (red) - 5 (green) = 9 (blue)

So, there are 9 blue counters in the box.

The probability of drawing a blue counter is the number of favorable outcomes (blue counters) divided by the total number of possible outcomes (all counters):

Probability = Number of blue counters / Total number of counters

Probability = 9 / 20

Therefore, the probability of drawing a blue counter from the box is 9/20.

Learn more about probability here:

https://brainly.com/question/32117953

#SPJ11

Other Questions
Tuesday 4. 4. 1 Subtraction Life Skills Language Wednesday 4. 4. 2 Length Solve grouping word problems with whole numbers up to 8 Recognise symmetry in own body Recognise number symbol Answer question about data in pictograph Thursday Question 4. 3 Number recognition 4. 4. 3 Time Life Skills Language Life Skills Language Life Skills Language Friday 4. 1 Develop a mathematics lesson for the theme Wild Animals" that focuses on Monday's lesson objective: "Count using one-to-one correspondence for the number range 1 to 8" Include the following in your activity and number the questions correctly 4. 1. 1 Learning and Teaching Support Materials (LTSMs). 4. 12 Description of the activity. 4. 1. 3 TWO (2) questions to assess learners' understanding of the concept (2) aluminum (al) has a density of 2.70 g/cm3 and crystallizes as a face-centered cubic structure. what is the unit cell edge length? If f is an increasing and g is a decreasing function and fog is defined, then fog will be____a. Increasing functionb. decreasing functionc. neither increasing nor decreasingd. none of these disclosure without written patient authorization is fine in emergency situation. true false It was Mark's first day of school in a new town. He walked into his new classroom.A girl came up to him and said, ",begin underline,Your cheeks are like roses,end underline,. Is today your first day?"Mark nodded and looked down at his feet."It's okay," said the girl."My name is Sadie. I'm new too. You don't have to be scared. Let's be friends."Mark looked up from his shoes and smiled at Sadie. He was happy to have a new friend.QuestionWhat is the meaning of "Your cheeks are like roses" as it is used in the passage?Answer options with 4 options1. Mark smells good.2. Mark has a nice smile.3. Mark's cheeks are red.4. Mark's cheeks are soft. A city that has an elevation of -17 meters is closer to sea level than a city that has an elevation of -40 meters If bonds are issued at a discount, the stated interest rate is: a. higher than the market rate of interest. b. lower than the market rate of interest. c. too low to attract investors. d. adjusted to a lower rate of interest. Concisely describe thecircumstances that merit a professional response to an online post. Then describe the guidelines you shouldfollow when composing to customers online according to the ipcc, one molecule of methane (ch4) is 86 times more potent as a greenhouse gas than a molecule of carbon dioxide (co2). what does it mean to say that methane is a greenhouse gas? ____________ involves creating multiple versions of information goods and selling essentially the same product to different market segments at different prices. Describe both a PUSH and a PULL factor about the Irish Potato Famine in Ireland from 1845-1849. Answer in your own words a sound wave has a frequency of 3000hz what is the edistance btweeeen crests of the wavbe Consider the nonlifting flow over a circular cylinder of a given radius, where V[infinity] = 20 ft/s. If V[infinity] is doubled, that is, V[infinity] = 40 ft/s, does the shape of the streamlines change? Explain. I would like for you to write a letter to a woman that has made a impact on your life. This woman can be someone in your family, a teacher, someone from history, famous, an influencer, a doctor, etc. Write a letter to them thanking them and expressing to them what they have done for you to have such an impact on your life construct a 95onfidence interval for the population standard deviation . round the answers to at least two decimal places. a 95onfidence interval for the population standard deviation is The following table indicates the labor hours needed to produce one unit of output. 1 pts Kate Sweater 50 hours Dress Mary 90 hours 10 hours Based on the above information, which of the following statements is true? 45 hours Kate has a comparative advantage but not an absolute advantage in the production of dresses Kate has a comparative advantage but not an absolute advantage in the production of sweaters. Kate has both a comparative advantage and an absolute advantage in the production of dresses. Kate has both a comparative advantage and an absolute advantage in the production of sweaters, What is the type of relation between kinetic energy and temperature? Which of the following is NOT a performance measure used to evaluate queuing models? (eg. not presented in lecture or textbook)the average time a unit spends in the system.the maximum time a unit spends in the system.the probability that no units are in the system.the average number of units in the system. what accounts for the huge diversity of the b cell receptors the immune system uses to fight antigens design a cam to move a follower at a constant velocity of 100 mm/sec for 2 sec then return to its starting position with a total cycle time of 3 sec.