The roof of an airconditioned home is 7 m long, 9 m wide, and 20 cm thick. It is made of a flat layer of concrete whose thermal conductivity is k = 0.8 W/m·K. The temperatures of the outer and the inner surfaces of the roof one afternoon are measured to be 34°C and 18°C, respectively, for a period of 4 hours. Determine the ff: (Round off your final answers to two (2) decimal places.)
(a) the rate of heat through the roof in W =
(b) the cost of the heat gain to the homeowner if the cost of electricity is ₱9.00/kWh =

Answers

Answer 1

To determine the rate of heat through the roof, we have;Area = Length × WidthA = 7 m × 9 m = 63 m².The thickness of the roof is 20 cm. We convert it to meters by dividing by 100.

That is 20 cm/100 cm/m = 0.20 mothed temperature difference, ΔT = 34°C – 18°C = 16°C.The formula for the rate of heat is given bee's = kAΔT/tq = (0.8 W/make)(63 m²)(16°C)/(4 hours × 3600 s/hour) q = 1.00 W

The cost of the heat gain = Energy used × Cost of electricity Cost of electricity

=[tex]₱9.00/kWh = ₱0.009/kJ.[/tex]

For 4 hours, Energy used = q × energy used

= (1.00 W) (4 hours × 3600 s/hour)

= 14,400

Jute cost of the heat gain

= [tex](14,400 J)/(3,600,000 J/kWh) (₱0.009/kJ)[/tex]

The cost of the heat gain = ₱0.000504Therefore, the cost of the heat gain to the homeowner is

₱0.000504.

To know more about determine visit:

https://brainly.com/question/29898039

#SPJ11


Related Questions

A circular wooden log has a diameter of 1 meter and a length of 3 meters. It currently floats in water with 1/2 of it submerged. What additional vertical force must be applied to fully submerge the log? Give your answer in Newtons.

Answers

When a circular wooden log floats in water, the volume of the displaced water is equal to the volume of the log. To completely submerge the log, the buoyant force on the log must be equal to the weight of the log.The buoyant force is given by the formula:

Buoyant force = Volume of displaced water × Density of water × gwhere g is the acceleration due to gravity, which is approximately equal to 9.81 [tex]m/s²[/tex]

The volume of the displaced water is given by:

Volume of displaced water = [tex]πr²h[/tex]

where r is the radius of the log and h is the height of the submerged part. From the given data, we can determine that:

[tex]r = d/2 = 1/2[/tex]meters

h = 1/2 × 3 = 3/2 meters

So,

Volume of displaced water

[tex]= π(1/2)²(3/2)\\= 3π/8 m³[/tex]

Density of water is equal to 1000[tex]kg/m³[/tex],

Therefore,

Weight of log =

[tex]700 × (3π/4) × 9.81 \\= 16284.675[/tex]N

To fully submerge the log, we need to add a vertical force equal to the weight of the log, which is approximately 16284.675 N.An additional vertical force of 16284.675 N must be applied to fully submerge the log.

To know more about approximately visit:

https://brainly.com/question/31695967

#SPJ11

For each of the transfer functions below, find the exact response of each system to a step input, using Laplace transform techniques.
a. T(s) = (s+3)(s+6) 10(s+7)
b. T(s) (s+10) (s+20) 20 c. T(s) s²+6s+144 s+2 d. T(s) s²+9 e. T(s) = s+5 (s+10)²

Answers

Step-by-step solutions for the given transfer functions are as follows a. T(s) = (s+3)(s+6) 10(s+7)For this transfer function, the response of the system to a step input can be obtained by using the following steps.

After obtaining the values of A, B, and C, the inverse Laplace  of the transfer function will be as follows'(t) By putting the given values of A, B, C, and y(0), we get the exact response of the system to a step input as follows:

y(t) = (0.0833 e⁻⁷ᵗ) - (0.0268 e⁻³ᵗ) + (0.9435 e⁻⁶ᵗ) b.

T(s) (s+10) (s+20) 20For this transfer function, the response of the system to a step input can be obtained by using the following steps firstly, we need to convert the transfer function to a time domain function by taking the inverse Laplace transform.

To know more about solutions visit:

https://brainly.com/question/30665317

#SPJ11

A unity feedback system whose forward transfer function is given by the following expression: G(s)= ((8S+16) (S+24))/(S³+6S²+245) Determine the steady-state error when applying each of the three units standard test input signals (Step, ramp, and parabolic).

Answers

The steady-state errors for the three standard input signals are: ess(step input) = 1ess(ramp input) = ∞ess(parabolic input) = ∞

The transfer function of the unity feedback system is, G(s)= ((8S+16) (S+24))/(S³+6S²+245)

The steady-state error of a unity feedback system is calculated with the help of final value theorem.

A unit step input signal has a Laplace Transform of 1/s.

A unit ramp input signal has a Laplace Transform of 1/s²

.A unit parabolic input signal has a Laplace Transform of 2/s³

.For the unit step signal, we need to find the value of steady-state error (ess) when the input is 1/s.ess = 1/(1+Kp)

where Kp is the position error constant.Kp = lims→0(s×G(s)) = lims→0(s ×((8S+16) (S+24))/(S³+6S²+245))= 0

Kp = 0. So, ess = 1/1 = 1

For the unit ramp signal, we need to find the value of steady-state error (ess) when the input is 1/s².ess = 1/Kv

where Kv is the velocity error constant.Kv = lims→0(s×G(s)) = lims→0(s ×((8S+16) (S+24))/(S³+6S²+245))= 0

Kv = 0. So, ess = 1/0 = ∞ (infinite)

For the unit parabolic signal, we need to find the value of steady-state error (ess) when the input is 2/s³.ess = 1/Ka, where Ka is the acceleration error constant.

Ka = lims→0(s×G(s)) = lims→0(s ×((8S+16) (S+24))/(S³+6S²+245))= 0

Ka = 0. So, ess = 1/0 = ∞ (infinite).

Learn more about the transfer function at

https://brainly.com/question/32279011

#SPJ11

draw and briefly explain cost comparison diagram which
allows comparison of the cost to fabricate composite products

Answers

When it comes to fabricating composite products, there are a number of methods that can be used. In order to determine which method is most cost-effective, we need to take into account a number of factors, such as material costs, labor costs, equipment costs, and so on.

One way to create a cost comparison diagram is to use a bar chart or a table to compare the total costs of each production method. We can also break down the costs into different categories, such as material costs, labor costs, and overhead costs.Here's an example of a cost comparison diagram for fabricating composite products:

[tex]| Production Method | Material Cost | Labor Cost | Equipment Cost | Total Cost || ---------------- | ------------ | ---------- | -------------- | ---------- || Hand Layup        | $10,000      | $25,000    | $5,000         | $40,000    || Filament Winding | $12,000      | $20,000    | $10,000        | $42,000    || Resin Infusion    | $15,000      | $30,000    | $15,000        | $60,000    |[/tex]

As we can see from the table above, the hand layup method is the most cost-effective, with a total cost of $40,000. However, this method also requires the most labor, which may not be feasible for large production runs.The filament winding method is slightly more expensive than hand layup, but it requires less labor and may be more suitable for larger production runs. Resin infusion is the most expensive method, but it offers the highest quality and consistency.

Overall, the choice of production method will depend on a number of factors, such as the volume of production, the required quality and consistency, and the available equipment and labor resources. By creating a cost comparison diagram, we can make an informed decision about which method is the most cost-effective for our specific needs.

To know more about account visit:

https://brainly.com/question/30977839

#SPJ11

A high speed rotating machine weighs 1500 kg and is mounted on Insulator Springs with negligible mass. The static deflection of the springs as a result of the weight of the machine is 0.4 mm. The rotating part is unbalanced such that its equivalent unbalanced mass is 2.5 kg mass located at 500 mm from the axis of rotation. If the rotational speed of the machine is 1450 rpm I determine: a) The stiffness of the springs in N/m. b) The vertical vibration undamped natural frequency of the machine spring system, in rad/sec and Hz. c) The machine angular velocity in rad/s and centrifugal force in N resulting from the rotation of the unbalanced mass when the system is in operation

Answers

A rotating machine is mounted on insulator springs with negligible mass, and it weighs 1500 kg. As a result of the machine's weight, the static deflection of the springs is 0.4 mm.

The machine's rotating part is unbalanced such that the equivalent unbalanced mass is 2.5 kg mass located at 500 mm from the axis of rotation. If the rotational speed of the machine is 1450 rpm, the following items can be determined:

a) The stiffness of the springs in N/m.
b) The vertical vibration undamped natural frequency of the machine spring system, in rad/sec and Hz.
c) The machine angular velocity in rad/s and centrifugal force in N resulting from the rotation of the unbalanced mass when the system is in operation.

Given,Weight of machine, W = 1500 kg;Equivalent unbalanced mass, m = 2.5 kg;

Unbalanced mass eccentricity, e = 500 mm;

Rotational speed of machine, N = 1450 rpm = 1450/60 rad/s = 24.17 rad/s;

Static deflection of spring, δ = 0.4 mm = 0.4 × 10⁻³ m.

a) Stiffness of spring can be determined as;δ = W/k ⇒ k = W/δ = 1500/(0.4 × 10⁻³) = 3.75 × 10⁶ N/m.∴ The stiffness of the springs in N/m is 3.75 × 10⁶.

b) The natural frequency of a spring mass system is given as;f₀ = (1/2π) √(k/m) rad/s.f₀ = (1/2π) √(3.75 × 10⁶ /1500 + 2.5) = 11.38 rad/s.∴ The vertical vibration undamped natural frequency of the machine spring system is 11.38 rad/s and,Hz = f₀/2π = 1.81 Hz.

c) The angular velocity of the rotating mass is given as;ω = 2πN/60 rad/s.ω = 2π(1450)/60 = 241.02 rad/s.The centrifugal force due to the unbalanced mass can be calculated using the formula;

F = mω²e F = 2.5 × (241.02)² × 0.5 = 1.44 × 10⁵ N.

∴ The machine angular velocity in rad/s is 241.02 rad/s and the centrifugal force in N resulting from the rotation of the unbalanced mass when the system is in operation is 1.44 × 10⁵ N.

Therefore, the stiffness of the springs in N/m is 3.75 × 10⁶, the vertical vibration undamped natural frequency of the machine spring system is 11.38 rad/s and 1.81 Hz and, the machine angular velocity in rad/s is 241.02 rad/s and the centrifugal force in N resulting from the rotation of the unbalanced mass when the system is in operation is 1.44 × 10⁵ N.

To know more about angular velocity :

brainly.com/question/32217742

#SPJ11

An ammonia refrigerating plant following the theoretical single-stage cycle operates with a condensing temperature of 90°F and an evaporating temperature of 0°F. The system produces 15 tons of refrigeration. Determine (a) the coefficient of performance, (b) refrigerating efficiency, (c) rate of refrigerant flow in lbm per min, (d) theoretical borsepower input to compressor, and (e) theoretical displacement of the compressor in ft³/min.

Answers

Coefficient of Performance is the ratio of refrigerating effect produced to the amount of work done to produce it. The refrigerating effect produced is 15 tons = 54000 Btu/hour. COP = Refrigerating effect / Work done = (Refrigerating effect) / (Work of compressor)Work of compressor = h1 - h4The enthalpy values can be obtained from the given table.

Theoretical horsepower input to compressor = Refrigerating effect / (Mechanical efficiency × 2545)The mechanical efficiency of compressor can be assumed as 0.7Theoretical horsepower input to compressor = 54000 / (0.7 × 2545) = 28.4 HP(e) Theoretical displacement of compressor: Theoretical displacement of compressor is the volume of ammonia gas displaced by the compressor per minute. Theoretical displacement of compressor = (Mass flow rate × 60) / (Density of ammonia gas)The density of ammonia gas can be obtained from the given table. From the table, the density of ammonia gas at 0°F is 0.083 lb/ft³.Theoretical displacement of compressor = (0.1395 × 60) / 0.083 = 100.9 ft³/min.

Therefore, the answers to the given questions are, Co-efficient of Performance (COP) = 6067.4Refrigerating Efficiency = 1.53Rate of Refrigerant Flow = 0.1395 lbm/min Theoretical Horsepower Input to Compressor = 28.4 HPTheoretical Displacement of Compressor = 100.9 ft³/min.

To know more about amount visit:

https://brainly.com/question/32453941

#SPJ11

Fixture Inside Diameter = 49.29mm Air Inlet Area of Dryer = 61.65mm Elevation Difference Inlet/Outlet = 12.36mm Air exit temperature 35.15 °C Exit velocity = 4.9m/s Input Voltage = 240V Input Current=1.36A Average Temp. of Nozzle=25.5 °C Outside Diameter of Nozzle = 58.12mm Room Temperature = 23.5 °C Barometric Pressure = 101.325 Pa Length of Heated Surface = 208.70mm Density of exit air= 0.519 l/m^3 Mass flow rate=m= 0.157kg/s Change of enthalpy=317.14J This is A Simple Hairdryer Experiment to Demonstrate the First Law of Thermodynamics and the data provided are as seen above. Calculate the following A) Change of potential energy B) Change of kinetic energy C) Heat loss D) Electrical power output E) Total thermal power in F) Total thermal power out G) %error

Answers

The final answers for these values are: a) 0.00011 J, b) 0.596J, c) 1.828J, d) 326.56W, e) 150.72W, f) 148.89W, and g) 1.22%.The solution to this problem includes the calculation of various values such as change of potential energy, change of kinetic energy, heat loss, electrical power output, total thermal power in, total thermal power out, and %error. Below is the stepwise explanation for each value.



A) Change of potential energy= mgh= 0.157kg/s × 9.81m/s² × 0.01236m = 0.00011 J.

B) Change of kinetic energy= 1/2 × ρ × A × V₁² × (V₂² - V₁²) = 0.5 × 0.519 kg/m³ × 0.006406 m² × 0.076 × (4.9² - 0.076²) = 0.596 J.

C) Heat loss= m × cp × (t₁ - t₂) = 0.157 kg/s × 1.006 kJ/kg·K × (35.15 - 23.5) = 1.828 J.

D) Electrical power output= V × I = 240V × 1.36A = 326.56W.

E) Total thermal power in= m × cp × (t₂ - t_room) = 0.157 kg/s × 1.006 kJ/kg·K × (35.15 - 23.5) = 1.828 J.

F) Total thermal power out= m × cp × (t₁ - t_room) + Change of potential energy + Change of kinetic energy = 0.157 kg/s × 1.006 kJ/kg·K × (25.5 - 23.5) + 0.00011J + 0.596J = 148.89 W.

G) %error= ((Thermal power in - Thermal power out) / Thermal power in) × 100% = ((150.72W - 148.89W) / 150.72W) × 100% = 1.22%.

To learn more about kinetic energy

https://brainly.com/question/999862

#SPJ11

URGENT. ANSWER ALL PLEASE :) WILL GIVE THUMBS UP!
Question 13 6 pts A 0.04 m³ tank contains 13.7 kg of air at a temperature of 190 K. Using the van de Waal's equation, what is the pressure inside the tank? Express your answer in kPa. Question 15 6 pts The actual Rankine cycle has an 87.03% turbine isentropic efficiency and 80.65% pump isentropic efficiency. If in the ideal Rankine cycle, the heat input in the boiler = 900 kW, the turbine work output = 392 kW, and pump work input = 19 kW, what is the actual cycle thermal efficiency if the heat input in the boiler is the same for the actual cycle? Express your answer in percent. Question 14 6 pts 3.4 kg/s of carbon dioxide undergoes a steady flow process. At the inlet state, the reduced pressure is 2 and the reduced temperature is 1.3. At the exit state, the reduced pressure is 3 and the reduced temperature is 1.7. Using the generalized compressibility and correction charts, what is the rate of change of total enthalpy for this process? Use cp = 0.978 kJ/kg K. Express your answer in kW. Question 17 6 pts In a reheat cycle with one stage of reheat, the steam leaving the high-pressure turbine is reheated before it enters the low-pressure turbine. For the ideal cycle, the heat input in the boiler is 898 kW, the high-pressure turbine work output is 142 kW, the low-pressure turbine work output is 340 kW, and the input work to the pump is 15 kW. If the efficiency of the ideal reheat cycle is 36.5%, what is the heat transfer in the condenser? Express your answer in kW.

Answers

The ideal Rankine cycle is a theoretical cycle that describes the behavior of a steam power plant. The actual cycle is less efficient due to various losses in the system, such as friction, heat transfer, and irreversibility. The efficiency of the actual cycle can be improved by increasing the turbine isentropic efficiency, pump isentropic efficiency, and boiler efficiency.

Question 13A 0.04 m³ tank contains 13.7 kg of air at a temperature of 190 K. Using the van de Waal's equation, the pressure inside the tank can be calculated as follows:

Given data,Volume = 0.04 m³n = ?R = 8.31 J/K.molT = 190 Km = 13.7 kgMolar mass of air = 28.97 g/mol = 0.02897 kg/molVan der Waals equation isP = (nRT) / (V-nb) - a(n/V)²For air, a = 0.1385 Pa.m³/mol, and b = 0.0000385 m³/molWe need to calculate n = m / M = 13.7 kg / 0.02897 kg/mol = 473.06 mol.Now calculate pressure P = ?P = (nRT) / (V-nb) - a(n/V)²Putting the values we getP = ((473.06 mol) x (8.31 J/mol.K) x (190 K)) / ((0.04 m³)-(473.06 mol x 0.0000385 m³/mol)) - 0.1385 Pa.m³/mol x ((473.06 mol) / (0.04 m³))²= 19024 Pa, rounded to 19.0 kPaTherefore, the pressure inside the tank is 19.0 kPa.

ExplanationVan der Waals equation can be used to calculate the pressure, volume, and temperature of a gas under non-ideal conditions. It is similar to the ideal gas law but with two correction factors to account for intermolecular forces and finite molecular volumes.Question 15

The ideal Rankine cycle can be represented on a temperature-entropy diagram as follows:

Given data,Heat input in the boiler = 900 kWTurbine work output = 392 kWPump work input = 19 kWEfficiency of the actual cycle = 87.03%Efficiency of the pump = 80.65%Efficiency of the actual cycle = (Net work output / Heat input) x 100%Where,Net work output = Turbine work output - Pump work input

Net work output = (392 - 19) kW = 373 kWHeat input in the boiler = 900 kW

Efficiency of the actual cycle = (373 / 900) x 100% = 41.44%

Therefore, the actual cycle thermal efficiency is 41.44%.

To know more about Rankine cycle visit:

brainly.com/question/31328524

#SPJ11

ystercesis and eddy-currunt losses fore a 7400−120 V,−60−1+ ticansformere arce current is 2.5 percent reated the magnetizing The transformer is operating in the cureront and mode. Sketch the appropriate equivelent ein the step and phasor diagnam and determins exciting curtuent, (5) (b) the no-lond factor. (c) the reoctive power input

Answers

(a) The hysteresis and eddy current losses depend on the operating current of a 7400-120 V, -60 Hz transformer.

(b) The no-load factor is the ratio of core losses to the rated power of the transformer when operating without load.

(c) The reactive power input can be calculated using the phasor diagram and the power factor angle.

(a) The hysteresis and eddy current losses for a 7400-120 V, -60 Hz transformer with a current that is 2.5 percent of the rated current will be affected by the operating conditions, such as the magnetic properties of the core material and the operating flux density. The specific calculations for these losses require detailed information about the core material, cross-sectional area, and magnetic flux density, as well as appropriate formulas or reference data.

(b) The no-load factor, or iron loss factor, represents the ratio of the core losses (hysteresis and eddy current losses) to the rated power of the transformer when it operates with no load connected to the secondary side. The exact value of the no-load factor can be obtained from the transformer's manufacturer or through testing. It is an important parameter to consider when evaluating the efficiency and performance of the transformer.

(c) To determine the reactive power input of the transformer, detailed measurements from the phasor diagram are required. By measuring the voltage and current phasors on the primary side, the power factor angle can be determined. The reactive power input is then calculated by multiplying the apparent power by the sine of the power factor angle. Obtaining accurate values for the reactive power input requires precise measurements and an understanding of the power factor angle's influence on the overall power consumption of the transformer.

To know more about reactive power visit:

https://brainly.com/question/32813637

#SPJ11

A supermarket of dimensions 20m x 15m and 4m high has a white ceiling and mainly dark walls. The working plane is lm above floor level. Bare fluorescent tube light fittings with two 58 W, 1500mm lamps are to be used, of 5100 lighting design lumens, to provide 400 lx. Their normal spacing-to-height ratio is 1.75 and total power consumption is 140 W. Calculate the number of luminaires needed, the electrical loading per square metre of floor area and the circuit current. Generate and draw the layout of the luminaires. If you were to replace these fluorescent tube light fittings with another type of light fittings, what would they be? How would you go with the design to make sure that all parameters remain equal?

Answers

To achieve an illuminance of 400 lux in a 20m x 15m x 4m supermarket, 24 fluorescent tube light fittings with two 58W, 1500mm lamps are needed, spaced evenly with a 1.75 spacing-to-height ratio. The electrical loading is 0.47 W/m² and the circuit current is 0.64 A.

To calculate the number of luminaires needed, we first need to determine the total surface area of the supermarket's floor:

Surface area = length x width = 20m x 15m = 300m²

Next, we need to determine the total amount of light needed to achieve the desired illuminance of 400 lux:

Total light = illuminance x surface area = 400 lux x 300m² = 120,000 lumens

Each fluorescent tube light fitting has a lighting design lumen output of 5100 lumens, and we need a total of 120,000 lumens. Therefore, the number of luminaires needed is:

Number of luminaires = total light / lumen output per fitting

Number of luminaires = 120,000 lumens / 5100 lumens per fitting

Number of luminaires = 23.53

We need 24 luminaires to achieve the desired illuminance in the supermarket. However, we cannot install a fraction of a luminaire, so we will round up to 24.

The electrical loading per square metre of floor area is:

Electrical loading = total power consumption / surface area

Electrical loading = 140 W / 300m²

Electrical loading = 0.47 W/m²

The circuit current can be calculated using the following formula:

Circuit current = total power consumption / voltage

Assuming a voltage of 220V:

Circuit current = 140 W / 220V

Circuit current = 0.64 A

To generate a layout of the luminaires, we can use a grid system with a spacing-to-height ratio of 1.75. The luminaires should be spaced evenly throughout the supermarket, with a distance of 1.75 times the mounting height between each luminaire. Assuming a mounting height of 1m, the luminaires should be spaced 1.75m apart.

To know more about electrical loading, visit:
brainly.com/question/30437919
#SPJ11

c) The following paragraph contains a number of errors (somewhere between 1 and 5). Rewrite this passage, correcting any errors that are contained there. It should be possible to do this by replacing just one word within a sentence with another. There are two ways in which research nuclear reactors can be used to produce useful artificial radioisotopes. The excess protons produced by the reactors can be absorbed by the nuclei of target material leading to nuclear transformations. If the target material is uranium-238 then the desired products may be the daughter nuclei of the subsequent uranium fission. These can be isolated from other fusion products using chemical separation techniques. If the target is made of a suitable non-fissile isotope then specific products can be produced. An example of this is cobalt-59 which absorbs a neutron to become cobalt-60. [4.2]

Answers

Research nuclear reactors have two ways of producing useful artificial radioisotopes: nuclear transformations through absorption of excess protons by target nuclei, and specific product production by non-fissile isotopes.

Research nuclear reactors offer two methods for generating valuable artificial radioisotopes. Firstly, by absorbing the surplus protons emitted by the reactors, the nuclei of the target material undergo nuclear transformations.

If uranium-238 is used as the target material, the resulting desired products are the daughter nuclei derived from subsequent uranium fission. These specific products can be separated from other fusion byproducts using chemical separation techniques. Alternatively, if the target material consists of a suitable non-fissile isotope, it can generate specific products as well. For instance, cobalt-59 absorbs a neutron and transforms into cobalt-60, serving as an example of this process.

Learn more about Nuclear Reactor:

https://brainly.com/question/12899500

#SPJ11

A rigid tank contains 6 kg of saturated vapor steam at 100°C. The steam is cooled to the ambient temperature of 25°C. Determine the entropy change of the steam, in kJ/K. Use steam tables.
The entropy change of the steam is ___kJ/K

Answers

Given data are:Mass of steam m = 6kgTemperature of steam T1 = 100 °CTemperature of surrounding T2 = 25°CWe need to find entropy change of steam ∆S

.From steam table, we have:At 100°C, saturation pressure P1 = 1.013 bar Specific enthalpy of saturated vapour h1 = 2676.5 kJ/kgSpecific entropy of saturated vapour s1 = 6.828 kJ/kg KAt 25°C, saturation pressure P2 = 0.031 bar Specific enthalpy of saturated vapour h2 = 2510.1 kJ/kgSpecific entropy of saturated vapour s2 = 8.785 kJ/kg KThe entropy change of the steam is -0.116 kJ/K

In order to find the entropy change of steam, we will use the entropy formula. The entropy change of the steam can be calculated using the following formula:∆S = m * (s2 - s1)Where,m = Mass of steam = 6 kg.s1 = Specific entropy of saturated vapour at temperature T1.s2 = Specific entropy of saturated vapour at temperature T2.s1 and s2 values are obtained from steam tables.At 100°C,s1 = 6.828 kJ/kg KAt 25°C,s2 = 8.785 kJ/kg KNow, substituting the values in the formula, we get∆S = 6 * (8.785 - 6.828) = -0.116 kJ/KSo, the entropy change of the steam is -0.116 kJ/K.

To know more about steam visit:

https://brainly.com/question/16260833

#SPJ11

The entropy change of the steam is  -40.902  kJ/K

How to determine the entropy change

Using the steam tables, we have that the specific entropy values are;

At 100°C, the specific entropy of saturated vapor steam is s₁= 7.212 kJ/(kg·K).

At 25°C, the specific entropy of saturated liquid water is s₂= 0.395 kJ/(kg·K).

The formula for entropy change (Δs) is given as;

Δs = s₂ - s₁

Substitute the values from the steam table, we get;

Δs = 0.395 - 7.212

subtract the values

Δs = -6.817 kJ/(kg·K)

To calculate the total entropy change, we have;

Entropy change = Δs × mass

= -6.817 kJ/(kg·K) × 6 kg

Multiply the values

= -40.902 kJ/K

Learn more about entropy at: https://brainly.com/question/6364271

#SPJ4

A venturi meter is installed in a vertical pipeline system in which petroleum c flows in an upward direction through it. A mercury U-tube manometer records an average deflection of 400 mm when the distance between the entry and the throat tappings is 845 mm.
The throat diameter is 200 mm and the pipe diameter is 450 mm. The flow coefficient for the meter is 0.945 and the relative density of the petroleum oil is 0.85
Calculate:
The velocity of flow ratio between the 450 mm diameter pipe section to the 200 mm throat section
The change in pressure between the 450 mm diameter pipe section and the 200 mm throat section in kPa
The velocity of the petroleum oil of at the throat section in m/s with the aid of Bernoulli's energy equation ignoring all losses
The actual volumetric flow rate of the petroleum oil through the venturi flowmeter in litres per minute

Answers

The venturi meter is installed in a vertical pipeline system in which petroleum oil flows in an upward direction through it.

A mercury U-tube manometer records an average deflection of 400 mm when the distance between the entry and the throat tappings is 845 mm. The throat diameter is 200 mm and the pipe diameter is 450 mm. The flow coefficient for the meter is 0.945 and the relative density of the petroleum oil is 0.85.

The velocity of the petroleum oil at the throat section in m/s with the aid of Bernoulli's energy equation ignoring all losses is 7.162 m/s and the actual volumetric flow rate of the petroleum oil through the venturi flowmeter in litres per minute is 13506 LPM (approx).

To know more about visit:

https://brainly.com/question/29361672

#SPJ11

Question 6 (1 point) Listen If the rest of the sketch is correct, what will we see in the serial monitor when the following portion is executed (assuming there is no outer loop)? int x = 5; int y = 2; do { y = y + x; Serial.print(y); Serial.print(" "); } while(y > x && y < 22); // y is bigger than x and smaller than 22 O 7 12 17 O 27 12 17 O [Nothing. The program never enters this loop.] O 712 17 22

Answers

If the rest of the sketch is correct the thing that one see in the serial monitor when the following portion is executed is  O 7 12 17

What is the loop

A "do while" loop is a feature in computer programming that lets a section of code run over and over again until a certain condition is met. The do while method has a step and a rule.

Therefore, The do-while loop will keep going if y is greater than x and less than 22. At first, x equals 5 and y equals 2. The loop will run at least one time because the condition is true. In the loop, y gets bigger by adding x to it (y = y + x). This means that y becomes 7 the first time it's done.

Read more about serial monitor  here:

https://brainly.com/question/33179222

#SPJ4

1) What is an IMU sensor? 2) What is gait analysis? 3) How can we measure joint angles? Please offer at least two methods. 4) How will you define balance?

Answers

An IMU (Inertial Measurement Unit) sensor is an electronic device that measures and reports a body's specific force, angular rate, and sometimes the orientation of the body to which it is attached. Inertial measurement units are also called inertial navigation systems, but this term is reserved for more advanced systems.

The IMU is typically an integrated assembly of multiple accelerometers and gyroscopes, and possibly magnetometers.
2. Gait analysis is the study of human motion, typically walking. Gait analysis is used to identify issues in a person's gait, such as muscle weakness or joint problems. Gait analysis is commonly used in sports medicine, physical therapy, and rehabilitation.
3. We can measure joint angles through the following methods:
- Goniometry: A goniometer is used to measure the angle of a joint. It is a simple instrument with two arms that can be adjusted to fit the joint, and a protractor to measure the angle.
- Motion capture: Motion capture technology is used to track the movement of the joints. This method uses cameras and sensors to create a 3D model of the joint, and software is used to calculate the angle.
4. Balance is the ability to maintain the center of mass of the body over the base of support. It is the ability to control and stabilize the body's position. Good balance is essential for everyday activities, such as walking, standing, and climbing stairs. Balance can be improved through exercises that challenge the body's ability to maintain stability.

To know more about Inertial visit:

brainly.com/question/17202081

#SPJ11

The uncompensated loop gain (i.e. Ge(s) = 1) has a unity gain frequency closest to a. 200 rad/s b. 2 krad/s c. 5 krad/s d. 10 krad/s e. 20 krad/s

Answers

The uncompensated loop gain (i.e. Ge(s) = 1) has a unity gain frequency closest to 200 rad/s. Gain Margin (GM)Gain Margin is defined as the additional gain required by a system's open-loop gain to achieve instability. A system's gain margin is the amount of gain adjustment needed to make it unstable.

It is a measurement of how much the feedback system's gain can be raised while still preserving stability.Phase Margin (PM)The phase margin is a measure of the difference between the phase of a system's output signal and the phase of the input signal that generates it, at the frequency where the system's gain is equal to one. In other words, the phase margin is the difference in degrees between the phase angle of the frequency response curve when the magnitude of the response is 1 and 180°.Gain and phase margins are vital in designing and developing control systems. These margins are also critical in making systems robust and ensuring that they can operate safely even in adverse conditions. Control engineers must use their judgement to determine whether the gain and phase margins are acceptable for the system being designed.

To know more about gain frequency visit:

https://brainly.com/question/33222388

#SPJ11

H.W 1 A binary-vapour cycle operates on mercury and steam. Saturated mercury vapour at 6 bar is supplied to the mercury turbine, from which it exhaust at 0.08 bar. The mercury condenser generates saturated steam at 20 bar which is expanded in a steam turbine to 0.04 bar. (i) Find the overall efficiency of the cycle. (ii) If 50000 kg/h of steam flows through the steam turbine, what is the flow through the mercury turbine ? (iii) Assuming that all processes are reversible, what is the useful work done in the binary vapour cycle for the specified steam flow? (iv) If the steam leaving the mercury condenser is superheated to a temperature of 300°C in a superheater located in the mercury boiler, and if the internal efficiencies of the mercury and steam turbines are 0.85 and 0.87 respectively, calculate the overall efficiency of the cycle.

Answers

Saturated mercury vapour at 6 bar is supplied to the mercury turbine, from which it exhaust at 0.08 bar. The mercury condenser generates saturated steam at 20 bar which is expanded in a steam turbine to 0.04 bar.

Internal efficiencies of the mercury and steam turbines are 0.85 and 0.87 respectively. The temperature at which the steam leaves the mercury condenser is superheated to a temperature of 300°C.Flow of steam turbine, m1 = 50000 kg/h Part. The overall efficiency of the binary-vapor cycle is given as:

Efficiency of cycle = (useful work output / total heat supplied) x 100%Let the mass flow rate of mercury in the cycle be m2.The mass flow rate of steam in the cycle will be (m1 - m2).The heat supplied in the cycle = enthalpy of mercury entering the turbine + enthalpy of steam entering the turbine- enthalpy of mercury leaving the turbine - enthalpy of steam leaving the turbine.

To know more about Saturated visit:

https://brainly.com/question/30550270

#SPJ11

What is the frictional Hp acting on a collar loaded with 500 kg weight? The collar has an outside diameter of 100 mm amd an internal diameter of 40 mm. The collar rotates at 1000 rpm and the coefficient of friction between the collar and the pivot surface is 0.2.

Answers

The frictional horsepower acting on the collar loaded with 500 kg weight is 6.04 W.

Given:Load acting on the collar, W = 500 kg

Outside diameter of collar, D = 100 mmInternal diameter of collar,

d = 40 mm

Rotational speed of collar, N = 1000 rpm

Coefficient of friction, μ = 0.2

The formula for Frictional Horsepower is given as;

FH = (Load × Coefficient of friction × RPM × 2π) / 33,000

Also, the formula for Torque is given as;

T = (Load × r) / 2

where,

r = (D + d) / 4

= (100 + 40) / 4

= 35 mm

= 0.035 m

Calculation:

Frictional Horsepower,

FH = (Load × Coefficient of friction × RPM × 2π) / 33,000

FH = (500 × 0.2 × 1000 × 2π) / 33,000

FH = 6.04 W

The frictional horsepower acting on the collar loaded with 500 kg weight is 6.04 W.

To know more about frictional horsepower, visit:

https://brainly.com/question/32342025

#SPJ11

Consider the beam shown in (Figure 1). Suppose that a = 170 mm , b = 250 mm , c = 20 mm . Determine the moment of inertia about the x axis. https://imgur.com/a/ZlRsFtD

Answers

The moment of inertia about the x-axis for the given beam can be determined using the parallel axis theorem.

The formula for the moment of inertia about an axis parallel to the centroidal axis is given by I = I_c + Ad^2, where I_c is the moment of inertia about the centroidal axis, A is the area of the beam, and d is the distance between the centroidal axis and the parallel axis. In this case, the beam is rectangular, so the moment of inertia about its centroidal axis can be calculated as I_c = (1/12) * b * a^3, where a is the height and b is the base of the rectangle. The area of the rectangle is A = b * a, and the distance d can be calculated as d = (a/2) + c. Plugging in the given values, the moment of inertia about the x-axis can be computed.

Learn more about parallel axis theorem here:

https://brainly.com/question/30460015

#SPJ11

Which of the following statements are true? O Conventional milling: chip width starts from zero and decreases which causes more heat to diffuse into the workpiece O Conventional milling: tool rubs more at the beginning of the cut O Climb milling: chip width starts from maximum and decreases o heat generated will transfer to the trip O Climb Milling: chips are removed behind the cutter.

Answers

The following statements are true:

1. Conventional milling: chip width starts from zero and decreases which causes more heat to diffuse into the workpiece.

2. Climb milling: chip width starts from maximum and decreases.

3. Climb Milling: chips are removed behind the cutter.

The statements that are true

1. In conventional milling, the chip width starts from zero and increases as the cutter moves further into the workpiece. This results in less heat diffusion into the workpiece compared to climb milling.

2. In conventional milling, the tool rubs more at the beginning of the cut. This is because the cutter is entering the workpiece and there is a greater engagement between the tool and the material.

3. In climb milling, the chip width starts from the maximum and decreases as the cutter moves through the material. This results in a more efficient chip evacuation and reduces the chances of chip re-cutting, which can generate heat.

4. In climb milling, the chips are removed behind the cutter, which allows for better chip evacuation and reduces the likelihood of heat transfer to the tool.

Learn more about Conventional milling at https://brainly.com/question/32471566

#SPJ1

The G Command in Moving From Point 7 to Point 8, the Tool Diameter is .375" . USE THE TOOL CENTER PROGRAMMING APPROACH
A) G01 X.8660 Y-3.1875
B) G01 X.500 Y-3.00
C) G01 X.8175 Y-3.00
D) G01 X.8157 Y-3.1875

Answers

Given that the tool diameter is 0.375". We are to use the tool center programming approach to determine the correct G command in moving from Point 7 to Point 8.The tool center programming approach involves moving the tool along the path while offsetting the tool center by half the tool diameter, such that the path is followed by the cutting edge and not by the tool center.

Therefore, we have to determine the tool center path and adjust it to obtain the cutting path. This can be achieved by subtracting and adding the tool radius to the coordinates, depending on the direction of the movement. The correct G command in moving from Point 7 to Point 8 can be obtained by finding the coordinates that correspond to the tool center path.

Then we adjust it to obtain the cutting path by subtracting and adding the tool radius, depending on the direction of the movement. We can use the following steps to determine the correct G command.    Step 1: Determine the tool center path coordinates. The tool center path coordinates can be obtained by subtracting and adding the tool radius to the coordinates, depending on the direction of the movement.

Since we are moving in the X-axis direction, we will subtract and add the tool radius to the X-coordinate. Therefore, the tool center path coordinates are: X = 0.8157 + 0.1875 = 1.0032 (for Point 8)X = 0.8660 + 0.1875 = 1.0535 (for Point 7)Y = -3.1875 (for both points)Step 2: Adjust the tool center path coordinates to obtain the cutting path coordinates.

To know more about offsetting visit:

https://brainly.com/question/31814372

#SPJ11

Let be a unit feedback system with the following transfer function G(s)= K(s+2)/s(s+1)(s+3)(s+5)
​Trace the place of Evance a) Find asymptotes b) Find the values of K for which the system is marginally stable c) Find the values of K for the loop transfer function closed to a pole a 0-5

Answers

Given transfer function of unit feedback system is, [tex][tex]$$G(s) = \frac{K(s+2)}{s(s+1)(s+3)(s+5)}$$[/tex]

a)To trace the place of Evan's diagram, follow the below steps:For G(s), let us find the poles and zeros.Zeros :[tex]$s+2=0$ or $s=-2$Poles : $s=0, -1, -3, -5$[/tex]

Asymptotic line are drawn from the poles of the system. The number of asymptotes is equal to the number of poles of the system. Therefore, in this case, there are four asymptotes drawn in Evan's diagram.

b) For a marginally stable system, we can obtain Routh Hurwitz criteria which is, Routh-Hurwitz Criterion states that for a system to be stable, the necessary and sufficient condition is that all the elements in the first column of the Routh array must be positive. And for a marginally stable system, the necessary and sufficient condition is that all the elements in the first column of the Routh array must be non-zero and have the same sign.

The elements of the first column of the Routh array for the characteristic equation of the closed-loop system are as follows:[tex]$$\begin{array}{ccc} s^4 & 1 & 5K \\ s^3 & 2K & 0 \\ s^2 & -6K/5 & 0 \\ s & 2K/3 & 0 \\ 5K & 0 & 0 \\\end{array}$$[/tex]

The necessary and sufficient condition for the marginally stable system is that all the elements of the first column of Routh-Hurwitz array should have the same sign and non-zero.

The second row of the array has a sign change. Hence, for the marginally stable system, we have: [tex]$$2K > 0$$$$\boxed{K > 0}$$[/tex]

c) The characteristic equation of the closed-loop system is [tex]$$1+G(s)H(s)=0$$[/tex]where H(s) = 1 is the forward path transfer function.

For the closed-loop poles to be near to 0-5, the value of K can be calculated as follows.

Let α = -4+jβ be the complex conjugate pole near -5, then: [tex]$$|α+5| = \sqrt{(-4)^2+β^2}=1/100$$$$\[/tex]

Therefore[tex]\boxed{\beta = \pm\frac{\sqrt{9999}}{100}, K = \frac{375}{4}}$$[/tex]

To know more about complex conjugate visit:

https://brainly.com/question/29025880

#SPJ11

Problem 2 Design a full return (fall) polynomial cam that satisfies the following boundary conditions (B.C): At 0=0°, y= h, y'= 0,4" = 0 = At 0= 5, y = 0, y = 0,4" = 0

Answers

A full return polynomial cam that satisfies the given boundary conditions can be designed by utilizing a suitable polynomial equation. The cam profile will have a height of 'h' at 0° with a slope of zero, and it will return to a height of zero at 5° with a slope of zero.

To design a full return polynomial cam, we can use a polynomial equation of the form y = a0 + a1θ + a2θ^2 + a3θ^3 + a4θ^4, where 'y' represents the cam height and 'θ' represents the angle of rotation. The coefficients 'a0', 'a1', 'a2', 'a3', and 'a4' need to be determined based on the given boundary conditions. At 0°, the cam height is 'h' and the slope is zero, which means y = h and y' = 0. Taking the derivative of the polynomial equation, we get y' = a1 + 2a2θ + 3a3θ^2 + 4a4θ^3. Setting θ = 0, we have a1 = 0. Since the slope should be zero, we can set a2 = 0 as well. At 5°, the cam height is zero and the slope is zero. Substituting θ = 5 and y = 0 into the polynomial equation, we get 0 = a0 + 25a3 + 625a4. To satisfy the condition y' = 0 at θ = 5, we take the derivative of the polynomial equation and set it to zero. This leads to a3 = -16a4. By solving these equations simultaneously, we can determine the values of the coefficients. With these coefficients, we can generate the cam profile that meets the given boundary conditions of returning to a height of zero at 5° with a slope of zero.

Learn more about polynomial equation here:

https://brainly.com/question/28947270

#SPJ11

2) A piston-cylinder assembly is thermally insulated. There is saturated liquid water at 120°C with a mass of 1.8 kg. An electrical heater is placed inside of the cylinder and then switched on for a duration of 10 minutes. During this time, the volume of the cylinder increases by four times. Assume the piston is allowed to move while keeping pressure constant, also ignore kinetic and potential energies. Find the volume of the cylinder, the temperature of the final state, and the electrical power rating of the heater in kW.

Answers

Given:Mass of saturated liquid water = 1.8 kgInitial temperature of the water = 120°C The cylinder is thermally insulated.The piston is allowed to move while keeping the pressure constant.

The volume of the cylinder increases four times in 10 minutes.Ignore kinetic and potential energies.Now,The initial condition can be determined using the saturation table, we find the specific volume of saturated liquid water v1= 0.001074 m3/kg.

The initial volume of water in the cylinder will be V1 = m/v1 = 1.8/0.001074 = 1674.77 cm3 = 1.67477 LThe volume of the cylinder during the process is 4 V1 = 6.699 LFrom the steam tables, we find the saturation temperature at the final volume (V2 = 6.699 L) and find it to be 193.65°C.So, 193.65°C is the final temperature.

To know more about cylinder visit:

https://brainly.com/question/10048360

#SPJ11

Five miners must be lifted from a mineshaft (vertical hole) 100m deep using an elevator. The work required to do this is found to be 341.2kJ. If the gravitational acceleration is 9.75m/s^2, determine the average mass per person in kg.

Answers

The average mass per person in kg is given by;First, we will calculate the gravitational potential energy as;Gravitational potential energy = mass × g × h341.2 × 1000 = mass × 9.75 × 100
mass = (341.2 × 1000) / (9.75 × 100)mass = 350.26 kg
Therefore, the average mass per person in kg is 70.05 kg.

The problem requires the determination of the average mass per person in kg when five miners must be lifted from a mineshaft (vertical hole) 100m deep using an elevator given that the work required to do this is found to be 341.2kJ, and the gravitational acceleration is 9.75m/s^2. The gravitational potential energy is calculated as the product of mass, acceleration due to gravity, and height. Solving the expression, the mass of the five miners is found to be 350.26 kg. The average mass per person in kg is calculated by dividing the mass of the five miners by the number of miners. Thus, the average mass per person in kg is 70.05 kg.

The average mass per person in kg is 70.05 kg.

To know more about Gravitational potential energy visit:
https://brainly.com/question/3910603
#SPJ11

Consider a titanium alloy having shear modulus (modulus of rigidity, G=44,44 GPa). Calculate the shear stress, If a structure made of that material is subjected to an angular deformation a = 0.2º.
Select one: a. T = 17.21 MPa b. T = 80.43 MPa
c. T = 155.12 MPa d. T=40.11 MPa e. T-77.56 MPa

Answers

The shear stress in the titanium alloy is calculated to be 17.21 MPa when subjected to an angular deformation of 0.2º.

What is the significance of the Hubble Space Telescope in the field of astronomy and space exploration?

To calculate the shear stress, we can use the formula:

Shear Stress (T) = Shear Modulus (G) * Angular Deformation (a)

Given that the shear modulus (G) is 44.44 GPa and the angular deformation (a) is 0.2º, we can substitute these values into the formula:

T = 44.44 GPa * 0.2º

To calculate the shear stress in MPa, we need to convert the shear modulus from GPa to MPa by multiplying it by 1000:

T = (44.44 GPa * 1000 MPa/GPa) * 0.2º

T = 44,440 MPa * 0.2º

T = 8,888 MPa * 0.2º

T = 1,777.6 MPa

Therefore, the shear stress is approximately 1,777.6 MPa. However, none of the given options match this value.
Learn more about angular

brainly.com/question/19670994

#SPJ11

....... .is/are routine test for checking variation and consistence of concrete mixes for control purpose. A. Setting time test B. Ball penetration test C. Flow table test D. compacting factor test E. A+B F. None of them 4. The value of Pozzolanic Activity Index (PAD) is calculated according to: A. ASTM B.BS C. ASTM and BS D. There is no reference E. B+C F. None of them

Answers

The routine test for checking variation and consistency of concrete mixes for control purpose is the flow table test. The answer is .

A flow table test measures the consistency or workability of concrete. It is used to detect the consistency of freshly mixed concrete, and the variation of the consistency during transit. This test is commonly used in civil engineering and construction engineering.

Flow table test is used to measure the consistency of fresh concrete. It is used to detect the consistency of freshly mixed concrete, and the variation of the consistency during transit. Flow table test is a simple and quick test that measures the workability of fresh concrete.

To know more about variation visit:

https://brainly.com/question/17287798

#SPJ11

A metal cylinder of 1 mm in diameter and 2 mm in length has been irradiated under reactor conditions that promote void swelling. After the irradiation experiment is completed, TEM study of the sample revealed that the average void size was 3 nm. i) What was the number density of the voids if 5% void swelſing was observed due to the irradiation effect? ii) Calculate the hardening effect (i.e. the increase in the shear yield stress because of voids) that will arise due to the presence of these voids. State the assumptions that you have made for both calculations in part (i) and (ii) above. (3+5)

Answers

i) The number density of the voids is approximately 1.67 x [tex]10^{23[/tex] voids/[tex]m^3[/tex].

ii) The hardening effect due to the presence of these voids is calculated based on certain assumptions and parameters.

i) To calculate the number density of the voids, we need to consider the observed void swelling and the dimensions of the metal cylinder. Given that 5% void swelling was observed, we can assume that 5% of the total volume of the cylinder is occupied by voids. The volume of the cylinder can be calculated using its dimensions, V = πr^2h, where r is the radius and h is the height (length) of the cylinder. Substituting the given values, we find the volume to be approximately 3.14 x 10^-12 m^3. Since voids occupy 5% of this volume, we can calculate the total number of voids using the equation N = V/V_void, where N is the number of voids and V_void is the volume of a single void. Given that the average void size is 3 nm (or 3 x 10^-9 m), we can find N to be approximately 1.67 x 10^23 voids/m^3.

ii) The hardening effect arises due to the presence of voids, which act as obstacles to dislocation motion. To calculate the hardening effect, we need to make some assumptions. One common assumption is that the voids are uniformly dispersed in the material and have a spherical shape. Under these assumptions, the increase in the shear yield stress (Δτ) can be calculated using the Orowan equation, which relates the increase in yield stress to the number density of obstacles and the dislocation line length. However, since the length of the dislocation lines is not provided in the given information, we cannot calculate the exact hardening effect. Therefore, we need additional information or assumptions to calculate the hardening effect accurately.

Learn more about Density

brainly.com/question/29775886

#SPJ11

Design a connecting rod for a sewing machine so that it can be produced by sheet metal working, given that the diameter of each of the two holes is 0.5 inches (12.5mm) and the distance between the centers of the holes is 4 inches (100mm), thickness will be 3.5mm.

Answers

The design of a connecting rod for a sewing machine that can be made by sheet metal working is as follows:Given that the diameter of each of the two holes is 0.5 inches (12.5mm) and the distance between the centers of the holes is 4 inches (100mm), thickness will be 3.5mm. The following is a design that fulfills the requirements:

Connecting rods are usually made using forging or casting processes, but in this case, it is desired to make it using sheet metal working, which is a different process. When making a connecting rod using sheet metal working, the thickness of the sheet metal must be taken into account to ensure the rod's strength and durability. In this case, the thickness chosen was 3.5mm, which should be enough to withstand the forces exerted on it during operation. The holes' diameter is another critical factor to consider when designing a connecting rod, as the rod's strength and performance depend on them. The diameter of the holes in this design is 0.5 inches (12.5mm), which is appropriate for a sewing machine's requirements.

Thus, a connecting rod for a sewing machine can be made by sheet metal working by taking into account the thickness and hole diameter requirements.

To know more about sewing machine visit:
https://brainly.com/question/30433341
#SPJ11

How many revolutions per minute is a spur gear turning if it has
a module of 2, 40 teeth and pitch line velocity of 2000 mm/s?
choices
462
498
477
484

Answers

The spur gear is turning at approximately 462 revolutions per minute.

To determine the number of revolutions per minute (RPM) of a spur gear, we can use the formula:

RPM = (Pitch Line Velocity / (Module * π)) * 60

Given that the module is 2 and the pitch line velocity is 2000 mm/s, we can substitute these values into the formula:

RPM = (2000 / (2 * π)) * 60

Simplifying the equation, we have:

RPM = (1000 / π) * 60

Calculating the value, we find:

RPM ≈ 1911.651

Rounding this to the nearest whole number, the spur gear is turning at approximately 1912 RPM.

Learn more about Pitch here: https://brainly.com/question/32136311

#SPJ11

Other Questions
Write an introduction to Disease ecology in more than 300words. Please review the following sets of sentences and select the one that contains filler. Carmine Falcone is the founder of Forever Investment Group, or FIG, an investment management company with 39.2 million assets under management. FIG is getting very big, and Carmine has risen up the Forbes billionaires list every year because of the growth of his company. As of March 31, 2019, FIG had 908 asset management employees and 204 investment professionals, at our headquarters in New York and our affiliate offices around the globe. Mr. Falcone served as interim Chief Executive Officer from December 2011 to July 2013 and was appointed Chief Executive Officer in August 2013. Use the method of undetermined coefficients to solve the second order ODE \[ y^{\prime \prime}-4 y^{\prime}-12 y=10 e^{-2 x}, \quad y(0)=3, y^{\prime}(0)=-14 \] What is torsion in gastropods and what are the advantages anddisadvantages of it? Identify each of the following examples as PURE (P) or APPLIED (A) sciences.1. Development of antibiotics (e.g., Penicillin).2. Study of the moons phases.3. Discovery of a new species of marine life.4. RADAR tracking of storms.Part B Scientific MethodREAD THIS STORY AND ANSWER THE QUESTIONS:Joe baked a cake for his mother's birthday. When he removed the cake from the oven, Joe noticed that the cake had not risen. Joe guessed that the baking powder he had used was too old. He designed the following experiment to test his idea.Joe prepared two cakes one using the same ingredients as his first cake and one using fresh baking powder. After preheating oven to 350F, he placed both cakes in the oven for 30 minutes. After 30 minutes, he removed both cakes and noticed that neither one had risen. He decided that the baking powder wasnt the cause of his problem.Underline Joe's hypothesis.Circle Joe's conclusion.Box-in Joes observation(s).What was the independent variable in Joes experiment?What was the dependent variable in Joes experiment?What was the control in Joes experiment?What were the constants in Joes experiment (assuming he did it correctBased on his conclusion, what should Joe do next? Following features are palpable except _____Arcuate line of the iliumAnterior superior iliac spineMedial malleolus of the tibiaSpinous process of C7Jugular notch of the s A Flyback converter, Vin = 30 V, N1 = 30 turns, and N2 = 15 turns. The self-inductance of winding 1 is 50H, and fs = 200 kHz. The output voltage is regulated at Vo = 9V. (a) Draw the circuit Diagram (b) Draw the input current and the output current if the out Power is 40 W. Last week we identified cigarette smoking as the leading actual cause of death in the United States. Based on your readings this week, what two factors have been ranked second among the behavioral factors as the leading actual cause of death in the United States? What has been done to address these two factors and what do you think we need to do in the future?*** At least two hundred words. Also, include a reference and bold what is being referenced. ******* Paragraph 4: For H2O, find the following properties using the given information: Find P and x for T = 100C and h = 1800 kJ/kg. A. P=361.3kPa X=56 %B. P=617.8kPa X=54%C. P=101.3kPa X= 49.8%D. P-361.3kPa, X=51% Paragraph 5: For H2O, find the following properties using the given information: Find T and the phase description for P = 1000 kPa and h = 3100 kJ/kg. A. T=320.7C SuperheatedB. T=322.9C SuperheatedC. T=306.45C SuperheatedD. T=342.1C Superheated help please!7. How was CRISPR-CAS-9 discovered? Explain. What do you think about using the CRISPR technology for treating the disease in Humans? your company purchases several windows 10 computers. you plan to deploy the computers using a dynamic deployment method, specifically provision packages. which tool should you use to create provisioning packages? What are the mechanisms within glucose metabolism that alter with sleep depravation? B. Briefly explain how the structure and chemical properties of each of the four biologically important molecules affects and influences their function.C. Briefly explain how DNA stores and transmits information Describe three forms of RNA and list one function of each form What amount invested today would grow to $10,500 after 25 years, if the investment earns: (Do not round intermediate calculations and round your final answers to 2 decimal places.) Amount a. 8% compounded annually $ b. 8% compounded semiannually $ c. 8% compounded quarterly $ d. 8% compounded monthly $ A new process for the thermal treatment of a special material whose properties are: rho =3000 kg/m3, k = 20 W/mK and Cp= 1000 J/kgK ( = 6.67 106m2/s). The material, a sphere of radius equal to 5mm, is initially in equilibrium at 500 C in a furnace. The sphere is suddenly removed from the furnace and exposed to two cooling processes.1.Cooling in air at 20 C until the center of the sphere reaches a temperature of 350 and with a coefficientheat transfer h = 10 W/m2C.2.Cooling in water at 20 C with a heat transfer coefficient h = 6000 W/m2C(a) The time for the first cooling process to take place.(b) The time required by the second process for the sphere to reach a temperature of 100 C at the center. Which of the following statements about the greenhouse effect are true? (Choose several). A)Greenhouse gases in Earth's atmosphere have been shown to come from both natural & man-made sources. B)Nitrogen & oxygen are greenhouse gases. C)Earth's dominant greenhouse gas is H2O, water. D)Emissions from the combustion of fossil fuels from the Industrial Revolution onward have contributed to the amount of greenhouse in Earth's atmosphere, as shown by the decreasing ratio of C14 to C12 among atmospheric carbon over time. E)The Earth has the worst greenhouse effect of any planet in our solar system. F)CO2 and CH4, carbon dioxide and methane, are greenhouse gases. G) Greenhouse gases emit & absorb infrared light. H)The greenhouse effect is always bad & ideally, a planet should have zero greenhouse effect. Calculate the moment of inertia of an I-section having equalflanges 30 mm x 10 mm and web also 30 mm x 10 mm about an axispassing through its centre of gravity and parallel to X-X and Y-Yaxes. The Shearing strain is defined as the angular change between threeperpendicular faces of a differential elements.(true or false) The viceroy (Limenitis archippus) is an unpalatable North American butterfly that has coloration similar to that of another species of unpalatable butterfly, the monarch (Danaus plexippus). This is an example of crypsis. Mllerian mimicry. Batesian mimicry. camouflage. Plant alkaloids act as chemical defense against herbivory because they are toxic to herbivores. are difficult for herbivores to digest. make the plant unpalatable. Stm are difficult to consume. Milkweeds use alkaloids tannins glycosides resin as a chemical defense against herbivory. Question JOINIL On Macquarie Island invasive rabbits were causing declines in palatable vegetation, and feral cats were preying on native birds. What was the primary result when a flea carrying a virus that killed the rabbits decreased rabbits' numbers on the island? Feral cats switched from eating rabbits to eating native birds. Feral cats also died off because of the loss of the rabbit prey. Native bird populations on the island increased. Native plant populations on the island declined. A textile factory located in Calgary Alberta needs to procure or build a new software solution to capture the data readings from their emissions systems and consolidate them into a government-mandated secure internet site (portal). The software needs to analyze 10 emission gas types in 5 different manufacturing processes. The data will be compiled every hour and the figures posted to a secure portal with a limited number of allowable viewers.The date is July 11, 2022, and the portal must be ready by October 01, 2022, or the company will be fined by the government $5,000 per day for non-compliance. The Department of the Environment has provided a detailed specification of the data requirements and the exact format to be displayed in the portal. After checking the IT department availability, the company has nobody skilled or available to complete the urgent project, however a senior project manager from the company has availability to manage the activity and is looking for your help as a project procurement specialist to lead the procurement activities. A "Buy" decision has been made and a competitive bid is approved.Define the Scope of Work (SOW) required to properly define the work, making any necessary assumptions as to the specifications required?A competitive bid using an RFP has been decided as the most way to drive competition among several pre-qualified vendors. Outline in bullet form what should be included in the RFP to be sent to the prospective vendors?Of the 4 prospective vendors, 2 are locally based IT companies that have a track record of success with this type of portal. One of these has worked with the Textile company before and the other has limited capacity and has been in the news lately due to the unexpected resignation of their CEO. The third is based in Toronto with no Calgary presence but has recent experience with this exact type of portal for a company in British Columbia. The VP of sales for the Textile factory also has a brother who owns the fourth, a small IT company specializing in retail websites. Assuming all have been prequalified, which suppliers should be invited to this procurement, and which should not? State your reasons why or why not?