The table shows data collected on the relationship between time spent playing video games and time spent with family. The line of best fit for the data is ý = -0.363 +94.5. Assume the line of best fit is significant and there is a strong linear relationship between the variables.

Video Games (Minutes) Time with Family (Minutes)
40 80
55 75
70 69
85 64

Required:
a. According to the line of best fit, what would be the predicted number of minutes spent with family for someone who spent 36 minutes playing video games?
b. The predicted number of minutes spent with family is:_________

Answers

Answer 1

Answer:

81.432 minutes

Step-by-step explanation:

Given the following :

Video Games (Mins) - - - Time with Family(Mins)

40 - - - - - - - - - - - - - - - - - - - 80

55 - - - - - - - - - - - - - - - - - - - 75

70 - - - - - - - - - - - - - - - - - - - 69

85 - - - - - - - - - - - - - - - - - - - 64

Best fit line:

ý = -0.363x +94.5

For someone who spent 36 minutes playing video games, the predicted number of minutes spent with family according to the best fit line will be:

Here number of minutes playing video games '36' is the independent variable

ý is the dependent or predicted variable ;

94.5 is the intercept

ý = -0.363(36) +94.5

ý = −13.068 + 94.5

ý = 81.432 minutes

Which is about 81 minutes to the nearest whole number.


Related Questions

Given the formula a=b+c, rewrite the formula to solve for c

Answers

9514 1404 393

Answer:

  c = a - b

Step-by-step explanation:

Subtract b from both sides of the equation.

  a = b + c

  a - b = b + c - b . . . . . show the subtraction

  a - b = c . . . . . . . . . . simplify

  c = a - b . . . . . . write with c on the left

What is the length of AD
A.17
B.15
C.7
D.1

Answers

Answer:

15 units

Step-by-step explanation:

Point D is at 8

Point A is at -7

D - A

8 - -7

8+7

15 units

Answer:

the answer is 15

you can just count the number of steps going forward from -7 to 8.

The equation of a circle centered at the origin with a radius of unit length is x2 + y2 = 1. This equation changes if the center of the circle is not located at the origin or the radius is not of unit length.

Answers

Answer:

The equation for a unit radius circle, centered at the origin is:

x^2 + y^2 = 1

Now, if we want to move it horizontally, you can recall to the horizontal translations:

f(x) -----> f(x - a)

Moves the graph to the right by "a" units.

A vertical translation is similar.

Then, if we want a circle centered in the point (a, b) we have:

(x - a)^2  + (y - b)^2 = 1.

Now, if you want to change the radius, we can actually write the unit circle as:

x^2 + y^2 = 1^2

Where if we set x = 0, 1 = y, this is our radius

So if we have:

x^2 + y^2 = R^2

And we set the value of x = 0, then R = y.

So our radius is R.

Then:

"A circle of radius R, centered in the point (a, b) is written as:

(x - a)^2 + (y - b)^2 = R^2

Nine students took the SAT. Their scores are listed below. Later on, they read a book on test preparation and retook the SAT. Their new scores are listed below. Test the claim that the book had no effect on their scores.Use α=0.05. Assume that the distribution is normally distributed. Student 1 2 3 4 5 6 7 8 9 Scores before reading book 72 0 86 0 850 88 0 86 0 710 85 0 1200 95 0 Scores after reading book 74 0 86 0 840 92 0 89 0 720 84 0 1240 97 0 Nine students took the SAT. Their scores are listed below. Later on, they read a book on test preparation and retook the SAT. Their new scores are listed below. Test the claim that the book had no effect on their scores. Use α = 0.05. Assume that the distribution is normally distributed. Student 1 2 3 4 5 6 7 8 9 Scores before reading book 72 0 86 0 850 88 0 86 0 710 85 0 1200 95 0 Scores after reading book 74 0 86 0 840 92 0 89 0 720 84 0 1240 97 0

Answers

Answer:

t= 0.4933

t ≥ t ( 0.025 ,8 ) = 2.306

Since the calculated value of t= 0.4933 is less than t ( 0.025 ,8 ) = 2.306 therefore we accept the null hypothesis at 5 % significance level . On the basis of this we conclude that the book had no effect on their scores.

Step-by-step explanation:

We state our null and alternative hypotheses as

H0: ud= 0 Ha: ud≠0

The significance level is set at ∝= 0.05

The test statistic under H0 is

t= d`/ sd/√n

which has t distribution with n-1 degrees of freedom

The critical region is t ≥ t ( 0.025 ,8 ) = 2.306

Computations

Student       Scores before      Scores after    Difference           d²

                        reading book                    ( after minus before)

1                          720                   740             20                       400

2                        860                   860              0                           0

3                        850                   840             -10                       100

4                        880                   920             40                       1600

5                        860                   890             30                        900

6                        710                    720              10                         100

7                       850                    840              -10                       100

8                      1200                  1240             40                        1600

9                      950                    970              20                           40

∑                    6930                  8020           140                         4840

d`= ∑d/n= 140/9= 15.566

sd²= 1/8( 4840- 140²/9) = 1/8 (4840 - 2177.778) = 2662.22/8= 332.775

sd= 18.2422

t= 3/ 18.2422/ √9

t= 0.4933

Since the calculated value of t= 0.4933 is less than t ( 0.025 ,8 ) = 2.306 therefore we accept the null hypothesis at 5 % significance level . On the basis of this we conclude that the book had no effect on their scores.

If f(4x-15)=8x-27,find f(x)?

Answers

Answer:

If we put x=17/4

f(4×17/4-15)=8×17/4-27

f(2x=34-27

f(x)=7.

Hope i helped you.

29. Identify the end behavior of the function f(x) = 3x^4 + x^3 − 7x^2 + 12.

options:
A. As x → –∞, y → +∞, and as x → +∞, y → –∞

B. As x → –∞, y → –∞, and as x → +∞, y → –∞

C. As x → –∞, y → +∞, and as x → +∞, y → +∞

D. As x → –∞, y → –∞, and as x → +∞, y → +∞

Answers

Answer:

  C.  As x → –∞, y → +∞, and as x → +∞, y → +∞

Step-by-step explanation:

The leading coefficient of this even-degree function is positive, so y goes to +∞ when the magnitude of x gets large.

_____

When the function is even degree, its value for large magnitude x heads toward the infinity with the same sign as the leading coefficient.

When the function is odd degree, its value for large magnitude x will head toward the infinity with the sign that matches the product of the sign of x and the sign of the leading coefficient.

Integers that are not whole numbers​

Answers

Answer:

a negative integer

Step-by-step explanation:

n a survey of a group of​ men, the heights in the​ 20-29 age group were normally​ distributed, with a mean of inches and a standard deviation of inches. A study participant is randomly selected. Complete parts​ (a) through​ (d) below. ​(a) Find the probability that a study participant has a height that is less than inches. The probability that the study participant selected at random is less than inches tall is nothing. ​(Round to four decimal places as​ needed.) ​(b) Find the probability that a study participant has a height that is between and inches. The probability that the study participant selected at random is between and inches tall is nothing. ​(Round to four decimal places as​ needed.) ​(c) Find the probability that a study participant has a height that is more than inches. The probability that the study participant selected at random is more than inches tall is nothing. ​(Round to four decimal places as​ needed.) ​(d) Identify any unusual events. Explain your reasoning. Choose the correct answer below.

Answers

Answer:

(a) The probability that a study participant has a height that is less than 67 inches is 0.4013.

(b) The probability that a study participant has a height that is between 67 and 71 inches is 0.5586.

(c) The probability that a study participant has a height that is more than 71 inches is 0.0401.

(d) The event in part (c) is an unusual event.

Step-by-step explanation:

The complete question is: In a survey of a group of​ men, the heights in the​ 20-29 age group were normally​ distributed, with a mean of 67.5 inches and a standard deviation of 2.0 inches. A study participant is randomly selected. Complete parts​ (a) through​ (d) below. ​(a) Find the probability that a study participant has a height that is less than 67 inches. The probability that the study participant selected at random is less than inches tall is nothing. ​(Round to four decimal places as​ needed.) ​(b) Find the probability that a study participant has a height that is between 67 and 71 inches. The probability that the study participant selected at random is between and inches tall is nothing. ​(Round to four decimal places as​ needed.) ​(c) Find the probability that a study participant has a height that is more than 71 inches. The probability that the study participant selected at random is more than inches tall is nothing. ​(Round to four decimal places as​ needed.) ​(d) Identify any unusual events. Explain your reasoning. Choose the correct answer below.

We are given that the heights in the​ 20-29 age group were normally​ distributed, with a mean of 67.5 inches and a standard deviation of 2.0 inches.

Let X = the heights of men in the​ 20-29 age group

The z-score probability distribution for the normal distribution is given by;

                          Z  =  [tex]\frac{X-\mu}{\sigma}[/tex]  ~ N(0,1)

where, [tex]\mu[/tex] = population mean height = 67.5 inches

            [tex]\sigma[/tex] = standard deviation = 2 inches

So, X ~ Normal([tex]\mu=67.5, \sigma^{2}=2^{2}[/tex])

(a) The probability that a study participant has a height that is less than 67 inches is given by = P(X < 67 inches)

 

      P(X < 67 inches) = P( [tex]\frac{X-\mu}{\sigma}[/tex] < [tex]\frac{67-67.5}{2}[/tex] ) = P(Z < -0.25) = 1 - P(Z [tex]\leq[/tex] 0.25)

                                                                 = 1 - 0.5987 = 0.4013

The above probability is calculated by looking at the value of x = 0.25 in the z table which has an area of 0.5987.

(b) The probability that a study participant has a height that is between 67 and 71 inches is given by = P(67 inches < X < 71 inches)

    P(67 inches < X < 71 inches) = P(X < 71 inches) - P(X [tex]\leq[/tex] 67 inches)

    P(X < 71 inches) = P( [tex]\frac{X-\mu}{\sigma}[/tex] < [tex]\frac{71-67.5}{2}[/tex] ) = P(Z < 1.75) = 0.9599

    P(X [tex]\leq[/tex] 67 inches) = P( [tex]\frac{X-\mu}{\sigma}[/tex] [tex]\leq[/tex] [tex]\frac{67-67.5}{2}[/tex] ) = P(Z [tex]\leq[/tex] -0.25) = 1 - P(Z < 0.25)

                                                                = 1 - 0.5987 = 0.4013

The above probability is calculated by looking at the value of x = 1.75 and x = 0.25 in the z table which has an area of 0.9599 and 0.5987 respectively.

Therefore, P(67 inches < X < 71 inches) = 0.9599 - 0.4013 = 0.5586.

(c) The probability that a study participant has a height that is more than 71 inches is given by = P(X > 71 inches)

 

      P(X > 71 inches) = P( [tex]\frac{X-\mu}{\sigma}[/tex] > [tex]\frac{71-67.5}{2}[/tex] ) = P(Z > 1.75) = 1 - P(Z [tex]\leq[/tex] 1.75)

                                                                 = 1 - 0.9599 = 0.0401

The above probability is calculated by looking at the value of x = 1.75 in the z table which has an area of 0.9599.

(d) The event in part (c) is an unusual event because the probability that a study participant has a height that is more than 71 inches is less than 0.05.

Need Help
Please Show Work​

Answers

Answer:

18 - 8 * n = -6 * n

The number is 9

Step-by-step explanation:

Let n equal the number

Look for key words such as is which means equals

minus is subtract

18 - 8 * n = -6 * n

18 -8n = -6n

Add 8n to each side

18-8n +8n = -6n+8n

18 =2n

Divide each side by 2

18/2 = 2n/2

9 =n

The number is 9

━━━━━━━☆☆━━━━━━━

▹ Answer

n = 9

▹ Step-by-Step Explanation

18 - 8 * n = -6 * n

Simple numerical terms are written last:

-8n + 18 = -6n

Group all variable terms on one side and all constant terms on the other side:

(-8n + 18) + 8n = -6n + 8n

n = 9

Hope this helps!

CloutAnswers ❁

━━━━━━━☆☆━━━━━━━

A normal population has a mean of 65 and a standard deviation of 13. You select a random sample of 25. Compute the probability that the sample mean is: (Round your z values to 2 decimal places and final answers to 4 decimal places): Greater than 69.

Answers

Answer:

0.0618

Step-by-step explanation:

z = (x - μ)/σ, where

x is the raw score = 69

μ is the sample mean = population mean = 65

σ is the sample standard deviation

This is calculated as:

= Population standard deviation/√n

Where n = number of samples = 25

σ = 13/√25

σ = 13/5 = 2.6

Sample standard deviation = 2.6

z = (69 - 65) / 2.6

z = 4/2.6

z = 1.53846

Approximately to 2 decimal places = 1.54

Using the z score table to determine the probability,

P(x = 69) = P(z = 1.54)

= 0.93822.

The probability that the sample mean is greater than 69 is

P(x>Z) = 1 - 0.93822

P(x>Z) = 0.06178

Approximately to 4 decimal places = 0.0618

La'Vonn rolled a die 100 times. His results are below. What is the relative frequency for La'Vonn rolling a 3?

Answers

What type of die 6 side or 12 side

Answer:

.15

Step-by-step explanation:

In the nation of Gondor, the EPA requires that half the new cars sold will meet a certain particulate emission standard a year later. A sample of 64 one-year-old cars revealed that only 24 met the particulate emission standard. The test statistic to see whether the proportion is below the requirement is

Answers

Complete Question

In the nation of Gondor, the EPA requires that half the new cars sold will meet a certain particulate emission standard a year later. A sample of 64 one-year-old cars revealed that only 24 met the particulate emission standard. The test statistic to see whether the proportion is below the requirement is:

A -1.645

B -2.066

C -2.000

D-1.960

Answer:

The  correct option is C

Step-by-step explanation:

From the question we are told that

   The  population mean is  [tex]p = 0.50[/tex]

    The sample size is  [tex]n = 64[/tex]

     The  number that met the standard is  [tex]k = 24[/tex]

       

Generally the sample proportion is mathematically evaluated   as

             [tex]\r p = \frac{24}{64}[/tex]

             [tex]\r p =0.375[/tex]

Generally the standard error is mathematically evaluated as  

       [tex]SE = \sqrt{ \frac{p(1- p )}{n} }[/tex]

=>    [tex]SE = \sqrt{ \frac{0.5 (1- 0.5 )}{64} }[/tex]

=>   [tex]SE = 0.06525[/tex]

The  test statistics is evaluated as

        [tex]t = \frac{ \r p - p }{SE}[/tex]

        [tex]t = \frac{ 0.375 - 0.5 }{0.0625}[/tex]

        [tex]t = -2[/tex]

The height of a triangle is 5 yards greater than the base. The area of the triangle is 273 square yards. Find the length of the base and the height of the triangle.

Answers

Answer:

Base = 21 while Height = 16

Solve the following system of equations for x: y = 4 -x^2
X - y =
2

Answers

Answer:

B. x=2, x=-3

Step-by-step explanation:

Hello,

We are given this system of equations:

y=4-x²

x-y=2

And we want to solve it for x.

There are a couple ways to solve systems of equations, but let's use substitution in this problem, which we will set one variable equal to an expression containing the other variable, use that expression to solve for the variable the expression contains in the other equation, then use the value of the solved variable to find the value of the other variable.

But in this case, we just need to find x, which is just one of the variables, so there's no need to find the values of y.

In x-y=2, subtract x from both sides.

-y=-x+2

Multiply both sides by -1.

y=x-2

Substitute y as x-2 in y=4-x².

x-2=4-x²

Add x² to both sides.

x²+x-2=4

Subtract 4 from both sides.

x²+x-6=0

Now factor using FOIL.

1 (coefficient in front of x) is the sum of the numbers used in the binomials, while -6 is their product.

Two numbers that add up to 1 but multiply to get -6 are -2 and 3.

So now factor:

(x-2)(x+3)=0

Split and solve:

x-2=0

x=2

x+3=0

x=-3

The solutions for x are x=2 and x=-3, which means the answer is B.

Hope this helps!

Every high school senior takes the SAT at a school in St. Louis. The high school guidance director at this school collects data on each graduating senior’s GPA and their corresponding SAT test score. The guidance director is conducting a _________ in this experimental design.

A. sample survey
B. census
C. sample poll
D. random sample

Answers

Voće Eu tudo bem yea Iliana buns iOS build. Lbvac la vaca leche 457 sample poll

The guidance director is conducting a sample poll in this experimental design.

What is sample?

Sample is a part of population. It does not comprises whole population. It is representatitive of whole population.

How to fill blank?

We are required to fill the blank with appropriate term among the options.

The correct option is sample poll because the guidance director collects data in his school only.

Census collects the whole population of the country.

Sample poll means collecting data from small population.

Random sample means collecting data from a part of popultion without identifying any variable.

Hence we found that he was doing sample poll.

Learn more about sample at https://brainly.com/question/24466382

#SPJ2

Which decimal number is less than 1.56?

Answers

The decimal number is 0.9

(Algebra) PLZ HELP ASAP!

Answers

Answer: Its everthing except irrational

Step-by-step explanation:

Charlie's flower bed has a length of 4 feet and a width of four sixths feet. Which of the following is true
1 The area of the flower bed is equal to 6 square feet.
2The area of the flower bed is larger to 6 square feet.
3 The area of the flower bed is equal to 4 square feet
4 The area of the flower bed is smaller than 4 square feet.

Answers

Option 4 is correct

Answer:

Option 4) The area of the flower bed is smaller than 4 square feet.

Step-by-step explanation:

Let’s solve for the area of the flower bed.

Consider that the flower bed is a rectangle.

The area of a recrangle is given by the formula:

A = length x width

The area of the flower bed is:

4 ft x 4/6 ft = 2 2/3 ft^2

2 2/3 ft ^2 < 4 ft^2

Therefore option 4 is the correct answer.

Which expression simplifies to 7W+5?
. – 2w + 3 + 5W – 2
C. -3w + 5(2W + 1)
Cual es la respuesta

Answers

Answer:

[tex]\large \boxed{\mathrm{-3w + 5(2w + 1)}}[/tex]

Step-by-step explanation:

-2w + 3 + 5w - 2

Combine like terms.

3w + 1

-3w + 5(2w + 1)

Expand brackets.

-3w + 10w + 5

Combine like terms.

7w + 5

Answer:

The answer is C.

-3w +5(2w +1)

Step-by-step explanation:

A man starts repaying a loans with first insfallameny of rs.10 .If he increases the instalment by Rs 5 everything months, what amount will be paid by him in the 30the instalment.​

Answers

Answer:

30×5=150

so 150+10=160

thus his payment in the 30th installment is

rs.160

Evaluate S_5 for 600 + 300 + 150 + … and select the correct answer below. A. 1,162.5 B. 581.25 C. 37.5 D. 18,600

Answers

Answer:

  A.  1,162.5

Step-by-step explanation:

Write the next two terms and add them up:

  S5 = 600 +300 +150 +75 +37.5 = 1162.5 . . . . matches choice A

Answer: Choice A 1,162.5

================================================

Explanation:

{600, 300, 150, ...} is a geometric sequence starting at a = 600 and has common ratio r = 1/2 = 0.5, this means we cut each term in half to get the next term. We could do this to generate five terms and then add them up. Or we could use the formula below with n = 5

Sn = a*(1-r^n)/(1-r)

S5 = 600*(1-0.5^5)/(1-0.5)

S5 = 1,162.5

-----------

Check:

first five terms = {600, 300, 150, 75, 37.5}

S5 = sum of the first five terms

S5 = 600+300+150+75+37.5

S5 = 1,162.5

Because n = 5 is relatively small, we can quickly confirm the answer. With larger values of n, a spreadsheet is the better option.

Put the following numbers in order from least to greatest: π/2,-4,0.09,17,√3,-1/7,√225

Answers

Answer:

-4, -1/7,0.09,π/2,√3 ,√225,17

Step-by-step explanation:

π/2, is approx 1.5

-4,

0.09,

17,

√3 is approx 1.7

,-1/7, is approx -.143

√225 = 15

From most negative to greatest

-4, -1/7,0.09,π/2,√3 ,√225,17

Answer:

[tex]-4, -1/7, 0.09, \pi/2, \sqrt3, \sqrt{225}, 17[/tex]

Step-by-step explanation:

So we have the numbers:

[tex]\pi/2, -4, 0.09, 17, \sqrt3, -1/7, \sqrt{225}[/tex]

(And without using a calculator) approximate each of the values.

π is around 3.14, so π/2 is around 1.57.

17 squared is 289, so 1.7 squared is 2.89. Thus, the square root of 13 is somewhere between 1.7 and 1.8.

-1/7 can be divided to be about -0.1429...

And the square root of 225 is 15.

Now, use the approximations to place the numbers:

[tex]\pi/2\approx1.57; -4; 0.09;17;\sqrt3 \approx1.7; -1/7\approx-0.14;\sqrt{225}=15[/tex]

The smallest is -4.

Next is -1/7 or about -0.14

Followed by the first positive, 0.09.

And then with π/2 or 1.57

And then a bit bigger with the square root of 3 or 1.7.

And then with the square root of 225 or 15.

And finally the largest number 17.

Thus, the correct order is:

[tex]-4, -1/7, 0.09, \pi/2, \sqrt3, \sqrt{225}, 17[/tex]

What is the value of this expression when x = -6 and y = — 1/2? 4(x^2+3) -2y A. -131 B. -35 C. 57 1/2 D. 157

Answers

Answer:

D

Step-by-step explanation:

[tex]4(x^2+3)-2y\\\\=4((-6)^2+3)-2(\frac{-1}{2} )\\\\=4(36+3)+1\\\\=4(39)+1\\\\=156+1\\\\=157[/tex]

The value of the expression 4(x² + 3) - 2y is 157, when x = -6 and y = -1/2.

What is an algebraic expression?

An algebraic expression is consists of variables, numbers with various mathematical operations,

The given expression is,

4(x² + 3) - 2y

Substitute x = -6 and y = -1/2 to find the value of expression,

= 4 ((-6)² + 3) - 2(-1/2)

= 4 (36 + 3) + 1

= 4 x 39 + 1

= 156 + 1

= 157

The required value of the expression is 157.

To know more about Algebraic expression on:

https://brainly.com/question/19245500

#SPJ2

(2+1/2) (2^2-1+1/4) find the expression in the form of cubes and differences of two terms.​

Answers

Answer:

Consider the following identity:

a³ - b³ = (a + b)(a² - ab + b²)

Let a = 2, b = 1/2

(2 + 1/2)(2² - 2*1/2 + 1/2²) = 2³ - (1/2)³ =8 - 1/8

Use the algebraic identity given below

[tex]\boxed{\sf a^3-b^3=(a+b)(a^2-ab+b^2)}[/tex]

[tex]\\ \sf\longmapsto (2+\dfrac{1}{2})(2^2-1+\dfrac{1}{4})[/tex]

[tex]\\ \sf\longmapsto (2+\dfrac{1}{2})(2^2-2\times \dfrac{1}{2}+\dfrac{1}{2}^2)[/tex]

Here a =2 and b=1/2

[tex]\\ \sf\longmapsto 2^3-\dfrac{1}{2}^3[/tex]

[tex]\\ \sf\longmapsto 8-\dfrac{1}{8}[/tex]

Find the Correlation of the following two variables X: 2, 3, 5, 6 Y: 1, 2, 4, 5

Answers

Answer:

The correlation of X and Y is 1.006

Step-by-step explanation:

Given

X: 2, 3, 5, 6

Y: 1, 2, 4, 5

n = 4

Required

Determine the correlation of x and y

Start by calculating the mean of x and y

For x

[tex]M_x = \frac{\sum x}{n}[/tex]

[tex]M_x = \frac{2 + 3+5+6}{4}[/tex]

[tex]M_x = \frac{16}{4}[/tex]

[tex]M_x = 4[/tex]

For y

[tex]M_y = \frac{\sum y}{n}[/tex]

[tex]M_y = \frac{1+2+4+5}{4}[/tex]

[tex]M_y = \frac{12}{4}[/tex]

[tex]M_y = 3[/tex]

Next, we determine the standard deviation of both

[tex]S = \sqrt{\frac{\sum (x - Mean)^2}{n - 1}}[/tex]

For x

[tex]S_x = \sqrt{\frac{\sum (x_i - Mx)^2}{n -1}}[/tex]

[tex]S_x = \sqrt{\frac{(2-4)^2 + (3-4)^2 + (5-4)^2 + (6-4)^2}{4 - 1}}[/tex]

[tex]S_x = \sqrt{\frac{-2^2 + (-1^2) + 1^2 + 2^2}{3}}[/tex]

[tex]S_x = \sqrt{\frac{4 + 1 + 1 + 4}{3}}[/tex]

[tex]S_x = \sqrt{\frac{10}{3}}[/tex]

[tex]S_x = \sqrt{3.33}[/tex]

[tex]S_x = 1.82[/tex]

For y

[tex]S_y = \sqrt{\frac{\sum (y_i - My)^2}{n - 1}}[/tex]

[tex]S_y = \sqrt{\frac{(1-3)^2 + (2-3)^2 + (4-3)^2 + (5-3)^2}{4 - 1}}[/tex]

[tex]S_y = \sqrt{\frac{-2^2 + (-1^2) + 1^2 + 2^2}{3}}[/tex]

[tex]S_y = \sqrt{\frac{4 + 1 + 1 + 4}{3}}[/tex]

[tex]S_y = \sqrt{\frac{10}{3}}[/tex]

[tex]S_y = \sqrt{3.33}[/tex]

[tex]S_y = 1.82[/tex]

Find the N pairs as [tex](x-M_x)*(y-M_y)[/tex]

[tex](2 - 4)(1 - 3) = (-2)(-2) = 4[/tex]

[tex](3 - 4)(2 - 3) = (-1)(-1) = 1[/tex]

[tex](5 - 4)(4 - 3) = (1)(1) = 1[/tex]

[tex](6-4)(5-3) = (2)(2) = 4[/tex]

Add up these results;

[tex]N = 4 + 1 + 1 + 4[/tex]

[tex]N = 10[/tex]

Next; Evaluate the following

[tex]\frac{N}{S_x * S_y} * \frac{1}{n-1}[/tex]

[tex]\frac{10}{1.82* 1.82} * \frac{1}{4-1}[/tex]

[tex]\frac{10}{3.3124} * \frac{1}{3}[/tex]

[tex]\frac{10}{9.9372}[/tex]

[tex]1.006[/tex]

Hence, The correlation of X and Y is 1.006

look at the image below

Answers

that's what I got, you can confirm if it's correct or not... I'm not sure

have a nice dayʘ‿ʘ

find the length of the arc. round your answer to nearest tenth

Answers

41.9 mi

Step-by-step explanation:

First, we convert the angle from degree measure to radian measure:

[tex]\theta = 240°×\left(\dfrac{\pi}{180°}\right)= \dfrac{4\pi}{3}\:\text{rad}[/tex]

Using the definition of an arc length [tex]s[/tex]

[tex]s = r\theta[/tex]

[tex]\:\:\:\:=(10\:\text{mi})\left(\dfrac{4\pi}{3}\:\text{rad}\right)[/tex]

[tex]\:\:\:\:= 41.9\:\text{mi}[/tex]

Solve 45 - [4 - 2y - 4(y + 7)] = -4(1 + 3y) - [4 - 3(y + 2) - 2(2y -5)] (make sure to type the number only - rounded to the tenth)

Answers

Answer:

Rounded: -5.5

Step-by-step explanation:

Work above :)

Find the equation of a parabola that has a vertex (3,5) and passes through the point (1,13).
Oy= -27 - 3)' +5
Oy=2(x + 3) - 5
Oy=2(0 - 3)' + 5
Oy= -3(2 – 3) + 5
PLEASE HELP ME!!

Answers

Answer:

y = 2(x - 3)² + 5

Step-by-step explanation:

The equation of a parabola in vertex form is

y = a(x - h)² + k

where (h, k) are the coordinates of the vertex and a is a multiplier

Here (h, k) = (3, 5), thus

y = a(x - 3)² + 5

To find a substitute (1, 13) into the equation

13 = a(1 - 3)² + 5 ( subtract 5 from both sides )

8 = 4a ( divide both sides by 4 )

a = 2, then

y = 2(x - 3)² + 5 ← equation of parabola in vertex form

find the greatest common factor of 108d^2 and 216d

Answers

Answer:

Below

Step-by-step explanation:

If d is a positive number then the greatest common factor is 108d.

To get it isolate d and d^2 from the numbers.

108 divides 216. (216 = 2×108)

Then the greatest common factor of 216 and 108 is 108.

For d^2 and d we will follow the same strategy

d divides d^2 (d^2 = d*d)

Then the greatest common factor of them is d.

So the greatest common factor will be 108d if and only if d is positive. If not then 108 is the answer

Answer:

[tex]\boxed{108d}[/tex]

Step-by-step explanation:

Part 1: Find GCF of variables

The equation gives d ² and d as variables. The GCF rules for variables are:

The variables must have the same base.If one variable is raised to a power and the other is not, the GCF is the variable that does not have a power.If one variable is raised to a power and the other is raised to a power of lesser value, the GCF is the variable with the lesser value power.

The GCF for the variables is d.

Part 2: Find GCF of bases (Method #1)

The equation gives 108 and 216 as coefficients. To check for a GCF, use prime factorization trees to find common factors in between the values.

Key: If a number is in bold, it is marked this way because it cannot be divided further AND is a prime number!

Prime Factorization of 108

108 ⇒ 54 & 2

54 ⇒ 27 & 2

27 ⇒ 9 & 3

9 ⇒ 3 & 3

Therefore, the prime factorization of 108 is 2 * 2 * 3 * 3 * 3, or simplified as 2² * 3³.

Prime Factorization of 216

216 ⇒ 108 & 2

108 ⇒ 54 & 2

54 ⇒ 27 & 2

27 ⇒ 9 & 3

9 ⇒ 3 & 3

Therefore, the prime factorization of 216 is 2 * 2 * 2 * 3 * 3 * 3, or simplified as 2³ * 3³.

After completing the prime factorization trees, check for the common factors in between the two values.

The prime factorization of 216 is 2³ * 3³ and the prime factorization of 108 is 2² * 3³.  Follow the same rules for GCFs of variables listed above and declare that the common factor is the factor of 108.

Therefore, the greatest common factor (combining both the coefficient and the variable) is [tex]\boxed{108d}[/tex].

Part 3: Find GCF of bases (Method #2)

This is the quicker method of the two. Simply divide the two coefficients and see if the result is 2. If so, the lesser number is immediately the coefficient.

[tex]\frac{216}{108}=2[/tex]

Therefore, the coefficient of the GCF will be 108.

Then, follow the process described for variables to determine that the GCF of the variables is d.

Therefore, the GCF is [tex]\boxed{108d}[/tex].

Other Questions
Stibnite, Sb2S3, is a dark gray mineral from which antimony metal is obtained. What is the mass percent of antimony in the sulfide? If you have 1.00 kg of an ore that contains 10.6% antimony, what mass of Sb2S3 (in grams) is in the ore? 14 POINTER IF YOU HIT THE BULLSEYE!!!!! HELP!Billy, Bob, and Joe found a question in their test that said this and they NEED HELP!!!!! with flying promises to give brainliest they now wait....... The comparative balance sheet of Nathan Company appears below: NATHAN COMPANY Comparative Balance Sheet December 31, Assets 2017 2016 Current assets $420 $333 Plant assets 780 567 Total assets $1,200 $900 Liabilities and stockholders' equity Current liabilities $168 $144 Long-term debt 300 162 Common stock 432 306 Retained earnings 300 288 Total liabilities and stockholders' equity $1,200 $900 Using horizontal analysis, show the percentage change for each balance sheet item using 2016 as a base year. NATHAN COMPANY Comparative Balance Sheet December 31, Assets 2017 2016 Percentage change Current assets $420 $333 % Plant assets 780 567 % Total assets $1,200 $900 % Liabilities and stockholders' equity Current liabilities $168 $144 % Long-term debt 300 162 % Common stock 432 306 % Retained earnings 300 288 % Total liabilities and stockholders' equity $1,200 $900 % Using vertical analysis, prepare a common size comparative balance sheet. (Round percentages to 0 decimal places, e.g. 12.) NATHAN COMPANY Comparative Balance Sheet December 31 2017 2016 Assets Amount Percentage Amount Percentage Current assets $420 % $333 % Plant assets 780 % 567 % Total assets $1,200 % $900 % Liabilities and stockholders' equity Current liabilities $168 % $144 % Long-term debt 300 % 162 % Common stock 432 % 306 % Retained earnings 300 % 288 % Total liabilities and stockholders' equity $1,200 % $900 % Tres deberes que puedo cumplir en mi familia desde el mensaje cristiano, es para hoy porfavor respondan Abby and Katy are selling cheesecakes. There are apple and pecan cheesecakes. Abby sold 14 pecan and 3 apple cheesecakes for a total of $113. Katy sold 7 pecan and 8 apple cheesecakes for a total of $180. What's the cost of one pecan cheesecake and one apple cheesecake?How would I set this up? Please help pleaseeee Stress is a major health issue for emerging adults, but only _____% indicate that they are doing well in managing stress. write down the different types of resources and how they affect the developemt process emergency fast answer it A company issues $1,500,000 of par bonds at 98 on January 1, year 1, with a maturity date of December 31, year 30. Bond issue costs are $90,000, and the stated interest rate of the bonds is 6%. Interest is paid semiannually on January 1 and July 1. Ten years after the issue date, the entire issue was called at 102 and canceled. The company uses the straight-line method of amortization for bond discounts and issue costs, and the result of this method is not materially different from the effective interest method. The company should classify what amount as the loss on extinguishment of debt at the time the bonds are called Select the correct answer.What was the effect of the founding of Constantinople?A. It divided the Roman Empire into the East and the West.B. It exhausted the military resources of the Roman Empire C. It challenged the authority of the Roman emperors.D. It boosted international trade for the Roman Empire. PLS HELP ME Given that the universal set. U = {X : 30 X 40. X is an even number}. P = {X : X is a multiple of 4} and Q = {X : X is a number such that the sum of its digits is an odd number}. find n(PQ') A. 1 B. 2 C. 3 D. None of the above Read the following sentence, and then select the group of words that consists of only nouns. His work in the 1930s consisted primarily of laboratory experiments in learning, using pigeons as subjects. A. work, primarily, laboratory, subjects B. his, work, experiments, learning C. his, the, consisted, pigeons D. work, experiments, pigeons, subjects A ________ pay plan pays for individual performance based on performance appraisal ratings. A) piece-rate B) merit-based C) employee stock ownership D) profit-sharing E) gainsharing The last group of elements on the periodic table are called _____. noble gases halogens metals noble solids which statement is true regarding the consequences of the Treaty of Guadalupe Hidalgo ? A) it ended the Mexican war of independenceB) it created the Transcontinental railroad through Texas C) it established Us control over in New Mexico Nevada and CaliforniaD) it solidified Mexican authority over Texas and the surrounding region what is the meaning of turtle any person who opens the door he applies Solve the following system of equations.2x + y = 3x = 2y-1ANSWER: ______plz help me what are women's rights ? mention them.