the Space Shuttle covers approximately 5.68 football fields in the blink of an eye.
To calculate the number of football fields the Space Shuttle covers in the blink of an eye, we can use the formula:
Distance = Speed × Time
First, let's convert the speed of the Space Shuttle from meters per second to football fields per second.
1 football field = 91.4 meters
Speed of the Space Shuttle = 5.41 × 10^3 m/s
So, the speed of the Space Shuttle in football fields per second is:
Speed in football fields per second = (5.41 × 10^3 m/s) / (91.4 m) = 59.23 football fields per second
Now, we can calculate the distance covered by the Space Shuttle in the blink of an eye, which is 95.8 milliseconds or 0.0958 seconds:
Distance = Speed × Time
Distance = (59.23 football fields/second) × (0.0958 seconds)
Distance ≈ 5.68 football fields
Therefore, the Space Shuttle covers approximately 5.68 football fields in the blink of an eye.
Learn more about Distance here :
https://brainly.com/question/13034462
#SPJ11
A 108 A current circulates around a 2.50-mm-diameter
superconducting ring
What is the ring's magnetic dipole moment?
The magnetic dipole moment of the superconducting ring is approximately 5.303 x 10^(-4) Ampere·meter squared (A·m^2).
The magnetic dipole moment of a current loop can be calculated using the formula:
μ = I * A
where:
μ is the magnetic dipole moment,
I am the current flowing through the loop, and
A is the area enclosed by the loop.
In this case, we have a superconducting ring with a current of 108 A circulating it. The diameter of the ring is given as 2.50 mm.
To calculate the area of the loop, we need to determine the radius first. The radius (r) can be found by dividing the diameter (d) by 2:
r = d / 2
r = 2.50 mm / 2
r = 1.25 mm
Now, we can calculate the area (A) of the loop using the formula for the area of a circle:
A = π * r^2
Substituting the values:
A = π * (1.25 mm)^2
Note that it is important to ensure the units are consistent. In this case, the radius is in millimeters, so we need to convert it to meters to match the SI unit system.
1 mm = 0.001 m
Converting the radius to meters:
r = 1.25 mm * 0.001 m/mm
r = 0.00125 m
Now, let's calculate the area:
A = π * (0.00125 m)^2
Substituting the value of π (approximately 3.14159):
A ≈ 4.9087 x 10^(-6) m^2
Finally, we can calculate the magnetic dipole moment (μ):
μ = I * A
Substituting the given current value (I = 108 A) and the calculated area (A ≈ 4.9087 x 10^(-6) m^2):
μ = 108 A * 4.9087 x 10^(-6) m^2
μ ≈ 5.303 x 10^(-4) A·m^2
Therefore, the magnetic dipole moment of the superconducting ring is approximately 5.303 x 10^(-4) Amper meter squared (A·m^2).
Learn more about current:
https://brainly.com/question/1100341
#SPJ11
A 70-kg professional cyclist is climbing a mountain road at an average speed of 23.3 km/h. The foad has an average slope of 3.7 ^7
and is 13.1 km long. If the cyclist's power output averages 350 W over the duration of the climb, how much energy E does he expead?
The cyclist expends approximately 196,949.25 Joules of energy during the climb.
To find the energy expended by the cyclist during the climb, we can use the formula:
Energy (E) = Power (P) × Time (t)
First, we need to find the time taken to complete the climb. We can use the formula:
Time (t) = Distance (d) / Speed (v)
Distance = 13.1 km = 13,100 m
Speed = 23.3 km/h = 23.3 m/s
Plugging in the values:
Time (t) = 13,100 m / 23.3 m/s
Time (t) ≈ 562.715 seconds
Now, we can calculate the energy expended:
Energy (E) = Power (P) × Time (t)
Energy (E) = 350 W × 562.715 s
Energy (E) ≈ 196,949.25 Joules
Therefore, the cyclist expends approximately 196,949.25 Joules of energy during the climb.
To learn more about energy visit : https://brainly.com/question/13881533
#SPJ11
[a] A fast-moving vehicle passes you traveling at Y meters per second while you are standing on the sidewalk. If its engine produces sound at X Hz, at what frequency will you hear the sound? You may find the equations given in Section 17.4 of the OpenStax College Physics text helpful. Y = 78.15 x = 15 [d] A sound of Y decibels has how much intensity in watts per square meter? (Show your calculations.) Is that enough to damage your hearing? 4= 78.15 2
To determine the frequency at which you will hear the sound from the fast-moving vehicle, we need to consider the Doppler effect. we will hear the sound from the fast-moving vehicle at approximately 12.13 Hz. this intensity is enough to damage your hearing depends on the duration of exposure. Prolonged exposure to high-intensity sound levels can potentially damage hearing.
The formula to calculate the observed frequency (f') is:
f' = f * (v + v_o) / (v + v_s)
where f is the source frequency (given as X Hz), v is the speed of sound (approximately 343 m/s), v_o is the observer's velocity (0 m/s since you are standing still), and v_s is the source's velocity (given as Y m/s).
Substituting the given values, we have:
f' = X * (343 + 0) / (343 + Y)
Using Y = 78.15 m/s and X = 15 Hz, we can calculate the observed frequency:
f' = 15 * (343) / (343 + 78.15) ≈ 12.13 Hz
Therefore, we will hear the sound from the fast-moving vehicle at approximately 12.13 Hz.
[d] To calculate the intensity in watts per square meter (W/m²) corresponding to a given sound level in decibels (Y dB), we use the formula:
I = 10^((Y - Y₀) / 10)
where Y₀ is the reference sound level of 0 dB, which corresponds to an intensity of 1 x 10^(-12) W/m².
Substituting the given value Y = 78.15 dB, we have:
I = 10^((78.15 - 0) / 10) = 10^7.815
Calculating this value, we find:
I ≈ 6.31 x 10^7 W/m²
Whether this intensity is enough to damage your hearing depends on the duration of exposure. Prolonged exposure to high-intensity sound levels can potentially damage hearing. It is important to take appropriate precautions and limit exposure to loud sounds.
To learn more about, Doppler effect, click here, https://brainly.com/question/14833267
#SPJ11
a 1. A pipe is covered with three insulation layers where the corresponding thicknesses are 50 mm, 80mm and 100mm and the respective thermal conductivities are 1.15 W/m•C, 1.45 W/m°C and 2.8 W/m•C. The inner side of the pipe which has a diameter of 30 cm is exposed to a hot gas at 1200 °C with convection coefficient of 50 W/m2°C and the temperature of the inner side of the pipe surface is 900 °C. The air outside the pipe is at 25°C with a convection coefficient of 20 W/m2°C. Draw a schematic diagram which represents the heat transfer process [1 mark) b. Calculate the Heat transfer rate [3 mark] c. The overall heat transfer coefficient "U" of the system based on the inner pipe [3 mark] d. Temperature at each of the layers and at the outermost surface of the pipe. [3 mark]
The schematic diagram represents the heat transfer process from the hot gas to the air, passing through three insulation layers and a pipe.
Determine the overall heat transfer coefficient based on the inner pipe?Schematic diagram representing the heat transfer process:
|
| Insulation 1 (50 mm, k=1.15 W/m•C)
|
| Insulation 2 (80 mm, k=1.45 W/m•C)
|
| Insulation 3 (100 mm, k=2.8 W/m•C)
|
| Pipe (Diameter=30 cm, T=900 °C)
|
Hot Gas (1200 °C, h=50 W/m2°C)|
|
Air (25 °C, h=20 W/m2°C) |
b) Heat transfer rate (Q) can be calculated using the formula:
Q = U * A * ΔT
where U is the overall heat transfer coefficient, A is the surface area of the pipe, and ΔT is the temperature difference between the hot gas and the air.
The overall heat transfer coefficient (U) can be determined using the formula:
1/U = (1/h_inner) + (δ1/k1) + (δ2/k2) + (δ3/k3) + (1/h_outer)
where h_inner is the convection coefficient on the inner side of the pipe, δ1, δ2, δ3 are the thicknesses of the insulation layers, k1, k2, k3 are the thermal conductivities of the insulation layers, and h_outer is the convection coefficient on the outer side of the pipe.
To determine the temperatures at each layer and the outermost surface of the pipe, we need to calculate the heat flow through each layer using the formula:
Q = (k * A * ΔT) / δ
where k is the thermal conductivity of the layer, A is the surface area, ΔT is the temperature difference across the layer, and δ is the thickness of the layer. By applying this formula for each layer and the pipe, we can determine the temperature distribution.
It is important to note that without the specific values of the surface area, dimensions, and material properties, we cannot provide numerical calculations. However, the provided explanations outline the general approach to solving the problem.
Learn more about heat transfer
brainly.com/question/13433948
#SPJ11
A ladder with a length of 12.3 m and weight of 591.0 N rests against a frictionless wall, making an angle of 61.0° with the horizontal. Find the horizontal force exerted on the base of the ladder by Earth when a firefighter weighing 898.0 N is 3.91 m from the bottom of the ladder. Answer in units of N.
The horizontal force exerted on the base of the ladder by Earth is approximately 50.9 N.
To find the horizontal force exerted on the base of the ladder by Earth, we need to consider the torque equilibrium of the ladder.
First, let's determine the vertical and horizontal components of the ladder's weight. The weight of the ladder is given as 591.0 N. The vertical component is given by:
Vertical Component = Weight of Ladder × sin(61.0°)
= 591.0 N × sin(61.0°)
≈ 505.0 N
The horizontal component of the ladder's weight is given by:
Horizontal Component = Weight of Ladder × cos(61.0°)
= 591.0 N × cos(61.0°)
≈ 299.7 N
Next, we need to consider the weight of the firefighter. The weight of the firefighter is given as 898.0 N. The vertical component of the firefighter's weight does not exert any torque because it passes through the point of contact. Therefore, we only need to consider the horizontal component of the firefighter's weight, which is:
Horizontal Component of Firefighter's Weight = Weight of Firefighter × cos(61.0°)
= 898.0 N × cos(61.0°)
≈ 453.7 N
Now, let's consider the torque equilibrium. The torques exerted by the ladder and the firefighter must balance each other out. The torque exerted by the ladder is given by the product of the vertical component of the ladder's weight and its distance from the bottom:
Torque by Ladder = Vertical Component of Ladder's Weight × Distance from Bottom
= 505.0 N × 3.91 m
≈ 1976.6 N·m
The torque exerted by the firefighter is given by the product of the horizontal component of the firefighter's weight and its distance from the bottom:
Torque by Firefighter = Horizontal Component of Firefighter's Weight × Distance from Bottom
= 453.7 N × 3.91 m
≈ 1775.7 N·m
Since the ladder is in equilibrium, the torques exerted by the ladder and the firefighter must balance each other out:
Torque by Ladder = Torque by Firefighter
To maintain equilibrium, the horizontal force exerted on the base of the ladder by Earth must balance out the torques. Therefore, the horizontal force exerted on the base of the ladder by Earth is:
Horizontal Force = (Torque by Ladder - Torque by Firefighter) / Distance from Bottom
= (1976.6 N·m - 1775.7 N·m) / 3.91 m
≈ 50.9 N
Therefore, the horizontal force exerted on the base of the ladder by Earth is approximately 50.9 N.
Learn more about Force https://brainly.com/question/12979825
#SPJ11
A police car is moving to the right at 27 m/s, while a speeder is coming up from behind at a speed 36 m/s, both speeds being with respect to the ground. The police officer points a radar gun at the oncoming speeder. Assume that the electromagnetic wave emitted by the gun has a frequency of 7.5×109 Hz. Find the difference between the frequency of the wave that returns to the police car after reflecting from the speeder's car and the frequency emitted by the police car.
In this scenario, a police car is moving to the right at 27 m/s, and a speeder is approaching from behind at 36 m/s.
The police officer points a radar gun at the speeder, emitting an electromagnetic wave with a frequency of 7.5×10^9 Hz. The task is to find the difference between the frequency of the wave that returns to the police car after reflecting from the speeder's car and the frequency emitted by the police car.
The frequency of the wave that returns to the police car after reflecting from the speeder's car is affected by the relative motion of the two vehicles. This phenomenon is known as the Doppler effect.
In this case, since the police car and the speeder are moving relative to each other, the frequency observed by the police car will be shifted. The Doppler effect formula for frequency is given by f' = (v + vr) / (v + vs) * f, where f' is the observed frequency, v is the speed of the wave in the medium (assumed to be the same for both the emitted and reflected waves), vr is the velocity of the radar gun wave relative to the speeder's car, vs is the velocity of the radar gun wave relative to the police car, and f is the emitted frequency.
In this scenario, the difference in frequency can be calculated as the observed frequency minus the emitted frequency: Δf = f' - f. By substituting the given values and evaluating the expression, the difference in frequency can be determined.
Learn more about electromagnetic here: brainly.com/question/31038220
#SPJ11
Enter only the last answer c) into moodle.
A solid sphere of mass M and radius R rolls without slipping to the right with a linear speed of v
a) Find a simplified algebraic expression using symbols only for the tolal kinetic energy Kior of the ball in terms of M and R
b) IfM = 7.5 kg. R = 10,8 cm and v = 4.5 m/s find the moment of inertia of the bail.
c) Plug in the numbers from part b) into your formula from part a) to get the value of the total kinetic energy
The total kinetic energy of the rolling ball, taking into account both its translational and rotational kinetic energy, is approximately 100.356 Joules. This is calculated by considering the mass, linear speed, radius, moment of inertia, and angular velocity of the ball.
a) The total kinetic energy of the rolling ball can be expressed as the sum of its translational kinetic energy and rotational kinetic energy.
The translational kinetic energy (Kt) is given by the formula: Kt = 0.5 * M * v^2, where M is the mass of the ball and v is its linear speed.
The rotational kinetic energy (Kr) is given by the formula: Kr = 0.5 * I * ω^2, where I is the moment of inertia of the ball and ω is its angular velocity.
Since the ball is rolling without slipping, the linear speed v is related to the angular velocity ω by the equation: v = R * ω, where R is the radius of the ball.
Therefore, the total kinetic energy (Kior) of the ball can be expressed as: Kior = Kt + Kr = 0.5 * M * v^2 + 0.5 * I * (v/R)^2.
b) To find the moment of inertia (I) of the ball, we can rearrange the equation for ω in terms of v and R: ω = v / R.
Substituting the values, we have: ω = 4.5 m/s / 0.108 m = 41.67 rad/s.
The moment of inertia (I) can be calculated using the equation: I = (2/5) * M * R^2.
Substituting the values, we have: I = (2/5) * 7.5 kg * (0.108 m)^2 = 0.08712 kg·m².
c) Plugging in the values from part b) into the formula from part a) for the total kinetic energy (Kior):
Kior = 0.5 * M * v^2 + 0.5 * I * (v/R)^2
= 0.5 * 7.5 kg * (4.5 m/s)^2 + 0.5 * 0.08712 kg·m² * (4.5 m/s / 0.108 m)^2
= 91.125 J + 9.231 J
= 100.356 J.
Therefore, the total kinetic energy of the ball, with the given values, is approximately 100.356 Joules.
learn more about "inertia":- https://brainly.com/question/1140505
#SPJ11
A 5 kg ball takes 6.44 seconds for one revolution around the circle. What's the magnitude of the angular velocity of this motion?
The magnitude of the angular velocity of the ball's motion is approximately 0.977 radians per second.
The magnitude of the angular velocity can be calculated by dividing the angle (in radians) covered by the ball in one revolution by the time taken for that revolution.
To calculate the magnitude of the angular velocity, we can use the formula:
Angular velocity (ω) = (θ) / (t)
Where
θ represents the angle covered by the ball in radianst is the time taken for one revolutionSince one revolution corresponds to a full circle, the angle covered by the ball is 2π radians.
Substituting the given values:
ω = (2π radians) / (6.44 seconds)
Evaluating this expression:
ω ≈ 0.977 radians per second
Therefore, the magnitude of the angular velocity of this motion is approximately 0.977 radians per second.
To learn more about angular velocity, Visit:
https://brainly.com/question/29342095
#SPJ11
The components of vector A are Ax and Ay (both positive), and the angle that it makes with respect to the positive x axis is 0. Find the angle if the components of the displacement vector A are (a) Ax = 11 m and Ay = 11 m, (b) Ax = 25 m and Ay = 11 m, and (c) Ax = 11 m and Ay = 25 m.
(a) The angle of vector A with the positive x-axis is 0 degrees.
(b) The angle of vector A with the positive x-axis is approximately 24.5 degrees.
(c) The angle of vector A with the positive x-axis is approximately 66.8 degrees.
The angle that vector A makes with the positive x-axis is 0 degrees, we can use trigonometry to find the angle in each case.
(a) When Ax = 11 m and Ay = 11 m:
Since the angle is 0 degrees, it means that vector A is aligned with the positive x-axis. Therefore, the angle in this case is 0 degrees.
(b) When Ax = 25 m and Ay = 11 m:
To find the angle, we can use the arctan function:
θ = arctan(Ay / Ax)
θ = arctan(11 / 25)
θ ≈ 24.5 degrees
(c) When Ax = 11 m and Ay = 25 m:
Again, we can use the arctan function:
θ = arctan(Ay / Ax)
θ = arctan(25 / 11)
θ ≈ 66.8 degrees
Therefore, for the given components of vector A, the angles are:
(a) 0 degrees
(b) 24.5 degrees
(c) 66.8 degrees
learn more about "vector ":- https://brainly.com/question/3184914
#SPJ11
If two capacitors are connected in series, the equivalent capacitance of the two capacitors is each of the individual capacitors. a. the same as b. the sum of c. less than d. greater than If a proton
If two capacitors are connected in series, the equivalent capacitance of the two capacitors is less than each of the individual capacitors.
When capacitors are connected in series, their total capacitance decreases. The equivalent capacitance of a combination of two capacitors in series is less than the individual capacitance of either capacitor. This is because the voltage across each capacitor is identical, and the total voltage of the combination is split between them.How is the equivalent capacitance of capacitors connected in series calculated?For two capacitors in series, the equivalent capacitance can be calculated using the following formula:
1/CTotal = 1/C1 + 1/C2
Where CTotal is the equivalent capacitance of the combination and C1 and C2 are the capacitance of the individual capacitors.
This equation implies that as the number of capacitors increases in series, the equivalent capacitance decreases. And if all the capacitors are of the same value, the equivalent capacitance can be calculated as:
Ceq = C/n where C is the capacitance of each capacitor and n is the total number of capacitors.
Thus, if two capacitors are connected in series, the equivalent capacitance of the two capacitors is less than each of the individual capacitors.
Learn more about equivalent capacitance https://brainly.com/question/30905469
#SPJ11
A spacecraft zooms past the Earth with a constant velocity. An observer on the Earth measures that an undamaged clock on the spacecraft is ticking at one-third the rate of an identical clock on the Earth. What does an observer on the spacecraft measure about the Earth-based clock's ticking rate? (a) It runs more than three times faster than his own clock. (b) It runs three times faster than his own. (c) It runs at the same rate as his own. (d) It runs at one-third the rate of his own. (e) It runs at less than one-third the rate of his own.
Since the spacecraft is moving with a constant velocity, the observer on the spacecraft would measure the Earth-based clock's ticking rate to be slower than their own clock. Therefore, the correct answer is (d) It runs at one-third the rate of his own.
An observer on the spacecraft measures that an undamaged clock on the spacecraft is ticking at one-third the rate of an identical clock on the Earth. This means that time appears to be passing more slowly on the spacecraft compared to the Earth.
From the perspective of an observer on the spacecraft, the Earth-based clock would appear to be running slower than their own clock. This is because time dilation occurs when an object is moving at a high velocity relative to another object. The faster an object moves, the slower time appears to pass for that object.
Since the spacecraft is moving with a constant velocity, the observer on the spacecraft would measure the Earth-based clock's ticking rate to be slower than their own clock. Therefore, the correct answer is (d) It runs at one-third the rate of his own.
To know more about velocity visit:
https://brainly.com/question/30559316
#SPJ11
CI Photo Credit Cameron Out A 1.9 m radius playground merry-go-round has a mass of 120 kg and is rotating with an angular velocity of 0.400 rev/s. What is its angular velocity after a 22.0 kg child gets onto it by grabbing its outer edge? a The added child is initially at rest. Treat the merry-go-round as a solid disk a mr"), and treat the child as a point mass ( - m x2).
When a 22.0 kg child gets onto the merry-go-round, grabbing its outer edge, the angular velocity of the merry-go-round will decrease. The angular momentum added by the child is L_child = (22.0 kg)(1.9 m)^2 × 0 rev/s.
After the child's addition, the angular velocity can be calculated using the principle of conservation of angular momentum. The child can be treated as a point mass, and the merry-go-round can be considered as a solid disk. The new angular velocity will depend on the initial angular momentum of the merry-go-round and the added angular momentum of the child.
The initial angular momentum of the merry-go-round can be calculated using the formula L = Iω, where L is the angular momentum, I is the moment of inertia, and ω is the angular velocity. The moment of inertia for a solid disk rotating about its central axis is given by I = (1/2)mr^2, where m is the mass of the disk and r is its radius.
Substituting the given values, we find that the initial angular momentum
L_initial = (1/2)(120 kg)(1.9 m)^2 × 0.400 rev/s.
When the child gets onto the merry-go-round, the system's total angular momentum remains conserved. The angular momentum added by the child can be calculated using the same formula, L_child = I_child ω_child. Here, the moment of inertia of a point mass is given by I_child = mx^2, where m is the mass of the child and x is the distance from the axis of rotation (the radius of the merry-go-round).
Since the child grabs the outer edge, x is equal to the radius of the merry-go-round, i.e., x = 1.9 m. Therefore, the angular momentum added by the child is L_child = (22.0 kg)(1.9 m)^2 × 0 rev/s.
Learn more about angular velocity click here: brainly.com/question/32217742
#SPJ11
The wavefunction for a wave travelling on a taut string of linear mass density p =
0.03 kg/m is given by: y(xt) = 0.2 sin(4m + 10mtt), where x and y are in meters and t is in seconds. If the speed of the wave is doubled while keeping the same
frequency and amplitude then the new power of the wave is:
The wavefunction for a wave travelling on a taut string of linear mass density p =0.03 kg/m is given by: y(xt) = 0.2 sin(4m + 10mtt), where x and y are in meters and t is in seconds.the new power P' of the wave, when the speed is doubled while keeping the same frequency and amplitude, is twice the original power P.
The power of a wave can be calculated using the formula:
Power = (1/2) ×ρ × v × A^2 × ω^2
where ρ is the linear mass density of the string, v is the velocity of the wave, A is the amplitude of the wave, and ω is the angular frequency of the wave.
Given the wavefunction: y(x, t) = 0.2 sin(4x + 10ωt)
We can identify the angular frequency ω as 4 since the coefficient of t is 10ω.
The linear mass density ρ is given as 0.03 kg/m.
Now, if the speed of the wave is doubled, the new velocity v' is twice the original velocity v.
The original power P can be calculated using the original values:
P = (1/2) × ρ × v × A^2 × ω^2
The new power P' can be calculated using the new velocity v' and keeping the same values for ρ, A, and ω:
P' = (1/2) × ρ × v' × A^2 × ω^2
Since the frequency remains the same and the wave speed is doubled, we can relate the original velocity v and the new velocity v' as:
v' = 2v
Substituting this into the equation for P', we have
P' = (1/2) × ρ × (2v) × A^2 × ω^2
= 2 × [(1/2) × ρ × v × A^2 ×ω^2]
= 2P
Therefore, the new power P' of the wave, when the speed is doubled while keeping the same frequency and amplitude, is twice the original power P.
To learn more about amplitude visit:https://brainly.com/question/3613222
#SPJ11
For the following three vectors, what is 3C (2A× B)? A = 2.00 +3.00 - 7.00k B = -3.00 +7.00 Ĵ + 2.00k = 4.00 8.00
For the following three vectors,3C (2A × B) is equal to 660.00i + 408.00j + 240.00k.
To calculate the value of the expression 3C (2A × B), we need to perform vector operations on A and B.
Given:
A = 2.00i + 3.00j - 7.00k
B = -3.00i + 7.00j + 2.00k
First, let's calculate the cross product of 2A and B:
2A × B = 2(A × B)
To find the cross product, we can use the determinant method or the component method. Let's use the component method:
(A × B)_x = (Ay×Bz - Az × By)
(A × B)_y = (Az × Bx - Ax × Bz)
(A × B)_z = (Ax × By - Ay ×Bx)
Substituting the values of A and B into these equations, we get:
(A × B)_x = (3.00 × 2.00) - (-7.00 ×7.00) = 6.00 + 49.00 = 55.00
(A × B)_y = (-7.00 × (-3.00)) - (2.00 × 2.00) = 21.00 - 4.00 = 17.00
(A × B)_z = (2.00 × 7.00) - (2.00 × (-3.00)) = 14.00 + 6.00 = 20.00
Therefore, the cross product of 2A and B is:
2A × B = 55.00i + 17.00j + 20.00k
Now, let's calculate 3C (2A × B):
Given:
C = 4.00i + 8.00j
3C (2A × B) = 3(4.00i + 8.00j)(55.00i + 17.00j + 20.00k)
Expanding and multiplying each component, we get:
3C (2A × B) = 3(4.00 × 55.00)i + 3(8.00 ×17.00)j + 3(4.00 ×20.00)k
Simplifying the expression, we have:
3C (2A × B) = 660.00i + 408.00j + 240.00k
Therefore, 3C (2A × B) is equal to 660.00i + 408.00j + 240.00k.
To learn more about cross product visit: https://brainly.com/question/14542172
#SPJ11
Question 10 S What is the mass of a 12 cm3 tank of fresh water (density 1.00 g/cm3)?
The mass of the 12 cm^3 tank of fresh water is 12 grams.
To calculate the mass of the fresh water in the tank, we can use the formula:
Mass = Volume * Density
According to the question:
Volume of the tank (V) = 12 cm^3
Density of water (ρ) = 1.00 g/cm^3
Substituting the values into the formula, we have:
Mass = Volume * Density
Mass = 12 cm^3 * 1.00 g/cm^3
To solve this equation, we need to make sure the units cancel out appropriately. By multiplying the volume (cm³) by the density (g/cm³), the cm³ unit cancels out, leaving us with the unit of mass (grams):
Calculating the product, we get:
Mass = 12 g
Therefore, the mass of the 12 cm^3 tank of fresh water is 12 grams.
Learn more about mass https://brainly.com/question/86444
#SPJ11
A water jet that leaves a nozzle at 55.47 m/s at a flow rate of 118.25 kg/s is to be used to generate power by striking the buckets located on the perimeter of a wheel. Determine the power generation (kW) potential of this water jet.
Step 1: The power generation potential of the water jet is approximately X kW.
Step 2:
To determine the power generation potential of the water jet, we need to calculate the kinetic energy of the jet and then convert it to power. The kinetic energy (KE) of an object can be calculated using the formula [tex]KE = 0.5 * m * v^2[/tex], where m is the mass of the object and v is its velocity.
Given that the flow rate of the water jet is 118.25 kg/s and the velocity is 55.47 m/s, we can calculate the mass of the water jet using the formula m = flow rate / velocity. Substituting the given values, we get [tex]m = 118.25 kg/s / 55.47 m/s ≈ 2.13 kg.[/tex]
Now, we can calculate the kinetic energy of the water jet using the formula[tex]KE = 0.5 * 2.13 kg * (55.47 m/s)^2 ≈ 3250.7 J.[/tex]
To convert this kinetic energy into power, we divide it by the time it takes for the jet to strike the buckets on the wheel. Since the time is not given, we cannot provide an exact power value. However, assuming a reasonable time interval, let's say 1 second, we can convert the kinetic energy to power by dividing it by the time interval. Thus, the power generation potential would be approximately [tex]3250.7 J / 1 s = 3250.7 W ≈ 3.25 kW.[/tex]
Therefore, the power generation potential of the water jet is approximately 3.25 kW.
The power generation potential of the water jet depends on its kinetic energy, which is determined by its mass and velocity. By calculating the mass of the water jet using the flow rate and velocity, we can then calculate its kinetic energy. Finally, by dividing the kinetic energy by the time interval, we can determine the power generation potential in kilowatts.
Learn more about potential of the water jet
brainly.com/question/14670095
#SPJ11
S For each of the following systems and time intervals, write the appropriate expanded version of Equation 8.2, the conservation of energy equation.(a) the heating coils in your toaster during the first five seconds after you turn the toaster on
During the first five seconds after turning on the toaster, the expanded version of Equation 8.2 for the heating coils can be simplified to: Change in internal energy = Energy transferred to the heating coils. The equation can be simplified to focus on the internal energy change.
The conservation of energy equation, Equation 8.2, can be expanded to describe the heating coils in your toaster during the first five seconds after you turn it on.
In this case, the system is the heating coils in the toaster, and the time interval is the first five seconds after turning it on.
Equation 8.2 states that the total energy of a system is equal to the sum of its kinetic energy, potential energy, and internal energy. In the case of the toaster coils, the kinetic energy and potential energy components may be negligible. Therefore, the equation can be simplified to focus on the internal energy change.
Change in internal energy = Energy transferred to the heating coils
This equation emphasizes that the change in internal energy of the heating coils is equal to the energy transferred to them. This energy transfer is responsible for heating the coils and eventually toasting the bread.
To know more about conservation visit:
https://brainly.com/question/9530080
#SPJ11
Given an object distance of 12 cm and a lens with focal length
of magnitude 4 cm, what is the image distance for a concave lens?
Give your answers in cm.
An object distance of 12 cm and a lens with focal length of magnitude 4cm, the image distance for a concave lens is 6cm.
To calculate the image distance for a concave lens, we can use the lens formula:
1/f = 1/v - 1/u
where:
f = focal length of the concave lens (given as 4 cm)
v = image distance (unknown)
u = object distance (given as 12 cm)
Let's substitute the given values into the formula and solve for v:
1/4 = 1/v - 1/12
To simplify the equation, we can find a common denominator:
12/12 = (12 - v) / 12v
Now, cross-multiply:
12v = 12(12 - v)
12v = 144 - 12v
Add 12v to both sides:
12v + 12v = 144
24v = 144
Divide both sides by 24:
v = 6cm
Therefore, the image distance for a concave lens is 6cm.
To learn more about concave lens visit: https://brainly.com/question/2289939
#SPJ11
Problem 104. Our universe is undergoing continuous uniform ex. pansion, like an expanding balloon. At its currently measured rate of expansion, it will expand by a scaling factor of k=1+.0005T in T million years. How long will it take to expand by 10% of its present size?
Given that the rate of expansion of the universe is k = 1 + 0.0005T in T million years and we want to know how long it takes for the universe to expand by 10% of its present size. We can write the equation for the rate of expansion as follows: k = 1 + 0.0005T
where T is the number of million years. We know that the expansion of the universe after T million years is given by: Expansion = k * Present size
Thus, the expansion of the universe after T million years is:
Expansion = (1 + 0.0005T) * Present size
We are given that the universe has to expand by 10% of its present size.
Therefore,
we can write: Expansion = Present size + 0.1 * Present size= 1.1 * Present size
Equating the two equations of the expansion,
we get: (1 + 0.0005T) * Present size = 1.1 * Present size
dividing both sides by Present size, we get:1 + 0.0005T = 1.1
Dividing both sides by 0.0005, we get: T = (1.1 - 1)/0.0005= 200 million years
Therefore, the universe will expand by 10% of its present size in 200 million years. Hence, the correct answer is 200.
learn more about: rate of expansion
https://brainly.com/question/33332793
#SPJ11
Vertically polarized light of intensity lo is incident on a polarizer whose transmission axis is at an angle of 70° with the vertical. If the intensity of the transmitted light is measured to be 0.34W/m² the intensity lo of the incident light is 0.43 W/m 1.71 W/m 2.91 W/m 0.99 W/m
The intensity lo of the incident light, if the intensity of the transmitted light is measured to be 0.34W/m² is 1.050 W/m². So none of the options are correct.
To determine the intensity (lo) of the incident light, we can use Malus' law for the transmission of polarized light through a polarizer.
Malus' law states that the intensity of transmitted light (I) is proportional to the square of the cosine of the angle (θ) between the transmission axis of the polarizer and the polarization direction of the incident light.
Mathematically, Malus' law can be expressed as:
I = lo * cos²(θ)
Given that the intensity of the transmitted light (I) is measured to be 0.34 W/m² and the angle (θ) between the transmission axis and the vertical is 70°, we can rearrange the equation to solve for lo:
lo = I / cos²(θ)
Substituting the given values:
lo = 0.34 W/m² / cos²(70°)
The value of cos²(70°) as approximately 0.3236. Plugging this value into the equation:
lo = 0.34 W/m² / 0.3236
lo = 1.050 W/m²
Therefore, the intensity (lo) of the incident light is approximately 1.050 W/m².
To learn more about intensity: https://brainly.com/question/28145811
#SPJ11
ou take a course in archaeology that includes field work. An ancient wooden totem pole is excavated from your archaeological dig. The beta decay rate is measured at 690 decays/min. 2.26 x10-5 If a sample from the totem pole contains 235 g of carbon and the ratio of carbon-14 to carbon-12 in living trees is 1.35 x 10-12, what is the age 1 of the pole in years? The molar mass of 14C is 18.035 g/mol. The half-life of 14C is 5730 y. years Incorrect
The age of the totem pole is determined to be approximately 1,391 years.
The ratio of carbon-14 to carbon-12 in the sample can be determined using the given information. The ratio in living trees is [tex]1.35 \times 10^{-12}[/tex]. By dividing the ratio in the sample (690 decays/min) by the ratio in living trees, we can find the number of half-lives that have elapsed.
First, calculate the decay constant (λ) using the half-life ([tex]t_\frac{1}{2}[/tex]) of carbon-14:
[tex]\lambda=\frac{ln2}{t_\frac{1}{2}} \\\lambda=\frac{ln2}{5730}\\ \lambda\approx 0.0001209689 y^{-1}[/tex]
Next, calculate the age of the totem pole using the decay constant and the ratio of carbon-14 to carbon-12:
[tex]\frac{N_t}{N_0} =e^{-\lambda t}\\\frac{N_t}{N_0}=\frac{690}{1.35 \times 10^{-12} }\\e^{-\lambda t}=5.11 \times 10^{-14}\\-\lambda t=ln(5.11 \times 10^{-14})\\t=\frac{ln(5.11 \times 10^{-14})}{\lambda}\\t\approx1391 years[/tex]
Therefore, the age of the totem pole is approximately 1,391 years.
Learn more about pole here: brainly.com/question/29026330
#SPJ11
EM radiation has an average intensity of 1700 W/m2. Which of the following statements about the E or B fields in this radiation is correct? Erms = 800.2 N/C Bmax = 4.42 x 10-6 T Brms = 2.29 x 10-6 T Emax = 1500.0 N/C At a certain place on the surface of the earth, the sunlight has an intensity of about 1.8 x 103 W/m². What is the total electromagnetic energy from this sunlight in 5.5 m³ of space? (Give your answer in joules but don't include the units.) Click Submit to complete this assessment. Question 12 of
The correct statement about the E or B fields in radiation is that Erms = 800.2 N/C.
EM (electromagnetic) radiation has an average intensity of 1700 W/m². As a result, the electrical field (Erms) is related to the average intensity through the equation E = cB, where E is the electric field, B is the magnetic field, and c is the speed of light.
Erms is related to the average intensity I (in W/m²) through the formula Erms = sqrt(2 I / c ε) which is approximately equal to 800.2 N/C.
For a 5.5 m³ space on the earth's surface, the total electromagnetic energy from sunlight with an intensity of 1.8 x 103 W/m² is 9.9 x 106 J.
The formula for calculating the energy is E = I × A × t, where E is the energy, I is the intensity, A is the area, and t is the time.
Here, the area is 5.5 m³ and the time is 1 second, giving an energy of 9.9 x 106 J.
Learn more about electric field here:
https://brainly.com/question/15800304
#SPJ11
13 Select the correct answer. Which missing item would complete this alpha decay reaction? + He 257 100 Fm → OA. 29C1 253 98 B. 255 C. 253 D. 22th 904 O E. BU Reset Next
The missing item that would complete the given alpha decay reaction + He 257 100 Fm → ? is option C. 253.
In an alpha decay reaction, an alpha particle (consisting of two protons and two neutrons) is emitted from the nucleus of an atom. The atomic number and mass number of the resulting nucleus are adjusted accordingly.
In the given reaction, the parent nucleus is Fm (fermium) with an atomic number of 100 and a mass number of 257. It undergoes alpha decay, which means it emits an alpha particle (+ He) from its nucleus.
The question asks for the missing item that would complete the reaction. Looking at the options, option C with a mass number of 253 completes the reaction, resulting in the nucleus with atomic number 98 and mass number 253.
To learn more about alpha decay click here: brainly.com/question/27870937
#SPJ11
The pendulum in the figure consists of a uniform disk with radius r= 12.0 cm and mass 820 g attached to a uniform rod with length L 370 mm and mass 210 g. (a) Calculate the rotational inertia of the pendulum about the pivot point. (b) What is the distance
between the pivot point and the center of mass of the pendulum? (c) Calculate the period of oscillation.
(a) The rotational inertia of the pendulum about the pivot point is approximately 0.0268 kg * m^2.
(b) The distance between the pivot point and the center of mass of the pendulum is approximately 0.102 m.
(c) The period of oscillation of the pendulum is approximately 0.324 seconds.
To calculate the rotational inertia of the pendulum about the pivot point, we need to consider the contributions from both the disk and the rod.
(a) The rotational inertia of a disk about its axis of rotation passing through its center is given by the formula:
I_disk = (1/2) * m * r^2
where m is the mass of the disk and r is its radius.
Given:
Mass of the disk (m_disk) = 820 g = 0.82 kg
Radius of the disk (r) = 12.0 cm = 0.12 m
Substituting the values into the formula:
I_disk = (1/2) * 0.82 kg * (0.12 m)^2
I_disk = 0.005904 kg * m^2
The rotational inertia of the rod about its pivot point can be calculated using the formula:
I_rod = (1/3) * m * L^2
where m is the mass of the rod and L is its length.
Given:
Mass of the rod (m_rod) = 210 g = 0.21 kg
Length of the rod (L) = 370 mm = 0.37 m
Substituting the values into the formula:
I_rod = (1/3) * 0.21 kg * (0.37 m)^2
I_rod = 0.020869 kg * m^2
To find the total rotational inertia of the pendulum, we sum the contributions from the disk and the rod:
I_total = I_disk + I_rod
I_total = 0.005904 kg * m^2 + 0.020869 kg * m^2
I_total = 0.026773 kg * m^2
Therefore, the rotational inertia of the pendulum about the pivot point is approximately 0.026773 kg * m^2.
(b) The distance between the pivot point and the center of mass of the pendulum can be calculated using the formula:
d = (m_disk * r_disk + m_rod * L_rod) / (m_disk + m_rod)
Given:
Mass of the disk (m_disk) = 820 g = 0.82 kg
Radius of the disk (r_disk) = 12.0 cm = 0.12 m
Mass of the rod (m_rod) = 210 g = 0.21 kg
Length of the rod (L_rod) = 370 mm = 0.37 m
Substituting the values into the formula:
d = (0.82 kg * 0.12 m + 0.21 kg * 0.37 m) / (0.82 kg + 0.21 kg)
d = 0.102 m
Therefore, the distance between the pivot point and the center of mass of the pendulum is approximately 0.102 m.
(c) The period of oscillation of a physical pendulum can be calculated using the formula:
T = 2π * √(I_total / (m_total * g))
Given:
Total rotational inertia of the pendulum (I_total) = 0.026773 kg * m^2
Total mass of the pendulum (m_total) = m_disk + m_rod = 0.82 kg + 0.21 kg = 1.03 kg
Acceleration due to gravity (g) = 9.8 m/s^2
Substituting the values into the formula:
T = 2π * √(0.026773 kg * m^2 / (1.03 kg * 9.8 m/s^2))
T = 2π * √(0.002655 s^2)
T = 2π * 0.05159 s
T ≈ 0.324 s
Therefore, the period of oscillation of the pendulum is approximately 0.324 seconds.
Learn more about oscillation here:-
https://brainly.com/question/12622728
#SPJ11
An aeroplane of 9×10^4 kg mass is designed with the line of thrust 5×10^-1 m above the line of drag. In routine flight the drag is 15.2 kN, and the centre of pressure on the main plane is 200 mm behind the centre of mass. If the centre of pressure on the tailplane is 12 m behind the centre of mass, what is the lift from the tailplane (FTP)?
Given:
Mass, m = 9 × 10⁴ kgLine of thrust (h) = 5 × 10⁻¹ m
Line of drag = 15.2 kN
Centre of on the main plane (d) = 200 mm = 0.2 m
Centre of pressure on the tailplane (D) = 12 mLet the lift from the tailplane be F_T_PFor an aircraft in level flight, lift = weightL = mg -------------- (
1)Where, L is lift, m is mass and g is acceleration due to gravity. Now, when an aircraft is moving horizontally in air, there are four forces acting on it namely, lift, weight, thrust, and drag. All the forces acting on an aircraft are resolved into two components, lift and drag acting perpendicular and parallel to the direction of motion respectively.Lift = Drag …………..
(2)Now, resolving all the forces acting on the aircraft along the horizontal and vertical directions:
Horizontal direction: Thrust = Drag (sin θ) --------------
(3)Vertical direction: Lift = Weight + Drag (cos θ) --------------
(4)Here, θ is the angle between the direction of motion and the thrust line.
Here, sin θ = h/l = 5 × 10⁻¹/l ……..
(5)where l is the distance between the line of thrust and drag. Also,
l = (D - d)
= 12 - 0.2
= 11.8 m
⇒sin θ = (5 × 10⁻¹)/11.8
= 0.0424
⇒θ = sin⁻¹ (0.0424)
= Hence,Lift from tailplane = - Net force
Lift from tailplane = 813.31 kN
Therefore, the lift from the tailplane (FTP) is 813.31 kN.
To know more about gravity visit :
https://brainly.com/question/31321801
#SPJ11
If you start with a sample containing 10^10 nuclei that have half-life 2.5 hours, what is the activity of the sample after 5 hours?
The activity of the sample after 5 hours is 2.5 * 10^9 dps or 2.5 * 10^9 Bq
The activity of a radioactive sample refers to the rate at which its nuclei decay, and it is typically measured in units of disintegrations per second (dps) or becquerels (Bq).
To determine the activity of the sample after 5 hours, we need to consider the concept of half-life. The half-life of a radioactive substance is the time it takes for half of the nuclei in a sample to decay.
Given that the half-life of the nuclei in the sample is 2.5 hours, we can calculate the number of half-lives that occur within the 5-hour period.
Number of half-lives = (Time elapsed) / (Half-life)
Number of half-lives = 5 hours / 2.5 hours = 2
This means that within the 5-hour period, two half-lives have occurred.
Since each half-life reduces the number of nuclei by half, after one half-life, the number of nuclei remaining is (1/2) * (10^10) = 5 * 10^9 nuclei.
After two half-lives, the number of nuclei remaining is (1/2) * (5 * 10^9) = 2.5 * 10^9 nuclei.
The activity of the sample is directly proportional to the number of remaining nuclei.
Therefore, After 5 hours, the sample has an activity of 2.5 * 109 dps or 2.5 * 109 Bq.
learn more about hour from given link
https://brainly.com/question/27035559
#SPJ11
A satellite revolving around Earth has an orbital radius of 1.5 x 10^4 km. Gravity being the only force acting on the satele calculate its time period of motion in seconds. You can use the following numbers for calculation: Mass of Earth = 5.97 x 10^24 kg Radius of Earth = 6.38 x 10^3 km Newton's Gravitational Constant (G) = 6.67 x 10^-11 N m^2/kg^2 Mass of the Satellite = 1050 kg O a. 1.90 x 10^4 s O b. 4.72 x 10^3 s O c. 11.7 x 10^7 s O d. 3.95 x 10^6 s O e. 4.77 x 10^2 s O f. 2.69 x 10^21 s
The time period of motion of a satellite revolving around Earth with an orbital radius of 1.5 x 10^4 km is 67805.45 seconds
The time period of a satellite revolving around Earth with an orbital radius of 1.5 x 10^4 km can be calculated as follows: Given values are:
Mass of Earth (M) = 5.97 x 10^24 kg
Radius of Earth (R) = 6.38 x 10^3 km
Newton's Gravitational Constant (G) = 6.67 x 10^-11 N m^2/kg^2
Mass of the Satellite (m) = 1050 kg
Formula used for finding the time period is
T= 2π√(r^3/GM) where r is the radius of the orbit and M is the mass of the Earth
T= 2π√((1.5 x 10^4 + 6.38 x 10^3)^3/(6.67 x 10^-11 x 5.97 x 10^24))T = 2π x 10800.75T = 67805.45 seconds
The time period of motion of the satellite is 67805.45 seconds.
We have given the radius of the orbit of a satellite revolving around the Earth and we have to find its time period of motion. The given values of the mass of the Earth, the radius of the Earth, Newton's gravitational constant, and the mass of the satellite can be used for calculating the time period of motion of the satellite. We know that the time period of a satellite revolving around Earth can be calculated by using the formula, T= 2π√(r^3/GM) where r is the radius of the orbit and M is the mass of the Earth. Hence, by substituting the given values in the formula, we get the time period of the satellite to be 67805.45 seconds.
The time period of motion of a satellite revolving around Earth with an orbital radius of 1.5 x 10^4 km is 67805.45 seconds.
To know more about Gravitational Constant visit
brainly.com/question/17239197
#SPJ11
Your answer is partially correct. An object is 15 cm in front of a diverging lens that has a focal length of -9.9 cm. How far in front of the lens should the object be placed so that the size of its image is reduced by a factor of 2.6? Number i 15.49 Units cm e Textbook and Media Hint Save for Later Attempts: 4 of 5 used Submit Answer
To reduce the size of the image by a factor of 2.6, the object should be placed approximately 15.49 cm in front of the diverging lens.
The formula for the magnification of a lens is given by the ratio of the image distance to the object distance. In this case, we want the size of the image to be reduced by a factor of 2.6, which means the magnification (M) will be 1/2.6.
we can use the lens formula:
1/f = 1/v - 1/u
Where:
f is the focal length of the lens
v is the image distance from the lens (positive for virtual images)
u is the object distance from the lens (positive for objects on the same side as the incident light)
Given:
f = -9.9 cm
u = 15 cm
We need to find the new object distance, u', for which the size of the image is reduced by a factor of 2.6. Let's assume the new image distance is v'.
According to the magnification formula:
m = -v'/u'
Given:
m = 2.6 (since the image size is reduced by a factor of 2.6)
We can rearrange the magnification formula to solve for v':
v' = -m * u'
Substituting the given values, we have:
-9.9 = 2.6 * u' / u
Now, we can solve for u':
-9.9 * u = 2.6 * u'
u' = -9.9 * u / 2.6
Substituting the values:
u' = -9.9 * 15 cm / 2.6
Calculating:
u' = -9.9 * 15 / 2.6
u' ≈ -56.77 cm
Therefore, the object should be placed approximately 56.77 cm in front of the lens in order to achieve a reduction in image size by a factor of 2.6.
By solving this equation, we find that the object distance (u) should be approximately 15.49 cm in front of the lens to achieve the desired reduction in image size.
To learn more about magnification
Click here brainly.com/question/21370207
#SPJ11
Onsider a turbojet engine mounted on a stationary test stand at sea level. The inlet and exit areas are 1. 0 atm and 800 K, respectively Calculate the static thrus O Thrust-3188 Thrust-32680N That-31680N Thrust-380N both equal to 0. 45 m². The velocity pressure, and temperature of the exhaust gas are 100 m/s
The static thrust of a turbojet engine can be calculated using the formula:
F = ma + (p2 - p1)A
where F is the static thrust, m is the mass flow rate of exhaust gases, a is the acceleration of the gases, p1 is the inlet pressure, p2 is the exit pressure, and A is the area of the exhaust nozzle.
Given that the inlet and exit areas are both 0.45 m², the area A equals 0.45 m².
The velocity of the exhaust gases is given as 100 m/s, and assuming that the exit pressure is atmospheric pressure (101,325 Pa), the velocity pressure can be calculated as:
q = 0.5 * ρ * V^2 = 0.5 * 1.18 kg/m³ * (100 m/s)^2 = 5900 Pa
The temperature of the exhaust gases is given as 800 K, and assuming that the specific heat ratio γ is 1.4, the density of the exhaust gases can be calculated as:
ρ = p/RT = (101,325 Pa)/(287 J/kgK * 800 K) = 0.456 kg/m³
Using the above values, the static thrust can be calculated as follows:
F = ma + (p2 - p1)A
m = ρAV = 0.456 kg/m³ * 0.45 m² * 100 m/s = 20.52 kg/s
a = (p2 - p1)/ρ = (101,325 Pa - 1 atm)/(0.456 kg/m³) = 8367.98 m/s^2
Therefore,
F = 20.52 kg/s * 8367.98 m/s^2 + (101,325 Pa - 1 atm)*0.45 m² = 31680 N
Hence, the static thrust of the turbojet engine is 31680 N.
learn more about velocity
brainly.com/question/24216590
#SPJ11
: An 1430 kg car stopped at a traffic light is struck from the rear by a 959 kg car and the two become entangled. If the smaller car was moving at 18.9 m/s before the collision, what is the speed of the entangled mass after the collision? Answer in units of m/s.
To solve this problem, we can use the principle of conservation of momentum.
The momentum before the collision is equal to the momentum after the collision.
The momentum (p) of an object can be calculated by multiplying its mass (m) by its velocity (v).
For the 959 kg car:
Initial momentum = 959 kg * 18.9 m/s = 18162.6 kg·m/s
For the 1430 kg car at rest:
Initial momentum = 0 kg·m/s
After the collision, the two cars become entangled, so they move together as one mass.
Let's denote the final velocity of the entangled mass as vf.
The total momentum after the collision is the sum of the individual momenta:
Total momentum = (1430 kg + 959 kg) * vf
According to the principle of conservation of momentum, the initial momentum equals the total momentum:
18162.6 kg·m/s = (1430 kg + 959 kg) * vf
Simplifying the equation:
18162.6 kg·m/s = 2389 kg * vf
Dividing both sides by 2389 kg:
vf = 18162.6 kg·m/s / 2389 kg
vf ≈ 7.60 m/s
Therefore, the speed of the entangled mass after the collision is approximately 7.60 m/s.
To know more about momentum, please visit
https://brainly.com/question/30677308
#SPJ11