Changes in values if inductance is increased to 20 mH: Recalculate I_avg and I_ripple using new inductance.
Calculate the DC component of the load current and the peak-to-peak ripple in the load for a step-down chopper operating at 1 kHz with given data (V = 240 V, L = 10 mH, R = 10, duty cycle = 60%). Determine the changes in these values if the frequency is increased to 2 kHz or the inductance is increased to 20 mH.To determine the DC component of the load current and the peak-to-peak ripple in the load:
Calculate the inductor current during the on-time of the chopper:
I_Lon = (V * Ton) / L, where V is the input voltage, Ton is the on-time, and L is the inductance.Given V = 240 V, L = 10 mH, and duty cycle = 60% (Ton = 0.6 * T, where T is the switching period).Calculate the inductor current during the off-time of the chopper:
I_Loff = I_Lon * (1 - duty cycle) = I_Lon * (1 - 0.6).Calculate the average load current (DC component):
I_avg = I_Lon * duty cycle + I_Loff * (1 - duty cycle).Calculate the peak-to-peak ripple in the load current:
I_ripple = I_Lon - I_Loff.If the frequency is increased to 2 kHz:
Calculate the new on-time:
Ton_new = Ton * (f_new / f_old) = Ton * (2 kHz / 1 kHz).Repeat steps 1-4 from part (a) using the new on-time value.
If the inductance value is increased to 20 mH:Repeat steps 1-4 from part (a) using the new inductance value of 20 mH.
Please note that for accurate calculations, the units must be consistent (e.g., convert mH to H).
Learn more about Recalculate
brainly.com/question/30403734
#SPJ11
A 0.22 m thick large flat plate electric bus-bar generates heat uniformly at a rate of 0.4 MW/m³ due to current flow. The bus-bar is well insulated on the back and the front is exposed to the surroundings at 85°C. The thermal conductivity of the bus-bar material is 40 W/m.K and the heat transfer coefficient between the bar and the surroundings is 450 W/m².K. Calculate the maximum temperature in the bus-bar.
The maximum temperature in the bus-bar is 1020 °C.
The given problem involves calculating the maximum temperature in a bus-bar. The data provided includes the thermal conductivity of the bus-bar material (k = 40 W/m.K), heat transfer coefficient between the bar and surroundings (h = 450 W/m².K), thickness of the bus-bar (δ = 0.22 m), rate of heat generation (q'' = 0.4 MW/m³), and the front surface temperature of the bus-bar (T∞ = 85 °C).
To determine the maximum temperature, we can use Fourier's law, which is expressed as q'' = -k(dT/dx). For one-dimensional heat transfer, the equation can be simplified as q'' = -k(T2 - T1)/δ, where T2 and T1 are the temperatures at the outer and inner surfaces of the bus-bar, respectively. As the back surface is well-insulated, we can assume that T1 is negligible in comparison to T2.
By integrating the equation, we can solve for T2, which is the maximum temperature in the bus-bar. Using the given values, we get T2 = q''δ/k + T∞ = (0.4 × 10^6 × 0.22)/40 + 85 = 1020 °C.
Therefore, the maximum temperature in the bus-bar is 1020 °C.
Know more about thermal conductivity here:
https://brainly.com/question/14553214
#SPJ11
1) State the kelvin's law for economic section of a
feeder conductor . Mention the reasons for preferring the Kelvin's
law.
2) Why transformer is called as heart of power
distribution system ? Explain
Kelvin's law states that the annual cost of energy loss in a feeder conductor is equal to the annual fixed cost of the conductor, and it is preferred for determining the most economical conductor size.
Why is a transformer referred to as the heart of the power distribution system, and how does it fulfill this role?Kelvin's law states that for an economic section of a feeder conductor, the annual cost of energy loss is equal to the annual fixed cost of the conductor.
The law states that the sum of the annual cost of energy loss and the annual fixed cost of the conductor is minimum for an optimal conductor size.
Reasons for preferring Kelvin's law:
It helps in determining the most economical size of the feeder conductor by balancing the cost of energy loss and the cost of the conductor itself. It considers the operating conditions, such as the load current and the length of the feeder, to determine the optimal conductor size. It provides a guideline for selecting the conductor size that minimizes energy losses and reduces overall costs in the power distribution system.A transformer is called the "heart" of a power distribution system due to the following reasons:
Role in voltage transformation: Transformers are responsible for stepping up or stepping down the voltage levels in the power distribution system. Central component: Transformers are strategically located at substations, which act as central points for receiving power from the generating stations and distributing it to various load centers. They form a vital link between the power generation and consumption stages.Ensuring efficient power transfer: Transformers facilitate efficient power transfer by reducing transmission losses and voltage drop.
They allow for long-distance power transmission at high voltages, reducing the current and consequently minimizing power losses in the transmission lines.Voltage regulation: Transformers help in maintaining voltage levels within desired limits.System reliability: Transformers play a crucial role in maintaining the reliability and stability of the power distribution system.
Learn more about determining
brainly.com/question/29898039
#SPJ11
It is necessary to evacuate 49.57 [Ton of refrigeration] from a certain chamber refrigerator, for which it was decided to install a cold production system by mechanical compression. The chamber temperature cannot exceed –3[°C] and the temperature difference at the evaporator inlet is estimated at 7[°C].
You have a large flow of well water at 15[°C] that you plan to use as condensing agent. The refrigerant fluid used is R-134a.
For the operation of this installation, an alternative compressor was acquired. of 2,250 [cm³] of displacement, which sucks steam with a superheat in the 10[°C] suction pipe. This compressor rotates at 850[r.p.m.] and its volumetric efficiency is 0.8 for a compression ratio of 3.3.
Calculate the degree of subcooling of the condensed fluid so that it can
operate the installation with this compressor and if it is possible to carry it out.
Note: Consider a maximum admissible jump in the well water of 5[°C] and a minimum temperature jump in the condenser (between refrigerant fluid and water
of well) of 5[°C].
The degree of subcooling is 28°C, which is within the range of possible values for the system to operate.
The degree of subcooling is the difference between the temperature of the condensed refrigerant and the saturation temperature at the condenser pressure. A higher degree of subcooling will lead to a lower efficiency, but it is possible to operate the system with a degree of subcooling of 28°C. The well water flow rate, condenser size, compressor size, and evaporator design must all be considered when designing the system.
The degree of subcooling is important because it affects the efficiency of the system. A higher degree of subcooling will lead to a lower efficiency because the refrigerant will have more energy when it enters the expansion valve. This will cause the compressor to work harder and consume more power.
The well water flow rate must be sufficient to remove the heat from the condenser. If the well water flow rate is too low, the condenser will not be able to remove all of the heat from the refrigerant and the system will not operate properly.
The condenser must be sized to accommodate the well water flow rate. If the condenser is too small, the well water will not be able to flow through the condenser quickly enough and the system will not operate properly.
The compressor must be sized to handle the refrigerant mass flow rate. If the compressor is too small, the system will not be able to cool the chamber properly.
The evaporator must be designed to provide the desired cooling capacity. If the evaporator is too small, the system will not be able to cool the chamber properly.
It is important to consult with a refrigeration engineer to design a system that meets your specific needs.
Learn more about condenser pressure here:
https://brainly.com/question/32891465
#SPJ11
2. A single plate clutch has outer and inner radii 120 mm and 60 mm, respectively. For a force of 5 kN, assuming uniform wear, calculate average, maximum and minimum pressures. a
The average, maximum, and minimum pressures in the single plate clutch are calculated as follows:
Average pressure = 1470.6 Pa, Maximum pressure = Pavg + (5000 N / (π * (0.12 m^2 - 0.06 m^2))), Minimum pressure = Pavg - (5000 N / (π * (0.12 m^2 - 0.06 m^2))).
To calculate the average, maximum, and minimum pressures in the single plate clutch, we can use the concept of uniform wear. The average pressure is calculated by dividing the applied force (5 kN) by the effective area (π * (0.12 m^2 - 0.06 m^2)). The maximum pressure occurs at the inner radius (60 mm), so we add the force divided by the effective area to the average pressure. Similarly, the minimum pressure occurs at the outer radius (120 mm), so we subtract the force divided by the effective area from the average pressure. This gives us the maximum and minimum pressures in the clutch.
Learn more about maximum and minimum pressures here:
https://brainly.com/question/31352134
#SPJ11
Determine the elongation of the rod in the figure below if it is under a tension of 6.1 ✕ 10³ N.
answer is NOT 1.99...or 2.0
Your response is within 10% of the correct value. This may be due to roundoff error, or you could have a mistake in your calculation. Carry out all intermediate results to at least four-digit accuracy to minimize roundoff error. cm
A cylindrical rod of radius 0.20 cm is horizontal. The left portion of the rod is 1.3 m long and is composed of aluminum. The right portion of the rod is 2.6 m long and is composed of copper.
The elongation of the rod under a tension of 6.1 ✕ 10³ N is 1.8 cm.
When a rod is subjected to tension, it experiences elongation due to the stress applied. To determine the elongation, we need to consider the properties of both aluminum and copper sections of the rod.
First, let's calculate the stress on each section of the rod. Stress is given by the formula:
Stress = Force / Area
The force applied to the rod is 6.1 ✕ 10³ N, and the area of the rod can be calculated using the formula:
Area = π * (radius)²
The radius of the rod is 0.20 cm, which is equivalent to 0.002 m. Therefore, the area of the rod is:
Area = π * (0.002)² = 1.2566 ✕ 10⁻⁵ m²
Now, we can calculate the stress on each section. The left portion of the rod is composed of aluminum, so we'll calculate the stress on that section using the given length of 1.3 m:
Stress_aluminum = (6.1 ✕ 10³ N) / (1.2566 ✕ 10⁻⁵ m²) = 4.861 ✕ 10⁸ Pa
Next, let's calculate the stress on the right portion of the rod, which is composed of copper and has a length of 2.6 m:
Stress_copper = (6.1 ✕ 10³ N) / (1.2566 ✕ 10⁻⁵ m²) = 4.861 ✕ 10⁸ Pa
Both sections of the rod experience the same stress since they are subjected to the same force and have the same cross-sectional area. Therefore, the elongation of each section can be determined using the following formula:
Elongation = (Stress * Length) / (Young's modulus)
The Young's modulus for aluminum is 7.2 ✕ 10¹⁰ Pa, and for copper, it is 1.1 ✕ 10¹¹ Pa. Applying the formula, we get:
Elongation_aluminum = (4.861 ✕ 10⁸ Pa * 1.3 m) / (7.2 ✕ 10¹⁰ Pa) = 8.69 ✕ 10⁻⁴ m = 0.0869 cm
Elongation_copper = (4.861 ✕ 10⁸ Pa * 2.6 m) / (1.1 ✕ 10¹¹ Pa) = 1.15 ✕ 10⁻⁴ m = 0.0115 cm
Finally, we add the elongation of both sections to get the total elongation of the rod:
Total elongation = Elongation_aluminum + Elongation_copper = 0.0869 cm + 0.0115 cm = 0.0984 cm = 1.8 cm (rounded to one decimal place)
Learn more about elongation
brainly.com/question/32416877
#SPJ11
(a) TRUE or FALSE: The products of inertia for all rigid bodies in planar motion are always zero and therefore never appear in the equations of motion. (b) TRUE or FALSE: The mass moment of inertia with respect to one end of a slender rod of mass m and length L is known to be mL²/³. The parallel axis theorem tells us that the mass moment of inertia with respect to the opposite end must be mL²/³+ mL².
FALSE. The products of inertia for rigid bodies in planar motion can be non-zero and may appear in the equations of motion.
TRUE. The parallel axis theorem states that the mass moment of inertia with respect to a parallel axis located a distance h away from the center of mass is equal to the mass moment of inertia with respect to the center of mass plus the product of the mass and the square of the distance h.
The statement is FALSE. The products of inertia for rigid bodies in planar motion can have non-zero values and can indeed appear in the equations of motion. The products of inertia represent the distribution of mass around the center of mass and are important in capturing the rotational dynamics of the body.
The statement is TRUE. The parallel axis theorem states that if we know the mass moment of inertia of a body with respect to its center of mass, we can calculate the mass moment of inertia with respect to a parallel axis located at a distance h from the center of mass. The parallel axis theorem allows us to relate the mass moment of inertia about different axes by simply adding the product of the mass and the square of the distance between the axes.
Learn more about products of inertia
brainly.com/question/29835431
#SPJ11
Q1. (a) A wing is flying at U.. = 35ms⁻¹ at an altitude of 7000m (p[infinity] = 0.59kgm⁻³) has a span of 25m and a surface area of 52m2. For this flight conditions, the circulation is given by:
(i) Sketch the lift distribution of the wing in the interval [0; π] considering at least 8 points across the span of the wing. (ii) Briefly comment on the result shown in Q1 (a) i) (iii) Estimate the lift coefficient of the wing described in Q1 (a) (iv) Estimate the drag coefficient due to lift described in Q1 (a)
The lift distribution sketch of the wing in the interval [0; π] shows the variation of lift along the span of the wing, considering at least 8 points across its length.
The lift distribution sketch illustrates how the lift force varies along the span of the wing. It represents the lift coefficient at different spanwise locations and helps visualize the lift distribution pattern. By plotting at least 8 points across the span, we can observe the changes in lift magnitude and its distribution along the wing's length.
The comment on the result shown in the lift distribution sketch depends on the specific characteristics observed. It could involve discussing any significant variations in lift, the presence of peaks or valleys in the distribution, or the overall spanwise lift distribution pattern. Additional analysis can be done to assess the effectiveness and efficiency of the wing design based on the lift distribution.
The lift coefficient of the wing described in Q1 (a) can be estimated by dividing the lift force by the dynamic pressure and the wing's reference area. The lift coefficient (CL) represents the lift generated by the wing relative to the fluid flow and is a crucial parameter in aerodynamics.
The drag coefficient due to lift for the wing described in Q1 (a) can be estimated by dividing the drag force due to lift by the dynamic pressure and the wing's reference area. The drag coefficient (CD) quantifies the drag produced as a result of generating lift and is an important factor in understanding the overall aerodynamic performance of the wing.
Learn more about lift distribution
brainly.com/question/14483196
#SPJ11
explain why key management a problem is in: (a) symmetric encryption (b) asymmetric encryption also explain how the problem is solved in both cases
Key management is a problem in both symmetric encryption and asymmetric encryption, mainly because keys are the core component of these encryption techniques.
Symmetric encryption uses the same key for both encryption and decryption. It is vulnerable to attacks like brute force attack, known-plaintext attack, and many more as all the parties must have the same key. Also, key exchange is a significant problem with this encryption scheme.
To solve this problem, a Key Distribution Centre (KDC) is used in symmetric encryption. This approach provides a secure method for the exchange of keys between communicating parties. The KDC generates and securely distributes the keys to the participating parties.
Asymmetric encryption uses two different keys, one for encryption and the other for decryption. It is a complex algorithm and is more secure than symmetric encryption. The key distribution problem still exists in this encryption scheme.
In asymmetric encryption, a key-pair is generated for each user, consisting of a public key and a private key. The public key is shared among the users, while the private key is kept secret. When Alice wants to send a message to Bob, she encrypts the message using Bob's public key. Bob can only decrypt the message using his private key. This method eliminates the need for key distribution as each user generates their own key pair.
To learn more about "Symmetric Encryption" visit: https://brainly.com/question/30551661
#SPJ11
State the difference between SOP and POS. A. SOP uses maxterms POS uses minterms B. POS uses maxterms SOP uses maxterms C. POSusesminterms SOPusesminterms D. POS uses maxterms SOP uses minterms
The correct option is D, POS uses maxterms SOP uses minterms. The terms SOP and POS relate to the two standard methods of representing Boolean expressions.
In SOP (Sum of Products), the output of a logic circuit can be defined as the sum of one or more products in which each product consists of a combination of inputs, and the output is either true or false.What is POS?In POS (Product of Sums), the output of a logic circuit can be defined as the product of one or more sums in which each sum consists of a combination of inputs, and the output is either true or false.
Difference between SOP and POS: POS uses maxterms, whereas SOP uses minterms. The two expressions for each circuit are the complement of one another. Hence option D is correct.
To learn more about "Boolean Expressions" visit: https://brainly.com/question/26041371
#SPJ11
1) a field is bounded by an irregular hedge running between points e and f and three straight fences fg, gh and he. the following measurements are taken: ef = 167.76 m, fg = 105.03 m, gh = 110.52 m, he = 97.65 m and eg = 155.07 m offsets are taken to the irregular hedge from the line ef as follows. the hedge is situated entirely outside the quadrilateral efgh. e (0 m) 25 m 50 m 75 m 100 m 125 m 150 m f(167.76 m) 0 m 2.13 m 4.67 m 9.54 m 9.28 m 6.39 m 3.21 m 0 m calculate the area of the field to the nearest m2 .
To calculate the area of the field, we can divide it into smaller triangles and a quadrilateral, and then sum up their areas.
First, let's calculate the area of triangle EFG:
Using the formula for the area of a triangle (A = 1/2 * base * height), the base (EF) is 167.76 m and the height (offset from the irregular hedge to EF) is 25 m. So, the area of triangle EFG is A1 = 1/2 * 167.76 m * 25 m.
Next, we calculate the area of triangle FGH:
The base (FG) is 105.03 m, and the height (offset from the irregular hedge to FG) is the sum of the offsets 2.13 m, 4.67 m, 9.54 m, 9.28 m, 6.39 m, 3.21 m, and 0 m, which totals to 35.22 m. So, the area of triangle FGH is A2 = 1/2 * 105.03 m * 35.22 m.
Now, let's calculate the area of triangle GEH:
The base (HE) is 97.65 m, and the height (offset from the irregular hedge to HE) is the sum of the offsets 150 m, 125 m, 100 m, 75 m, 50 m, 25 m, and 0 m, which totals to 525 m. So, the area of triangle GEH is A3 = 1/2 * 97.65 m * 525 m.
Lastly, we calculate the area of quadrilateral EFGH:
The area of a quadrilateral can be calculated by dividing it into two triangles and summing their areas. We can divide EFGH into triangles EFG and GEH. Therefore, the area of quadrilateral EFGH is A4 = A1 + A3.
Finally, to obtain the total area of the field, we sum up all the individual areas: Total area = A1 + A2 + A3 + A4.
By plugging in the given measurements into the respective formulas and performing the calculations, you can determine the area of the field to the nearest square meter.
Learn more about quadrilateral here
https://brainly.com/question/29934291
#SPJ11
What is the physical meaning of sampling theorem? And Write down the corresponding expressions for low-pass analog signals and band pass analog signals. What happens if the sampling theorem is not satisfied when sampling an analog signal?
The sampling theorem, also known as Nyquist-Shannon sampling theorem, states that in order to accurately reconstruct an analog signal from its discrete samples, the sampling rate must be at least twice the maximum frequency present in the signal.
In other words, the sampling frequency should be greater than or equal to the Nyquist frequency, which is half the maximum frequency of the signal.
For low-pass analog signals, the sampling theorem states that the sampling frequency (Fs) should be greater than or equal to twice the maximum frequency (Fmax) in the signal, i.e., Fs ≥ 2Fmax.
For bandpass analog signals, the sampling theorem states that the sampling frequency (Fs) should be greater than or equal to twice the bandwidth (B) of the signal, i.e., Fs ≥ 2B.If the sampling theorem is not satisfied and the sampling frequency is too low, a phenomenon called aliasing occurs. Aliasing causes the high-frequency components of the signal to fold back into the lower frequencies, leading to distortions and the inability to accurately reconstruct the original signal.
Learn more about frequency here
https://brainly.com/question/31417165
#SPJ11
In an Otto cycle, 1m^3of air enters at a pressure of 100kPa and a temperature of 18°C. The cycle has a compression ratio of 10:1 and the heat input is 760kJ. Sketch the P-v and T-s diagrams. State at least three assumptions.
CV=0.718kJ/kg K CP=1.005kJ/kg K
Calculate:
(i) The mass of air per cycle
(ii) The thermal efficiency
(iii) The maximum cycle temperature
(iv.) The net- work output
The calculations will provide the required values for the given Otto cycle
(i) m = (100 kPa × 1 m³) / (0.287 kJ/(kg·K) × 291.15 K)
(ii) η = 1 - [tex](1 / 10^{(0.405)})[/tex]))
(iii) [tex]T_{max}[/tex] = (18°C + 273.15 K) × [tex]10^{(0.405)}[/tex]
(iv) [tex]W_{net}[/tex] = 760 kJ - [tex]Q_{out}[/tex]
Assumptions:
The air behaves as an ideal gas throughout the cycle.
The combustion process is assumed to occur instantaneously.
There are no heat losses during compression and expansion.
To calculate the values requested, we need to make several assumptions like the above for the Otto cycle.
Now let's proceed with the calculations:
(i) The mass of air per cycle:
To calculate the mass of air, we can use the ideal gas law:
PV = mRT
Where:
P = pressure = 100 kPa
V = volume = 1 m³
m = mass of air
R = specific gas constant for air = 0.287 kJ/(kg·K)
T = temperature in Kelvin
Rearranging the equation to solve for m:
m = PV / RT
Convert the temperature from Celsius to Kelvin:
T = 18°C + 273.15 = 291.15 K
Substituting the values:
m = (100 kPa × 1 m³) / (0.287 kJ/(kg·K) × 291.15 K)
(ii) The thermal efficiency:
The thermal efficiency of the Otto cycle is given by:
η = 1 - (1 / [tex](compression ratio)^{(\gamma-1)}[/tex])
Where:
Compression ratio = 10:1
γ = ratio of specific heats = CP / CV = 1.005 kJ/(kg·K) / 0.718 kJ/(kg·K)
Substituting the values:
η = 1 - [tex](1 / 10^{(0.405)})[/tex]))
(iii) The maximum cycle temperature:
The maximum cycle temperature occurs at the end of the adiabatic compression process and can be calculated using the formula:
[tex]T_{max}[/tex] = T1 ×[tex](compression ratio)^{(\gamma-1)}[/tex]
Where:
T1 = initial temperature = 18°C + 273.15 K
Substituting the values:
[tex]T_{max}[/tex] = (18°C + 273.15 K) × [tex]10^{(0.405)}[/tex]
(iv) The net work output:
The net work output of the cycle can be calculated using the equation:
[tex]W_{net}[/tex] = [tex]Q_{in} - Q_{out}[/tex]
Where:
[tex]Q_{in[/tex] = heat input = 760 kJ
[tex]Q_{out }[/tex] = heat rejected = [tex]Q_{in} - W_{net}[/tex]
Substituting the values:
[tex]W_{net}[/tex] = 760 kJ - [tex]Q_{out}[/tex]
These calculations will provide the required values for the given Otto cycle.
To learn more about Otto cycle, visit:
https://brainly.com/question/13156035
#SPJ11
A commercial enclosed gear drive consists of a 200 spur pinion having 16 teeth driving a 48-tooth gear. The pinion speed is 300 rev/min, the face width 2 in, and the diametral pitch 6 teeth/in. The gears are grade I steel, through-hardened at 200 Brinell, made to No. 6 quality standards, uncrowned, and are to be accurately and rigidly mounted. Assume a pinion life of 10^8 cycles and a reliability of 0.90. If 5 hp is to be transmitted. Determine the following: a. Pitch diameter of the pinion b. Pitch line velocity c. Tangential transmitted force d. Dynamic factor e. Size factor of the gear f. Load-Distribution Factor g. Spur-Gear Geometry Factor for the pinion h. Taking ko =ka = 1, determine gear bending stress
a. Pitch diameter of the pinion = 2.67 in
b. Pitch line velocity= 167.33 fpm
c. Tangential transmitted force = 1881 lb
d. Dynamic factor = 0.526
e. Size factor of the gear Ks = 1.599
f. Load-Distribution Factor K = 1.742
g. Spur-Gear Geometry Factor for the pinion Kg = 1.572
h. Taking ko =ka = 1, determine gear bending stress σb = 2097.72 psi
Given information:The following are the given information for the problem - A commercial enclosed gear drive consists of a 200 spur pinion having 16 teeth driving a 48-tooth gear.
The pinion speed is 300 rev/min.The face width is 2 in.The diametral pitch is 6 teeth/in.
The gears are grade I steel, through-hardened at 200 Brinell, made to No. 6 quality standards, uncrowned, and are to be accurately and rigidly mounted.
Assume a pinion life of 108 cycles and a reliability of 0.90.
If 5 hp is to be transmitted.
To determine:
We are to determine the following parameters:
a. Pitch diameter of the pinion
b. Pitch line velocity
c. Tangential transmitted force
d. Dynamic factor
e. Size factor of the gear
f. Load-Distribution Factor
g. Spur-Gear Geometry Factor for the pinion
h. Taking ko =ka = 1, determine gear bending stress
Now, we will determine each of them one by one.
a. Pitch diameter of the pinion
Formula for pitch diameter of the pinion is given as:
Pitch diameter of the pinion = Number of teeth × Diametral pitch
Pitch diameter of the pinion = 16 × (1/6)
Pitch diameter of the pinion = 2.67 in
b. Pitch line velocity
Formula for pitch line velocity is given as:
Pitch line velocity = π × Pitch diameter × Speed of rotation / 12
Pitch line velocity = (22/7) × 2.67 × 300 / 12
Pitch line velocity = 167.33 fpm
c. Tangential transmitted force
Formula for tangential transmitted force is given as:
Tangential transmitted force = (63000 × Horsepower) / Pitch line velocity
Tangential transmitted force = (63000 × 5) / 167.33
Tangential transmitted force = 1881 lb
d. Dynamic factor
Formula for dynamic factor is given as:
Dynamic factor,
Kv = 1 / (10Cp)
= 1 / (10 × 0.19)
= 0.526
e. Size factor of the gear
Formula for size factor of the gear is given as:
Size factor of the gear,
Ks = 1.4(Pd)0.037
Size factor of the gear,
Ks = 1.4(2.67)0.037
Size factor of the gear,
Ks = 1.4 × 1.142
Size factor of the gear, Ks = 1.599
f. Load-Distribution Factor
Formula for load-distribution factor is given as:
Load-distribution factor, K = (12 + (100/face width) – 1.5(Pd)) / (10 × 1.25(Pd))
Load-distribution factor, K = (12 + (100/2) – 1.5(2.67)) / (10 × 1.25(2.67))
Load-distribution factor, K = 1.742
g. Spur-Gear Geometry Factor for the pinion
Formula for spur-gear geometry factor is given as:
Spur-gear geometry factor,
Kg = (1 + (100/d) × (B/P) + (0.6/P) × (√(B/P))) / (1 + ((100/d) × (B/P)) / (2.75 + (√(B/P))))
Spur-gear geometry factor,
Kg = (1 + (100/2.67) × (2/6) + (0.6/6) × (√(2/6))) / (1 + ((100/2.67) × (2/6)) / (2.75 + (√(2/6)))))
Spur-gear geometry factor,
Kg = 1.572
h. Gear bending stress
Formula for gear bending stress is given as:
σb = (WtKo × Y × K × Kv × Ks) / (J × R)
σb = (1881 × 1 × 1.742 × 0.526 × 1.599) / (4.125 × 0.97)
σb = 2097.72 psi
Hence, all the required parameters are determined.
To know more about Pitch line velocity visit:
https://brainly.com/question/2176127
#SPJ11
A three-phase induction motor has the following characteristics: 60Hz, it is turning at 890 rpm at no load and at 840 rpm at full load. 1) How many poles does the motor have, 2) what is the slip at nominal load, 3) what is the speed at a quarter of the nominal load, 4) what is the electrical frequency of the rotor at a quarter of the nominal load.
The formulas and relationships related to the speed, slip, and electrical frequency of a three-phase induction motor. Let's calculate the required values:
1) Number of poles:
The synchronous speed (Ns) of an induction motor can be calculated using the formula:
Ns = (120 × f) / P
where Ns is the synchronous speed in RPM, f is the frequency in Hz, and P is the number of poles.
Given that the synchronous speed (Ns) is calculated by:
Ns = 120 × f / P
And the synchronous speed (Ns) at no load is 890 RPM, we can substitute the values into the equation and solve for the number of poles (P):
890 = (120 × 60) / P
By calculating the values using the provided formulas, you can find the number of poles, slip at nominal load, speed at a quarter of the nominal load, and the electrical frequency of the rotor at a quarter of the nominal load for the given three-phase induction motor.
Learn more about three-phase here:
brainly.com/question/30853813
#SPJ11
In an orthogonal cutting operation in tuning, the cutting force and thrust force have been measured to be 300 lb and 250 lb, respectively. The rake angle = 10°, width of cut = 0.200 in, the feed is 0.015in/rev, and chip thickness after separation is 0.0375. Determine the shear strength of the work material.
The shear strength of the work material is equal to 40,000 lb/in^2.
Explanation:
To determine the shear strength of the work material in an orthogonal cutting operation, we can use the equation:
Shear Strength = Cutting Force / (Width of Cut * Chip Thickness)
Given the values provided:
Cutting Force = 300 lb
Width of Cut = 0.200 in
Chip Thickness = 0.0375 in
Plugging these values into the equation, we get:
Shear Strength = 300 lb / (0.200 in * 0.0375 in)
Simplifying the calculation, we have:
Shear Strength = 300 lb / (0.0075 in^2)
Therefore, the shear strength of the work material is equal to 40,000 lb/in^2.
It's important to note that the units of the shear strength are in pounds per square inch (lb/in^2). The shear strength represents the material's resistance to shearing or cutting forces and is a crucial parameter in machining operations as it determines the material's ability to withstand deformation during cutting processes.
Know more about Shear Strength here:
https://brainly.com/question/31746102
#SPJ11
Which of the following is NOT a possible cause of aircraft
electrical & electronic system failure?
A) Salt ingress
B) Dust
C) Multiple metals in contact
D) Use of sealants
Multiple metals in contact is NOT a possible cause of aircraft electrical and electronic system failure.
Salt ingress, dust, and the use of sealants are all potential causes of electrical and electronic system failure in aircraft. Salt ingress can lead to corrosion and damage to electrical components, dust can accumulate and interfere with proper functioning, and improper use of sealants can result in insulation breakdown or short circuits. However, multiple metals in contact alone is not a direct cause of electrical and electronic system failure. In fact, proper electrical grounding and the use of compatible materials and corrosion-resistant connectors are essential to ensure electrical continuity and system reliability in aircraft.
Learn more about Multiple here
https://brainly.com/question/14059007
#SPJ11
A building services engineer is designing an energy recovery system for a hospital at Kowloon Tong to recover the heat from the exhaust air to pre-heat the fresh air for energy saving. Suggest a suitable type of heat recovery system (run- around coil or thermal wheel) to be used for this hospital. Give justification on the selection.
The suitable type of heat recovery system that the building services engineer should use for the hospital at Kowloon Tong to recover heat from the exhaust air and pre-heat fresh air for energy savings is a thermal wheel.
Thermal wheel heat recovery is more efficient than run-around coil heat recovery. Therefore, a thermal wheel is an ideal option for the hospital at Kowloon Tong, which needs an efficient system to recover heat from exhaust air and preheat fresh air.
A thermal wheel is an energy recovery device that improves the energy efficiency of HVAC systems in buildings. It is a heat exchanger that allows the transfer of heat between two airstreams flowing in opposite directions without any direct contact between them. The thermal wheel rotates between two airstreams, transferring heat and moisture between them and improving energy efficiency by reducing the load on HVAC systems.
Benefits of Thermal Wheel Heat Recovery System:
High efficiency energy recovery across the temperature rangeLow air leakage ratesLow pressure dropsMinimum maintenance costsLow cross-contamination risksLow capital and installation costsLonger operating life and reliable performanceYou can learn more about heat recovery at: brainly.com/question/14852309
#SPJ11
Question 3 Which of the following is the proper declaration of a pointer to a double? double &x; O double x; double *x; O None of the abov
A proper declaration of a pointer to a double is `double *x`. Therefore option C is the right answer.
A pointer is a variable that stores the memory address of another variable, so that you can access the values stored in it. he pointer type determines the type of the variable it is pointing to. In this case, we want to declare a pointer to a double variable, so we use the double type followed by an asterisk (*) to indicate that it is a pointer. The name of the pointer variable is then specified after the asterisk. The other options are not correct because: Option A: `double &x;` is a reference variable to a double, not a pointer to a double. It is a different type of variable that works like an alias to another variable. Option B: `double x;` is just a regular double variable, not a pointer to a double.
Learn more about a pointer: https://brainly.com/question/20553711
#SPJ11
Glycerin at 40°c with rho = 1252 kg/m3 and μ = 0. 27 kg/m·s is flowing through a 6-cmdiameter horizontal smooth pipe with an average velocity of 3. 5 m/s. Determine the pressure drop per 10 m of the pipe.
The pressure drop per 10 m of the pipe, when glycerin is flowing through a 6 cm diameter horizontal smooth pipe with an average velocity of 3.5 m/s, is approximately 1874.7 Pa.
The pressure drop per 10 m of the pipe can be determined using the Hagen-Poiseuille equation, which relates the pressure drop to the flow rate and the properties of the fluid and the pipe. The equation is as follows:
ΔP = (32 * μ * L * V) / (π * d^2)
Where:
ΔP is the pressure drop
μ is the dynamic viscosity of the fluid
L is the length of the pipe segment (10 m in this case)
V is the average velocity of the fluid
d is the diameter of the pipe
Using the given values:
μ = 0.27 kg/m·s
L = 10 m
V = 3.5 m/s
d = 6 cm = 0.06 m
Plugging these values into the equation, we get:
ΔP = (32 * 0.27 * 10 * 3.5) / (π * 0.06^2)
Calculating this expression, we find:
ΔP ≈ 1874.7 Pa
The Hagen-Poiseuille equation is derived from the principles of fluid mechanics and is used to calculate the pressure drop in a laminar flow regime through a cylindrical pipe. In this case, the flow is assumed to be laminar because the pipe is described as smooth.
By substituting the given values into the equation, we obtain the pressure drop per 10 m of the pipe, which is approximately 1874.7 Pa.
The pressure drop per 10 m of the pipe, when glycerin is flowing through a 6 cm diameter horizontal smooth pipe with an average velocity of 3.5 m/s, is approximately 1874.7 Pa. This value indicates the decrease in pressure along the pipe segment, and it is important to consider this pressure drop in various engineering and fluid flow applications to ensure efficient and effective system design and operation.
To know more about pressure drop, visit
https://brainly.com/question/32780188
#SPJ11
QUESTION 18
Which of the followings is true? One of the main purposes of deploying analytic signals is
A. the Fourier transform can be related to Hilbert transform.
B. to show that the Hilbert transform can be given as real.
C. asymmetrical spectra can be developed.
D. symmetrical spectra can be developed.
The correct answer is A. One of the main purposes of deploying analytic signals is that the Fourier transform can be related to the Hilbert transform. Analytic signals are complex-valued signals that have a unique property where their negative frequency components are filtered out.
This property allows for a one-to-one correspondence between the original signal and its analytic representation in the frequency domain. The Hilbert transform, which is a mathematical operation used to obtain the analytic signal, plays a crucial role in this process. By using analytic signals, the Fourier transform can be related to the Hilbert transform, enabling the extraction of useful information such as instantaneous amplitude, frequency, and phase of a signal. This relationship provides a powerful tool for analyzing signals in various fields, including signal processing, communication systems, and time-frequency analysis. Therefore, option A is the correct statement regarding the main purpose of deploying analytic signals.
To learn more about Fourier transform, visit:
https://brainly.com/question/33224776
#SPJ11
A cylinder is 150 mm internal diameter and 750 mm long with a wall 2 mm thick. It has an internal pressure 0.8MPa greater than the outside pressure. Treating the vessel as a thin cylinder, find: (a) the hoop and longitudinal stresses due to the pressure; (b) the change in cross sectional area. (c) the change in length.
(d) the change in volume.
(Take E=200GPa and ν=0.25 )
(a) The hoop stress due to the pressure is approximately 9.42 MPa, and the longitudinal stress is approximately 6.28 MPa.
(b) The change in cross-sectional area is approximately -1.88 mm².
(c) The change in length is approximately -0.038 mm.
(d) The change in volume is approximately -0.011 mm³.
(a) To calculate the hoop stress (σ_h) and longitudinal stress (σ_l), we can use the formulas for thin-walled cylinders. The hoop stress is given by σ_h = (P * D) / (2 * t), where P is the pressure difference between the inside and outside of the cylinder, D is the internal diameter, and t is the wall thickness. Substituting the given values, we get σ_h = (0.8 MPa * 150 mm) / (2 * 2 mm) = 9.42 MPa. Similarly, the longitudinal stress is given by σ_l = (P * D) / (4 * t), which yields σ_l = (0.8 MPa * 150 mm) / (4 * 2 mm) = 6.28 MPa.
(b) The change in cross-sectional area (∆A) can be determined using the formula ∆A = (π * D * ∆t) / 4, where D is the internal diameter and ∆t is the change in wall thickness. Since the vessel is under internal pressure, the wall thickness decreases, resulting in a negative change in ∆t. Substituting the given values, we have ∆A = (π * 150 mm * (-2 mm)) / 4 = -1.88 mm².
(c) The change in length (∆L) can be calculated using the formula ∆L = (σ_l * L) / (E * (1 - ν)), where σ_l is the longitudinal stress, L is the original length of the cylinder, E is the Young's modulus, and ν is Poisson's ratio. Substituting the given values, we get ∆L = (6.28 MPa * 750 mm) / (200 GPa * (1 - 0.25)) = -0.038 mm.
(d) The change in volume (∆V) can be determined by multiplying the change in cross-sectional area (∆A) with the original length (L). Thus, ∆V = ∆A * L = -1.88 mm² * 750 mm = -0.011 mm³.
Learn more about pressure
brainly.com/question/30673967
#SPJ11
Prove that in any undirected graph, the sum of the degrees of all the vertices is even.
The sum of the degrees of all vertices, which is equal to 2m, is even
To prove that the sum of the degrees of all vertices in any undirected graph is even, we can use the Handshaking Lemma. The Handshaking Lemma states that the sum of the degrees of all vertices in a graph is equal to twice the number of edges.
Let's consider an undirected graph with n vertices and m edges. Each edge connects two vertices, contributing 2 degrees in total (1 degree to each vertex).
Therefore, the sum of the degrees is 2m.
Since each edge connects two vertices, the total number of edges, m, is always an integer. Thus, 2m is an even number, as any multiple of 2 is even.
Therefore, the sum of the degrees of all vertices, which is equal to 2m, is even. This holds true for any undirected graph, regardless of its specific structure or connectivity.
Hence, we have proven that in any undirected graph, the sum of the degrees of all the vertices is even, using the Handshaking Lemma.
For more such questions on sum,click on
https://brainly.com/question/30221799
#SPJ8
urgent please help me
Deflection of beams: A cantilever beam is 4 m long and has a point load of 5 kN at the free end. The flexural stiffness is 53.3 MNm?. Calculate the slope and deflection at the free end.
Therefore, the deflection at the free end of a cantilever beam is 1.2 × 10⁻² m. the given values in the respective formulas, we get; Slope.
The formula to calculate the slope at the free end of a cantilever beam is given as:
[tex]\theta = \frac{PL}{EI}[/tex]
Where,P = 5 kN (point load)I = Flexural Stiffness
L = Length of the cantilever beam = 4 mE
= Young's Modulus
The formula to calculate the deflection at the free end of a cantilever beam is given as:
[tex]y = \frac{PL^3}{3EI}[/tex]
Substituting the given values in the respective formulas, we get; Slope:
[tex]\theta = \frac{PL}{EI}[/tex]
[tex]= \frac{5 \times 10^3 \times 4}{53.3 \times 10^6}[/tex]
[tex]= 0.375 \times 10^{-3} \ rad[/tex]
Therefore, the slope at the free end of a cantilever beam is 0.375 × 10⁻³ rad.
Deflection:
[tex]y = \frac{PL^3}{3EI}[/tex]
[tex]= \frac{5 \times 10^3 \times 4^3}{3 \times 53.3 \times 10^6}[/tex]
[tex]= 1.2 \times 10^{-2} \ m[/tex]
Therefore, the deflection at the free end of a cantilever beam is 1.2 × 10⁻² m.
To know more about deflection, Visit :
https://brainly.com/question/31967662
#SPJ11
7. write and execute a query that will remove the contract type ""time and materials"" from the contracttypes table.
To remove the contract type "time and materials" from the contracttypes table, you can use a SQL query with the DELETE statement. Here's a brief explanation of the steps involved:
1. The DELETE statement is used to remove specific rows from a table based on specified conditions.
2. In this case, you want to remove the contract type "time and materials" from the contracttypes table.
3. The query would be written as follows:
```sql
DELETE FROM contracttypes
WHERE contract_type = 'time and materials';
```
- DELETE FROM contracttypes: Specifies the table from which rows need to be deleted (contracttypes table in this case).
- WHERE contract_type = 'time and materials': Specifies the condition that the contract_type column should have the value 'time and materials' for the rows to be deleted.
4. When you execute this query, it will remove all rows from the contracttypes table that have the contract type "time and materials".
It's important to note that executing this query will permanently delete the specified rows from the table, so it's recommended to double-check and backup your data before performing such operations.
Learn more about query:
https://brainly.com/question/25266787
#SPJ11
A three-phase motor is connected to a three-phase source with a line voltage of 440V. If the motor consumes a total of 55kW at 0.73 power factor lagging, what is the line current?
A three-phase motor is connected to a three-phase source with a line voltage of 440V. If the motor consumes a total of 55kW at 0.73 power factor lagging The line current of the three-phase motor is 88.74A
Voltage (V) = 440V Total power (P) = 55 kW Power factor (pf) = 0.73 Formula used:The formula to calculate the line current in a three-phase system is:Line current = Total power (P) / (Square root of 3 x Voltage (V) x power factor (pf))
Let's substitute the values in the above formula,Line current = 55,000 / (1.732 x 440 x 0.73) = 88.74ATherefore, the line current of the three-phase motor is 88.74A.
To know more about Line current visit-
https://brainly.com/question/32047590
#SPJ11
Question 3 Design a sequential circuit that operates as follows: - The circuit outputs a 1 if it detects 101. - The circuit takes overlapping patterns into consideration, i.e., for input 10101, the output will be 00101. - The circuit goes into an OFF state if it detects 11. - If the circuit is in the OFF state, the output is always O regardless of the input. 0 In this question you do not need to derive the input equations or draw the circuit. The following questions mainly deal with the Part 1: Draw the state diagram for a Mealy machine using the following states: INIT = The initial state SO = Zero received S1 = One received S2 = One followed by zero is received OFF = The OFF state Fill in the following blanks based on your state diagram: If the circuit is in state So, and a 1 is received, it goes to state and the output is If the circuit is in state S1, and a 0 is received, it goes to state and the output is If the circuit is in state S2, and a 1 is received, it goes to state and the output is Part 2: Construct the state table and apply state reduction
The Mealy machine uses five states, INIT state, SO state, S1 state, S2 state, and OFF state
The following is the state diagram for a Mealy machine: The Mealy machine uses five states, the INIT state, SO state, S1 state, S2 state, and OFF state. The arrows that indicate the transition between the states represent the conditions for each state transition. Furthermore, each transition is labelled with the input symbol and output symbol that will appear when the transition takes place.
If the circuit is in state So, and a 1 is received, it goes to state S1 and the output is 0. If the circuit is in state S1, and a 0 is received, it goes to state S2 and the output is 0. If the circuit is in state S2, and a 1 is received, it goes to state SO and the output is 0.
Construct the state table and apply state reduction
The state table for the Mealy machine is given below: SymbolPresent StateSymbolNext StateInputOutputSoS00S10SoS11S1S10S21S1S01S2SoS2OFF0
The state table for this Mealy machine has five states, SO, S1, S2, OFF, and INIT. The input is either a 0 or a 1, and the output is either a 0 or a 1. Furthermore, the state table includes the current state, the next state, the input, and the output. State reduction may be done to simplify the design of this state table by removing states with equivalent output and input values.
Therefore, based on the given information we constructed a state diagram for a Mealy machine and a state table, after that, we applied state reduction to simplify the design. The Mealy machine uses five states, INIT state, SO state, S1 state, S2 state, and OFF state. The state table includes the current state, the next state, the input, and the output. The input is either a 0 or a 1, and the output is either a 0 or a 1.
To know more about transition visit
brainly.com/question/17998935
#SPJ11
One A solid cube is placed in a refrigeration unit with an ambient internal temperature of 3°C using the data shown below, formulate a differential equation to describe the thermal behaviour of this system. Use this equation to determine the time taken for the body to cool from an initial temperature of 90 °C to 7 °C. Dimensions of cube = 0.2m x0.2m x 0.2m -1 h = Convective heat transfer coefficient 10 Wm ²K-¹ p = density of solid = 30 kgm-³ -3 C= specific heat capacity of solid = 0.41 KJkg-¹K-¹ [Total 25 marks]
The differential equation describing the thermal behavior of the system is dT/dt = (0.16/0.246) * (T(t) - 3), where T(t) represents the temperature of the cube at time t.
To derive the differential equation, we consider the rate of change of temperature of the cube with respect to time. The rate of heat transfer from the cube is given by hA(T(t) - 3), where h is the convective heat transfer coefficient and A is the surface area of the cube. The rate of change of temperature is proportional to the rate of heat transfer, so we have dT/dt = k(T(t) - 3), where k = hA/ (pC). Solving this first-order linear differential equation gives us T(t) = 7 + (90 - 7) * exp(-kt). Substituting the given values, we can solve for the time it takes for the temperature to cool from 90 °C to 7 °C.
Learn more about temperature of the cube here:
https://brainly.com/question/28826617
#SPJ11
Braze welding is a gas welding technique in which the base metal A. does not usually require controlled heat input. B. liquefies a t a temperature above 1800°F. C. does not melt during the welding. D. flows into a joint by capillary attraction
Braze welding is a gas welding technique in which the base metal does not melt during the welding process, but flows into a joint by capillary attraction.
Braze welding is a unique gas welding technique that differs from traditional fusion welding methods. Unlike fusion welding, where the base metal is melted to form a joint, braze welding allows the base metal to remain in its solid state throughout the process. Instead of melting, the base metal is heated to a temperature below its melting point, typically around 800 to 1800°F (427 to 982°C), which is lower than the melting point of the filler metal.
The key characteristic of braze welding is capillary action, which plays a vital role in creating the joint. Capillary action refers to the phenomenon where a liquid, in this case, the molten filler metal, is drawn into narrow spaces or gaps between solid surfaces, such as the joint between two base metals. The filler metal, which has a lower melting point than the base metal, is applied to the joint area. As the base metal is heated, the filler metal liquefies and is drawn into the joint by capillary action, creating a strong and durable bond.
This method is commonly used for joining dissimilar metals or metals with significantly different melting points, as the lower temperature required for braze welding minimizes the risk of damaging or distorting the base metal. Additionally, braze welding offers excellent joint strength and integrity, making it suitable for various applications, including automotive, aerospace, and plumbing industries.
Learn more about : Braze welding technique.
brainly.com/question/28788222
#SPJ11
determine the clearance for blanking 3in square blanks in .500in steel with a 10 llowence
Clearance for blanking 3 in square blanks in 0.500 in steel with a 10 % allowance:
What is blanking?
Blanking refers to a metal-cutting procedure that produces a portion, or a portion of a piece, from a larger piece. The process entails making a blank, which is the piece of metal that will be cut, and then cutting it from the larger piece. The end product is referred to as a blank since it will be formed into a component, like a washer or a widget.
What is clearance?
Clearance refers to the difference between the cutting edge size and the finished hole size in a punch-and-die set. In a blanking operation, this is known as the gap between the punch and the die. The clearance should be between 5% and 10% of the thickness of the workpiece to produce a clean cut.
For steel thicknesses of 0.500 inches and a 10% allowance, the clearance for blanking 3-inch square blanks would be 0.009 inches (0.5 inches x 10% / 2).
Thus, the clearance for blanking 3 in square blanks in 0.500 in steel with a 10 % allowance will be 0.009 inches.
Learn more about blanking: https://brainly.com/question/16684227
#SPJ11
PIC18F4321 has 10 bit ADC. Va is connected to ground and V is connected to 4 Volt. Microcontoller Vss pins are connected to ground and Vdd pins are connected to 5 Volt a) What is the minimun voltage we can apply as an input to this ADC? Justify your answer. (Sp) b) What is the maximum voltage we can apply as an input to this ADC? Justify your answer. (5p) c) when the input of ADC is I Volt. Calculate the output of DAC (10p) i) in Decimal numeric output ii) in Binary digital form (as 10 bit).
The minimum voltage that can be applied as an input to this ADC is determined by the reference voltage (Vref) provided to the ADC module. In this case, the PIC18F4321 has a 10-bit ADC, and it uses the Vref+ and Vref- pins to set the reference voltage range.
Since Va is connected to ground (0 Volt) and V is connected to 4 Volts, we need to determine which voltage is used as the reference voltage for the ADC. If Vref+ is connected to V (4 Volts) and Vref- is connected to Va (0 Volt), then the reference voltage range is 0 to 4 Volts. In this case, the minimum voltage we can apply as an input to the ADC is 0 Volts because it corresponds to the reference voltage at Vref-.
Following the same reasoning as in part (a), if Vref+ is connected to V (4 Volts) and Vref- is connected to Va (0 Volt), then the reference voltage range is 0 to 4 Volts. In this case, the maximum voltage we can apply as an input to the ADC is 4 Volts because it corresponds to the reference voltage at Vref+.
Given that the input voltage to the ADC is I Volt, we can calculate the output of the DAC (Digital-to-Analog Converter) based on the ADC's resolution and reference voltage range.
Learn more about Digital-to-Analog Converter here:
https://brainly.com/question/32331705
#SPJ11